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Self-introduction

Graduated from ENSAE and ENS Cachan (MVA) in 2015
PhD in Machine Learning at Telecom Paris Tech (2015-2018)
Postdoc at University College London (2018-2020)

Assistant Prof at ENSAE since 2020

Active research in ML community, with a theoretical flavor. Attend &
publish regularly in NeurIPS & ICML.

Main interests: sampling, optimal transport, kernel methods.
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Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.
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Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.

(1) Let D = (w;, yi)"_; a dataset of i.i.d. examples with features w, label y.

(2) Assume an underlying model parametrized by x € R9, e.g.:

y=g(w,x)+¢ €~ N(0,I1d).
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Motivation for Sampling (1): Bayesian inference
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Goal of Bayesian inference: learn the best distribution over a parameter x

to fit observed data.

(1) Let D = (w;, yi)"_; a dataset of i.i.d. examples with features w, label y.

(2) Assume an underlying model parametrized by x € R9, e.g.:
y=g(w,x)+e €~N(0,1d).

Step 1. Compute the Likelihood:

1 P
X oc yilx, wi) oc X = llyi — g(wi, x
p(D|x) p(yil exp(—35 D Ilyi — &l )1%).-
i=1

i=1
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Step 2. Choose a prior distribution (initial guess) on the parameter:

2
X
X~ e polx) o ep(~ ),
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Step 2. Choose a prior distribution (initial guess) on the parameter:

2
X
X~ e polx) o ep(~ ),

Step 3. Bayes' rule yields the formula for the posterior distribution over the
parameter Xx:

erp% where Z:/Rd p(Dx)po(x)dx

is called the normalization constant and is intractable.
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Step 2. Choose a prior distribution (initial guess) on the parameter:

2
X~ e polx) o ep(~ ),

Step 3. Bayes' rule yields the formula for the posterior distribution over the
parameter Xx:

P(D|x)po(x)
Z

p(x|D) = where 7 = /R P(Dlx)pn(x)dx

is called the normalization constant and is intractable.

Denoting 7 := p(-|D) the posterior on parameters x € R?, we have:

) ccexp(ZVI(x)), V() = 22”% g(wi, X)|* + ”X2H

i.e. 7’s density is known "up to a normalization constant”.
7 is a probability distribution over parameters of a model.
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The posterior 7 is interesting for

® measuring uncertainty on prediction through the distribution of g(w,-),
X ~ .

® prediction for a new input w:

7= | elwx)dn()

" Bayesian model averaging”

i.e. predictions of models parametrized by x € R? are reweighted by m(x).
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Here, Sampling methods construct an approximation py = ; > 0x, of 7.
m=1

Input w
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(Some, Non parametric) Sampling methods

(1) Markov Chain Monte Carlo (MCMC) methods: generate a Markov chain in
R? whose law converges to 7 o exp(— V)

Example: Langevin Monte Carlo (LMC) [Roberts and Tweedie (1996)]

Xm+1 = Xm — ’Yv V(Xm) + V 2'777m7 nm ~ N(O, Id)

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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(2) Interacting particle systems, whose empirical measure at stationarity
approximates 7 o exp(— V)

Example: Stein Variational Gradient Descent (SVGD) [Liu and Wang (2016)]

N
i i 2 j i i .
Xm+1 = Xm — N ZVV()(,’,,)k(Xm,)dn) - Vzk(xm,xjm), ! 17 R Na

j=t

where k : RY x R — R, is a kernel (e.g. k(x,y) = exp(—|x — y|?)).

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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Motivation for Sampling (2): Generative modeling
In this setting, we have a collection of samples (data) xi,...,x, ~ 7.

Goal of Generative Modeling: generate new samples that look like 7.

LSUN bedroom samples vs MMD GAN [Li et al. (2017)].
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The Sampling literature

Two different settings:

® (1) the "Bayesian inference” one, where m oc e™"

® (2) the " Generative Modeling” one, where x1,...,x, ~ 7
For (1), you may have heard of: Importance Sampling, MCMC algorithms ...

