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Ordinary differential equation

Consider the ordinary differential equation (ODE)

dXt

dt
= f (Xt , t)

which we also express as
dXt = f (Xt , t)dt

where Xt , f (Xt , t) ∈ Rd . Then, (Xt)t≥0 is a deterministic curve.

We can think of the ODE as the limit

Xt+∆t ≈ Xt + f (Xt , t)∆t

under ∆t → 0, where t = k∆t.
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Solution for ODE

(Xt)t=0...T solves ODE if it satisfies the

• differential form of the ODE

• or the integral form of the ODE:

Xt = X0 +

∫ t

0

f (Xs , s)ds

Example:
dXt

dt
= −Xt , X0 = 1 ⇒ Xt = e−t

4 / 55



Reverse-Time SDE Training via score matching Discrete-Time Diffusion Models

Stochastic differential equation

Consider the stochastic differential equation (SDE)

dXt = f (Xt , t)dt + g(t)dWt

where Xt , f (Xt , t) ∈ Rd , g(t) ∈ Rd×d , and Wt is a d-dimensional Brownian
motion or Wiener process.

Xt is a random process. (We can allow g to also depend on Xt , but this makes
the equations more complicated.)

We can think of the SDE as the limit

Xt+∆t ≈ Xt + f (Xt , t)∆t + g(t)Zk

√
∆t

under ∆t → 0, where t = k∆t and Z0,Z1, · · · ∼ N (0, I ).
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Solution for SDE

(Xt)t=0,...T is a solution path for SDE if (Xt)t=0,...T is nice1 with probability
distribution defined by

Xt = X0 +

∫ t

0

f (Xs , s)ds +

∫ t

0

g(s)dWs

where the Itô stochastic integral is defined as∫ t

0

g(s)dWs = lim
∆t→0

K−1∑
k=0

g(k∆t)
√
∆tZk , Z1,Z2, · · · ∼ N (0, I ) are IID.

1right-continuous with left limits (càdlàg)
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Solution for SDE

For a given fixed path (Xt)t=0,...T , we cannot determine whether it was
generated as an instance of the SDE. (Given a fixed sequence 00110011, can
you determine whether it was generated as 8 independent Bernoulli random
variables?)

Rather, we can talk about whether a distribution of paths solve the SDE. A
”solution” of an SDE is a probability distribution of (Xt)t=0,...T (the joint
distribution over all Xt for t ∈ [0,T ]).

For diffusion probabilistic models, we will consider a weaker notion: the
marginal probability distributions (pt)t=0,...T such that Xt ∼ pt for all
t ∈ [0,T ].

A first question of interest is: how does pt evolve as a function of time t?

7 / 55



Reverse-Time SDE Training via score matching Discrete-Time Diffusion Models

Fokker–Planck equation 1D

The time evolution of pt under the SDE

dXt = f (Xt , t)dt + g(t)dWt

is governed by the Fokker–Planck (FP) equation.

For d = 1, the FP equation is

∂tpt = −∂x(fpt) +
g 2

2
∂2
x (pt)

More precisely, this means

∂tpt(x) = −∂x(f (x , t)pt(x)) +
g 2(t)

2
∂2
x (pt(x))

for all t > 0 and x ∈ R. This is a partial differential equation (PDE).
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Derivation of FP equation
Let d = 1. Let {pt}Tt=0 be a family of pdfs such that Xt ∼ pt for 0 ≤ t ≤ T . For any
φ ∈ C∞

c (R) (set of smooth compactly supported functions on R), we have

∂tEX∼pt [φ(X )] ≈
1

ε

(
EX∼pt+ε [φ(X )]− EX∼pt [φ(X )]

)
≈

1

ε
E X∼pt
Z∼N (0,I )

[
φ(X + εf +

√
εgZ)− φ(X )

]
≈

1

ε
E X∼pt
Z∼N (0,I )

[
φ(X ) + εφ′(X )f (X , t) +

√
εφ′(X )g(t)Z

+
1

2
φ′′(X )g2(t)εZ2 +O(ε3/2)− φ(X )

]
≈ EX∼pt

[
φ′(X )f (X , t) +

1

2
φ′′(X )g2(t)

]
Therefore,

∂t

∫
φ(x)pt(x)dx =

∫
φ′(x)f (x , t)pt(x)dx +

1

2

∫
φ′′(x)g2(t)pt(x)dx∫

φ(x)∂tpt(x)dx =

∫
φ(x)

(
−∂x (fpt) +

1

2
∂2
x (g

2pt)

)
dx

using integration by parts.