For (2), you may have heard of: Generative Adversarial Networks, Normalizing
Flows, Diffusion Models...

There is no clear winner on the quality of approximation/computational
complexity. Also, these methods are nowadays sometimes used jointly.
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Assume that we have an algorithm that outputs a candidate probability

distribution p, we want to know how close it is from 7.

One way is to pick a distance or divergence between probability distributions.

[Taonomy of principal distances and divergen

Buclide

Optimal tra

From https://franknielsen.github.io/.
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Main families of divergences and distances
Let P(R9) denote the space of probability distributions over R?.

We will pick D a divergence, i.e. s.t. D(u||7) > 0 for any u € P(R),
D(p||7) & p = m; or a distance (i.e. satisfies triangle inequality).

Main families of divergences and distances are:

/f (%) dm, f convex, f(1)=0

defined for u < 7 (p absolutely continuous w.r.t. )

® f-divergences:

® integral probability metrics (IPM):

/fduf/fdw

for G a class of functions "rich enough”

sup
feg

® optimal transport (OT) distances (cf Marco Cuturi or Austin Stromme'’s
courses)
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Sampling as Optimization

Actually, in many cases (e.g. it is underlying many algorithms), the sampling
problem (approximating 7) can be viewed as optimization over P(RY):

min  D(u|m
L min (1l )

where D is a divergence or distance, hence that is minimized for u = .
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The Kullback-Leibler divergence

D could be the (reverse) Kullback-Leibler (KL) divergence:

KL(ulr) = { Jos 08 (509) du) it <x

We recognize a f-divergence [ f (£) dm where f(x) = x log(x). Taking
f(x) = —log(x) yields the (forward) KL i.e. KL(7|u).
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The Kullback-Leibler divergence

D could be the (reverse) Kullback-Leibler (KL) divergence:

KL(ulr) = { Jos 08 (509) du) it <x

We recognize a f-divergence [ f (£) dm where f(x) = x log(x). Taking
f(x) = —log(x) yields the (forward) KL i.e. KL(7|u).

The (reverse) KL as an objective is convenient when the unnormalized density
of 7 is known since it does not depend on the normalization constant!

Indeed writing 7(x) = e~V /Z we have:

KL(ir) = [ 1og (7)) di(x) +log(2).

But, it is not convenient when p or 7 are discrete, because the KL is +co
unless supp(u) C supp(r).
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Examples with parametric models

Consider the sampling optimization objective:

min  D(u|m
i, ()

But now (in this slide) assume we restrict the search space to a parametric
families {Py, 6 € RP} (ex: Gaussian with diagonal covariance matrices can be
parametrized by § = (m, c) € R*). The problem rewrites as a
finite-dimensional optimization problem (i.e. over R”):

min D(o|m)

® Choosing D as the reverse KL, i.e. D(ug|m) = KL(ug|7) yields Variational
Inference [Blei et al. (2017)] which is useful for Bayesian Inference (7 < e™)

® Choosing D as the forward KL, i.e. D(uo|m) = KL(7|po) yields Maximum
Likelihood, which is useful for fitting a model (x1,...,x, ~ ) since:

min KL(rlio) = [ tog () < min— [ log(uo () Z log (110 ()
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The Maximum Mean Discrepancy

When we have 7 (or an approximation) as a discrete measure, it is
convenient to choose D as an IPM, i.e. integral probability metric (to
approximate integrals).

For instance, D could be the MMD (Maximum Mean Discrepancy):

/ fdp — / fdr

=||m, — m,,H%{k, where my, = /k(X7 )dp(x)
= //Rd k(x,y)du(x)du(y)
+ //Rd K(x, y)dr(x)dm(y) — 2//Rd k(x, y)dp(x)dm(y).

where k : RY x R? — R is a p.s.d. kernel (e.g. k(x,y) = e~ I*=¥I*Y and Hj is the
RKHS associated to k:

MMD?(p, ) = sup
FEH[Fll3¢, <1

Hk—{Za, wxi )i mEN; ai,...,am €R; xl,...,me]Rd}.
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Example: Take k(x,y)=e" = ,pu=21%6,n=21%94,
— =1 =t

MMD?(p, ) = 222/«

i=1 j=1
1 m m
9 ) SLIRURECD 9 o e}
i=1 j=1 i=1 j=1
Remark: scale carefully the bandwith o. Or consider k(x,y) = —||x — y||,

which is not p.s.d. but does not have scale issue, and the corresponding MMD
is Energy Distance.
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Wasserstein-p distances

Let P,(RY) the space of probability measures on R with finite p moments, i.e.
Po(RY) = {n € P(RY), [ Ix]|Pdu(x) < oo}.

The Wasserstein-p distance from Optimal transport is defined as :

Vi € Po(RY), WEGuw) = inf [ x— P dstxy),
R9 xR

sel(p,v)

where (1, ) is the set of possible couplings between 1 and v (probabilities on
R? x RY with first and second marginal equal to u and v). Most popular ones
are:

® The Ws (in many ways analog to an "euclidean distance” but on P»(R9))

® The Wi, which interestingly can be written as an IPM:

/fd,u—/fdu

Wi(p,v) = inf

f:RY—R,f is 1-Lipschitz
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We have KL(u|v) = KL(v|u) = +o0, and Wa(u,v) = |x|.
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In this section we will recall some fundamental methods and principles from
Simulation and Monte Carlo (see Nicolas Chopin's course).

We will consider the "Bayesian inference” setting, where the target 7 has a
density that is known to be 7 < e~

Recall that in this setting we are often interested in approximating:

/f(X)dTl’(X) for some f.
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Importance Sampling (1S)

Let g be a proposal distribution such that Supp(7) C Supp(g). Define for all
x € RY
m(x)

)

Define the Self-Normalized Importance Sampling (SNIS) estimator of the
expectation of f as

N
/fd’iT ~ ; WNf(X,'), where Wy = m

and Xi,..., Xy ~ q.
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Importance Sampling (1S)

Let g be a proposal distribution such that Supp(7) C Supp(g). Define for all
x € RY
m(x)

)

Define the Self-Normalized Importance Sampling (SNIS) estimator of the
expectation of f as

N
/fdw ~ Z wyf(Xi),  where wy =
i=1

and Xi,..., Xy ~ q.

Remark: For IS to be effective, the proposal g must be close enough to 7 in
X?-square distance (see Agapiou et al. (2017, Th1)), which makes IS also
notably affected by the curse of dimensionality (e.g., Agapiou et al. (2017, Sec
24.1)).
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® Designing a good proposal q is critical

® There is a huge literature on Adaptive Importance Sampling
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Recall that a Markov kernel Q(x, dy) is an application RY — P(R9).
Let Q(x, dy) a Markov kernel, such that Q(x, dy) = q(x,y)dy.

Metropolis-Hastings is a two-step iterative algorithm relying on the proposal
Markov kernel Q.

Let X be the state at time m.
® Step 1: Sample a candidate y ~ Q(xm, dy)

® Step 2: The next state is set according to the rule:

N 2 with probability acc(xm, y)
m = Xm  with probability 1 — acc(xm, )

where the acceptance probability is

q(y, xm)m(y) )

acc(Xm, y) = min (1’ q(xm, y)(Xm)
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Examples of Markov kernels

® Gaussian random walk
y ~N(x,X)
® Langevin proposal (yields "MALA”" i.e. Metropolis Adjusted Langevin
Algorithm)
y ~N(x + vV logm(x),2v1d)
Recall that if 7 oc e, i.e. ™ = 7/Z where 7 is known and Z unknown,

then Vlog(r) = Y&/2 = Vlieg# = —VV.
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