⇒ ∂tpt = −∂x (fpt) +
g2

2
∂2
x (pt)
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Fokker–Planck equation (multi-dim)

The multi-dimensional Fokker–Planck equation is

∂tpt(x) = −
d∑

i=1

∂

∂xi
(fi (x , t)pt(x)) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj

(
pt(x)

d∑
k=1

gik(t)gjk(t)

)

= −
d∑

i=1

∂

∂xi
(fi (x , t)pt(x)) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj

(
pt(x)gi,:(t)g

⊤
j,:(t)

)
= −∇x · (fpt) +

1

2
Tr(gg⊤∇2

xpt)

= −∇x · (fpt) +
1

2
Tr(g⊤∇2

xptg)
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Example SDE: Ornstein–Uhlenbeck process
Example:

dXt = −βXtdt + σdWt

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)
If X0 ∼ N (0, σ2/2β)

Xt ∼ N
(
0,

σ2

2β

)

pt(Xt) =
1√

πσ2/β
exp

[
− β

σ2
(Xt)

2

]

With direct calculations, we can verify that pt satisfies the FP equation.

0 = ∂tpt(x) = −∂x(fpt) +
g 2

2
∂2
x (pt)

= ∂x(βxpt(x)) +
σ2

2
∂2
x (pt(x))
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Corruption via Ornstein–Uhlenbeck
The Ornstein–Uhlenbeck process

dXt = −βXtdt + σdWt

with β ≥ 0 and σ > 0 adds noise to a datapoint X0. As T → ∞, all
information is lost.

Since

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)I

)
,

we have XT is approximately distributed as

N
(
0,

σ2

2β
I

)
if β > 0 and T ≈ ∞.

Question: Sampling XT ∼ N
(
0, σ2

2β
I
)
is easy. Can we reverse the SDE to

sample X0?
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Forward-time ODE: To simulate

dXt = f (Xt , t)dt

for 0 < t, set X0 = X (0) and compute

X(k+1)∆t = Xk∆t + f (Xk∆t , k∆t)∆t

for sufficiently small ∆t and set t = k∆t.

Reverse-time ODE: To simulate

dXt = f (Xt , t)dt

for 0 < t < T , set K = ⌊T/∆t⌋ and XK = X (T ) and compute

X(k−1)∆t = Xk∆t − f (Xk∆t , k∆t)∆t

for sufficiently small ∆t and set t = k∆t.
Reversing time for ODEs is easy.
(Mapping from X (0) to X (T ) is, after all, a one-to-one map.)
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Forward-time SDE: To simulate

dXt = f (Xt , t)dt + g(t)dWt

for 0 < t, sample X0 ∼ p0 and compute

X(k+1)∆t = Xk∆t + f (Xk∆t , k∆t)∆t + g(k∆t)Zk

√
∆t

for sufficiently small ∆t and set t = k∆t, where Z1,Z2, · · · ∼ N (0, I ).

Reverse-time SDE: To simulate

dXt = f (Xt , t)dt + g(t)dWt

for 0 < t < T , set X⌊T/∆t⌋ = XT , and compute

X(k−1)∆t = Xk∆t − f (Xk∆t , k∆t)∆t − g(k∆t)Zk

√
∆t

This does not work!
Rewinding time in SDEs takes more care.
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Anderson’s reverse-time SDE theorem

Instead, given the forward-time SDE

dXt = f (Xt , t)dt + g(t)dWt , X0 ∼ p0

the corresponding reverse-time SDE is

dX t =
(
f (X t , t)− g 2(t)∇x log pt(X t)

)
dt + g(t)dW t , XT ∼ pT

where W t is the reverse-time Brownian motion and pt is the pdf of Xt defined
by the forward-time SDE.

Alternatively (most common definition), setting XT−t = Yt , we can define
{Yt}Tt=0 via

dYt = −
(
f (Yt ,T − t) + g 2(T − t)∇x log pT−t(Yt)

)
dt+g(T−t)dWt , Y0 ∼ pT

(Note that dWt
D
= −dWt .) Then Xt

D
= X t = YT−t .

B. D. O. Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications, 1982.
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Marginal vs. joint distributions

Note that Anderson’s theorem is claiming

[Xt
D
= X t for all 0 ≤ t ≤ T ],

which is a weaker statement than

{Xt}Tt=0
D
= {X t}Tt=0.

The latter
{Xt}Tt=0

D
= {X t}Tt=0

asserts that the two processes have equal (joint) distributions, while the former

[Xt
D
= X t for all 0 ≤ t ≤ T ]

asserts that the marginal distributions are equal for all t.

Diffusion probabilistic models are concerned with the marginal distributions.
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Sample generation via SDE

Let X0 ∼ p0, where p0 corresponds to the data distribution (eg of images of
MNIST or ImageNet).

dXt = f dt + g dWt , X0 ∼ p0

Then the forward-time SDE produces XT ∼ pT .

If we can sample XT ∼ pT and run the reverse-time SDE

dX t = (f − g 2∇ log pt(X t))dt + g dW t , XT ∼ pT

this would be a generative model producing images X0 ∼ p0.
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Sample generation via SDE

Consider the Ornstein–Uhlenbeck forward-time SDE

dXt = −βXtdt + σdWt , X0 ∼ p0

Remember that

Xt | X0 ∼ N (e−βtX0, σ
2
t I ), σ2

t =
σ2

2β
(1− e−2βt)

If T is sufficiently large, pT ≈ N (0, σ2
T I ).

Consider the reverse-time counterpart

dX t = (−βX t − σ2∇ log pt(X t))dt + σdW t , XT ∼ N (0, σ2
T I )

(It would be better to sample XT ∼ pT exactly, but we do not know pT
because we do not know p0 = pdata.)
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Sample generation via SDE

Set K = ⌊T/∆t⌋ and sample XK ∼ N (0, σ2
T I ). Using a standard discretization

(Euler–Maruyama), we get:

XK ∼ N (0, σ2
T I )

for k = K ,K − 1, . . . , 2, 1

Zk ∼ N (0, I )

X k−1 = X k −∆t
(
−βX k − σ2∇ log pk∆t(X k)

)
+ σ

√
∆tZk

end

The output X 0 is approximately distributed as p0.

Interestingly, there is randomness in the generation process.
This is not yet implementable since we do not have access to ∇ log pt .
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Alternative process: Reverse-time ODE

last remark: we could have considered an alternative (deterministic) process
called the reverse-time ODE.

Let {pt}Tt=0 be the marginal density functions of the forward-time SDE

dXt = f dt + g dWt , X0 ∼ p0

and reverse-time SDE

dX t =
(
f (X t , t)− g 2(t)∇ log pt(X t)

)
dt + g(t) dW t , XT ∼ pT

Then, {pt}Tt=0 is also the marginal density function of the following
reverse-time ODE

dX t =

(
f (X t , t)−

g 2(t)

2
∇ log pt(X t)

)
dt, XT ∼ pT

This ODE defines a flow model, a one-to-one mapping between XT and X 0.

we can follow a similar strategy for sampling with the deterministic process
(”probability flow ode”).
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Practical reverse-time SDE

Simulating the reverse-time SDE

dX t =
(
f − g 2∇ log pt

)
dt + g dW t , XT ∼ pT

requires (i) sampling from pT and (ii) evaluating of the score function ∇x log pt .

Solution:

(i) Design forward-time SDE, i.e., choose f , g ,T , so that pT ≈ N (0, σ2
T I ) and

σ2
T is known (ex: OU process).

(ii) Learn ∇x log pt(x) ≈ sθ(x , t) via a neural network sθ(x , t).
We call sθ(x , t) the score network.
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VE and VP forward SDEs

Two types of processes are primarily considered for the forward SDE.

First, variance-exploding (VE)

dXt = σdWt γt = 1 σ2
t = tσ2

Xt | X0 ∼ N (γtX0, σ
2
t I )

Although the mean is preserved, the variance explodes (if σt explodes).

Relative to the noise, the original signal X0 is corrupted as t → ∞.

Second, variance-preserving (VP)

dXt = −βXtdt+σdWt γt = e−βt σ2
t =

σ2

2β
(1−e−2βt), Xt | X0 ∼ N (γtX0, σ

2
t I )

In particular,
Var(Xt) = I + e−βt(Var(X0)− I )

and if Var(X0) = I , then
Var(Xt) = I

So variance is “preserved”.

In both cases,

Xt
D
= γtX0 + σtε, ε ∼ N (0, I )
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Score matching

To learn the score function, consider

L(θ) =
∫ T

0

λ(t)EXt

[
∥sθ(Xt , t)−∇x log pt(Xt)∥2

]
dt

where λ(t) > 0 is a weighing factor. However, we cannot use this as is, since pt
is inaccessible.

Alternatively, use the equivalent losses:

1.

L(θ) =
∫ T

0

λ(t)EX0

[
EXt |X0

[∥∥sθ(Xt , t)−∇x log pt|0(Xt | X0)
∥∥2∣∣∣X0

]]
dt + C

2.

L(θ) =
∫ T

0

λ(t)EXt

[
∥sθ(Xt , t)∥2 + 2Eν

[
d

dh
ν⊤sθ(Xt + hν, t)

∣∣∣∣
h=0

]]
dt + C

where C are constants independent of θ.
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling
through stochastic differential equations, ICLR 2021.
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proof (1) L(θ) =
∫ T
0 λ(t)EX0

[
EXt |X0

[
∥sθ(Xt , t) − ∇Xt

log pt|0(Xt |X0)∥2
∣∣∣X0

]]
dt + C

The replacement of ∇Xt log pt(Xt) with ∇Xt log pt|0(Xt |X0) requires justification.

∇Xt log pt(Xt) =
∇Xt pt(Xt)

pt(Xt)

=
1

pt(Xt)
∇Xt

∫
Rd

pt|0(Xt |X0)p0(X0) dX0

=

∫
Rd

(
∇Xt pt|0(Xt |X0)

) p0(X0)

pt(Xt)
dX0

=

∫
Rd

(
∇Xt log pt|0(Xt |X0)

) pt|0(Xt |X0)p0(X0)

pt(Xt)
dX0

=

∫
Rd

(
∇Xt log pt|0(Xt |X0)

)
p0|t(X0|Xt) dX0

= EX0|Xt
[
∇Xt log pt|0(Xt |X0)

∣∣Xt

]

P. Vincent, A connection between score matching and denoising autoencoders, Neural Computation, 2011.
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proof (1) L(θ) =
∫ T
0 λ(t)EX0

[
EXt |X0

[
∥sθ(Xt , t) − ∇Xt

log pt|0(Xt |X0)∥2
∣∣∣X0

]]
dt + C

The replacement of ∇Xt log pt(Xt) with ∇Xt log pt|0(Xt |X0) requires justification.

L(θ) =

∫ T

0

λ(t)EXt

[
∥sθ(Xt , t) − ∇Xt log pt(Xt)∥2

]
dt

=

∫ T

0

λ(t)EXt

[
∥sθ(Xt , t)∥2 − 2⟨sθ,∇Xt log pt⟩

]
dt + C

=

∫ T

0

λ(t)EXt

[
∥sθ∥2 − 2⟨sθ,EX0|Xt [∇ log pt|0]⟩

]
dt + C

=

∫ T

0

λ(t)EXt ,X0

[
∥sθ − ∇ log pt|0∥

2
]
dt + C

Called denoising score matching (DSM).

P. Vincent, A connection between score matching and denoising autoencoders, Neural Computation, 2011.
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proof (1) L(θ) =
∫ T
0 λ(t)EX0

[
EXt |X0

[
∥sθ(Xt , t) − ∇Xt

log pt|0(Xt |X0) ∥2
∣∣∣∣X0

]]
dt

Conditional score function ∇Xt log pt|0(Xt |X0) is implementable if f and g

are nice.

Ornstein–Uhlenbeck process is one such example.

dXt = −βXtdt + σdWt

pt|0(Xt |X0) ∼ N (e−βtX0, σ
2
t I ), σ2

t =
σ2

2β
(1− e−2βt)

∇Xt log pt|0(Xt |X0) =
1

σ2
t

(Xt − e−βtX0)

=
2β

σ2(1− e−2βt)
(Xt − e−βtX0)
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Hutchinson’s trace estimator

Let ν ∈ Rn be a random vector such that

Eν [νiνj ] = δij =

{
1 if i = j

0 if i ̸= j

i.e., Eν [νν
⊤] = I ∈ Rn×n.

One example is ν1, . . . , νn ∼ N (0, 1) IID Gaussian.

Another example is ν1, . . . , νn drawn as IID Rademacher (±1 realization with
probability 1/2) random variables.

M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines,
Communications in Statistics - Simulation and Computation, 1990.
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Hutchinson’s trace estimator

Let A ∈ Rn×n. Then

Eν [ν
⊤Aν] = Eν [Tr(ν

⊤Aν)]

= Eν [Tr(Aνν
⊤)]

= Tr(Eν [Aνν
⊤])

= Tr(AEν [νν
⊤])

= Tr(AI )

= Tr(A)

So ν⊤Aν serves as an unbiased estimator of Tr(A).

M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines,
Communications in Statistics - Simulation and Computation, 1990.
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proof (2) L(θ) =
∫ T
0 λ(t)EXt

[
∥sθ(Xt , t)∥2 + 2Eν

[
d
dh

ν⊤sθ(Xt + hν, t)
∣∣∣
h=0

]]
dt + C

− EXt [⟨sθ(Xt , t),∇Xt log pt(Xt)⟩] = −
∫ 〈

sθ(x , t),
∇xpt(x)

pt(x)

〉
pt(x)dx

= −
∫

⟨sθ(x , t),∇xpt(x)⟩ dx

=

∫
(∇ · sθ(x , t)) pt(x)dx

= EXt∼pt [∇Xt · sθ(Xt , t)]

= EXt [Tr(DXt sθ(Xt , t))]

= EXtEν

[
ν⊤DXt sθ(Xt , t)ν

]
= EXtEν

[
d

dh
ν⊤sθ(Xt + hν, t)

∣∣∣∣
h=0

]

where we use integration by parts and the Hutchinson estimator.
Called sliced score matching (SSM).
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Training with O-U and DSM
Using Xt

D
= γtX0 + σtε, the score function simplifies to

∇Xt log pt(Xt | X0) =
γtX0 − Xt

σ2
t

D
= − ε

σt

Define the scaled score network

εθ(Xt , t) = −σtsθ(Xt , t)

Then the denoising score matching loss becomes

L(θ) =
∫ T

0

λ(t)EX0

[
EXt |X0

[
∥sθ(Xt , t)−∇Xt log pt|0(Xt | X0)∥2

]]
dt

=

∫ T

0

λ(t)

σ2
t

EX0

[
Eε∼N (0,I )

[
∥εθ(γtX0 + σtε, t)− ε∥2

]]
dt

= T E X0∼p0
t∼Uniform([0,T ])

ε∼N (0,I )

[
λ(t)

σ2
t

∥εθ(γtX0 + σtε, t)− ε∥2
]

Interpretation: εθ(Xt , t) predicts noise ε from noised data Xt
D
= γtX0 + σtε.
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Training with O-U and DSM

Using the Ornstein–Uhlenbeck forward SDE and the denoising score matching
loss (DSM), we get the training algorithm:

while (not converged)

X0 ∼ p0 = pdata

t ∼ Uniform([0,T ])

ε ∼ N (0, I )

Xt = γtX0 + σtε

Call optimizer with
λ(t)

σ2
t

∇θ ∥εθ(Xt , t)− ε∥2

end
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Blow-up at t = 0

For both VP and VE SDEs, σ0 = 0 and the loss blows up. Several ways to deal
with this.

Option 1: Start the integral from a small δ > 0

L(θ) =
∫ T

δ

λ(t)

σ2
t

E X0∼p0
ε∼N (0,I )

∥εθ(γtX0 − σtε, t)− ε∥2 dt

Option 2: Choose λ(t) → 0 as t → 0 so that λ(t)/σ2
t does not blow up. This

makes the mean well-behaved, but the variance of the stochastic gradients may
still blow up as t → 0.
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Training with SSM

Using the sliced score matching loss (SSM)

L(θ) =
∫ T

0

λ(t)EXt

[
∥sθ(Xt , t)∥2 + 2Eν

[
d

dh
ν⊤sθ(Xt + hν, t)

∣∣∣∣
h=0

]]
dt

We get the training routine:

while (not converged)

t ∼ Uniform([0,T ])
Xt ∼ pt # forward-simulate SDE from X0 ∼ pdata
ν ∼ pν # Eν∼pν [νν

⊤] = I

Backprop on h with d
dh
ν⊤sθ(Xt + hν, t)

∣∣
h=0

Call optimizer with λ(t)∇θ

(
∥sθ(Xt , t)∥2 + 2 d

dh
ν⊤sθ(Xt + hν, t)

∣∣
h=0

)
end
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DSM vs SSM

• SSM is more broadly applicable than DSM.
• SSM requires efficient sampling of Xt given X0.
• DSM additionally requires evaluation of conditional density pt|0(Xt | X0).

(More precisely, the conditional score ∇XT
log pt|0(Xt | X0) is required.)

• SSM allows a broader range of forward-diffusions to be used. Useful in, say,
DSB.1

• When applicable, DSM performs better than SSM.

• SSM requires mixed (2nd-order) derivatives, while DSM requires 1st-order
derivatives.
(Most modern DL libraries are capable of efficiently computing higher-order
derivatives.)

1V. De Bortoli, J. Thornton, J. Heng, and A. Doucet, Diffusion Schrödinger bridge with
applications to score-based generative modeling, NeurIPS, 2021.
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SDE Sampling with trained score
Once sθ has been trained, we can generate new samples with the approximate
reverse-time SDE

dX t =
(
f (X t , t)− g 2(t)sθ(X t , t)

)
dt + g(t)dW t , XT ∼ N (0, σ2

T I )

Usually, one uses the reverse-time Ornstein–Uhlenbeck process

dX t =
(
−βX t − σ2sθ(X t , t)

)
dt + σdW t , XT ∼ N (0, σ2

T I )

=

(
σ2

σt
εθ(X t , t)− βX t

)
dt + σdW t

Using a standard discretization (Euler–Maruyama), we get

XK ∼ N (0, σ2
T I )

for k = K ,K − 1, . . . , 2, 1

X k−1 = X k −∆t

(
σ2

σt
εθ(X k , k∆t)− βX k

)
+ σ

√
∆tZk , Zk ∼ N (0, I )

end

The output X 0 is approximately distributed as p0.
Called DDPM sampling for reasons to be explained later.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic

differential equations, ICLR, 2021.
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Samples via SDE

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based

generative modeling through stochastic differential equations, ICLR, 2021.
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ODE Sampling with trained score
Once sθ has been trained, we can also use approximate reverse-time ODE

dX t =

(
f (X t , t)−

g 2(t)

2
sθ(X t , t)

)
dt, XT ∼ N (0, σ2

T I )

Usually, one uses the reverse-time ODE of Ornstein–Uhlenbeck process

dX t =

(
−βX t −

σ2

2
sθ(X t , t)

)
dt, XT ∼ N (0, σ2

T I )

=

(
σ2

2σt
εθ(X t , t)− βX t

)
dt

Using an Euler discretization we get

XK ∼ N (0, σ2
T I )

for k = K ,K − 1, . . . , 2, 1

X k−1 = X k −∆t

(
σ2

2σt
εθ(X k , k∆t)− βX k

)
end

The output X 0 is approximately distributed as p0.
This is called DDIM sampling for reasons to be explained later.
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SDE vs ODE sampling

SDE sampling produces higher fidelity (based on visual inspection) images.
Why?
Theoretically, not understood well. Intuitively, noise steps of SDE sampling
correct for any errors from inaccurate terminal distribution pT , inaccurate score
function, and discretization.

However, ODE sampling is useful for applications such as image interpolation,
which can be used for image editing (more on this later), and for likelihood
computation (based on the observation that the ODE sampling defines a flow
model).
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Discrete- to continuous-time diffusion

Publication dates:

• DDPM (NeurIPS 20)

• DDIM (ICLR 21)

• SDE Diffusion (ICLR 21)

After the dust settled, people now understand that

• DDPM is a discretization of SDE sampling of VP SDE.

• DDIM is a discretization of ODE sampling of VP SDE. (One specific
instance of DDIM.)
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Tweedie’s formula: 1st order
Consider the random variable

Y = X + σZ , X ∼ pX , Z ∼ N (0, I )

(We don’t assume pX is Gaussian.) Then,

E[X | Y ] = Y + σ2∇Y log pY (Y )

Proof: Y has a density given by:

pY (dy) =

∫
pX (x) ρσ(y − x) dx

where ρσ(z) ∝ exp
(
− ∥z∥2

2σ2

)
is a centered Gaussian with variance σ2. It follows

E[X | Y = y ]− y

σ2
=

∫ (
x−y
σ2

)
pX (x)ρσ(y − x) dx∫

pX (x)ρσ(y − x) dx
= ∇y log

{∫
pX (x)ρσ(y − x) dx

}
.

If
Y = γX + σZ , X ∼ pX , Z ∼ N (0, I )

with γ ̸= 0, then

E[X | Y ] =
1

γ
E[γX | Y ] =

1

γ

(
Y + σ2∇Y log pY (Y )

)
B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.
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Tweedie’s formula: 2nd order

Consider the random variable

Y = X + σZ , X ∼ pX , Z ∼ N (0, I )

(We don’t assume pX is Gaussian.) Then,

Var[X | Y ] = σ2I + σ4∇2
Y log pY (Y )

If

Y = γX + σZ , X ∼ pX , Z ∼ N (0, I )

with γ ̸= 0, then

Var[X | Y ] =
σ2

γ2

(
I + σ2∇2

Y log pY (Y )
)

B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.
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Tweedie’s formula: 2nd order

Consider the random variable
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Y = γX + σZ , X ∼ pX , Z ∼ N (0, I )

with γ ̸= 0, then
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γ2

(
I + σ2∇2
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B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.
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Reverse cond. distribution ≈ Gaussian

Consider the random variable

Y = X + σZ , X ∼ pX , Z ∼ N (0, I )

By definition, pY |X = N (X , σ2I ) is Gaussian. (We don’t assume pX is
Gaussian.) In general, pX |Y is not a Gaussian, but pX |Y is approximately
Gaussian in the limit of σ → 0.

pX |Y (x | y) ≈ N
(
y + σ2∇ log pY (y), σ

2I
)

If
Y = γX + σZ , X ∼ pX , Z ∼ N (0, I )

with γ ̸= 0, then, in the limit of σ → 0,

pX |Y (x | y) ≈ N
(
1

γ
(y + σ2∇ log pY (y)),

σ2

γ2
I

)
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Reverse cond. distribution ≈ Gaussian

pX|Y (x | y) =
pY |X (y | x) pX (x)

pY (y)

=

1

(2πσ)d/2
exp
(
− 1

2σ2 ∥y − x∥2
)
pX (x)∫

Rd
1

(2πσ)d/2
exp
(
− 1

2σ2 ∥y − x∥2
)
pX (x) dx

=
1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)(
pX (y) + ⟨∇pX (y), x − y⟩ + O(∥x − y∥2)

)
=

1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)(
Ex∼N (y,σI )

[
pX (y) + ⟨∇pX (y), x − y⟩ + O(∥x − y∥2)

])
=

1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)(
pX (y) + ⟨∇pX (y), x − y⟩ + O(∥x − y∥2)

)
=

1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)(
pX (y) + ⟨∇pX (y), x − y⟩ + O(∥x − y∥2)

pX (y) + 0 + O(σ2)

)

=
1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)
(1 + ⟨∇ log pX (y), x − y⟩ + h.o.t.)

=
1

(2πσ)d/2
exp

(
−

1

2σ2
∥y − x∥2

)
exp (⟨∇ log pX (y), x − y⟩) + h.o.t.

=
1

(2πσ)d/2
exp

(
−

1

2σ2
∥x − y − σ

2∇ log pX (y)∥2 + h.o.t.

)
≈ N

(
y + σ

2∇ log pY (y), σ
2I
)

h.o.t. = higher-order term
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DDPM

Forward model: X0 ∼ p0 = pdata

Xt | Xt−1 ∼ N
(√

1− βtXt−1, βt I
)

for t = 1, . . . ,T (0 < βt < 1)

So,

Xt
D
=
√

1− βtXt−1 +
√

βtZt , Zt ∼ N (0, I ), for t = 1, . . . ,T

and, after some calculations, this implies

Xt | X0 ∼ N
(√

ᾱtX0, (1− ᾱt)I
)
, ᾱt =

t∏
s=1

(1− βs)

J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.
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DDPM (Denoising Diffusion Probabilistic Models)
Reverse model:

True probabilitiy: p(Xt−1 | Xt) ≈ N (µ(Xt , t), βt I )(for small βt)

Learned: pθ(Xt−1 | Xt) = N (µθ(Xt , t), β̃t I )

where:

µ(Xt , t) =
1√

1− βt

(Xt + βt∇ log pt(Xt))

µθ(Xt , t) =
1√

1− βt

(Xt + βtsθ(Xt , t))

β̃t =

{
βt or
1−ᾱt−1

1−ᾱt
βt

Note, for small βt
1−ᾱt−1

1−ᾱt
βt = βt + h.o.t.

J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.
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DDPM loss

L(θ) =
T∑
t=1

λtEXt

[
∥µ(Xt , t)− µθ(Xt , t)∥2

]

=
T∑
t=1

λtβ2
t

1− βt
EXt

[
∥∇Xt log pt(Xt)− sθ(Xt , t)∥2

]

=
T∑
t=1

λtβ2
t

1− βt
EX0,Xt

[∥∥∇Xt log pt|0(Xt | X0)− sθ(Xt , t)
∥∥2]+ C

=
T∑
t=1

λtβ2
t

1− βt
EX0,Xt

[∥∥∥∥ 1

1− ᾱt
(Xt −

√
ᾱtX0)− sθ(Xt , t)

∥∥∥∥2
]
+ C

=
T∑
t=1

λtβ2
t

(1− βt)(1− ᾱt)
EX0∼pdata
ε∼N (0,I )

[∥∥ε− εθ(
√
ᾱtX0 +

√
1− ᾱtε, t)

∥∥2]+ C

=
T∑
t=1

λ̃tEX0∼pdata
ε∼N (0,I )

[∥∥ε− εθ(
√
ᾱtX0 +

√
1− ᾱtε, t)

∥∥2]+ C

Xt
D
=

√
ᾱtX0 +

√
1− ᾱtεt , εt ∼ N (0, I ), εθ ≜ −

√
1− ᾱt sθ, λ̃t =

λtβ2
t

(1− βt)(1− ᾱt)
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DDPM training

The training of DDPM is hence analogous to the continuous-time (SDE) setup
we have already seen.

while(not converged)

X0 ∼ p0 = pdata

t ∼ Uniform({1, . . . ,T})
ε ∼ N (0, I )

Xt =
√
ᾱtX0 +

√
1− ᾱt ε

Call optimizer with λ̃t∇θ ∥εθ(Xt , t)− ε∥2

end
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DDPM sampling
The true distribution of XT is

XT | X0 ∼ N
(√

ᾱTX0, (1− ᾱT )I
)

ᾱT =
T∏
s=1

(1− βs)

If T and β1, . . . , βT are chosen such that ᾱT ≈ 0, then pT ≈ N (0, I ).

Sampling from the learned distribution can be done as follows:

pθ(Xt−1 | Xt) = N (µθ(Xt , t), β̃
2
t I ) µθ(Xt , t) =

1√
1− βt

(Xt + βtsθ(Xt , t))

XT ∼ N (0, I )

for t = T ,T − 1, . . . , 2, 1

X t−1 =
1√

1− βt

(
X t −

βt√
1− ᾱt

εθ(X t , t)

)
+ β̃tZt , Zt ∼ N (0, I )

end

Idea: Sample Xt via the approximation of p(Xt | Xt−1). It is an approximation
because p(Xt | Xt−1) is not exactly Gaussian and because the scaled score
network εθ is not exact. 49 / 55
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Reinterpreting DDPM sampling

Consider the case

β̃t =
1− ᾱt−1

1− ᾱt
βt .

We can equivalently express DDPM sampling as:

XT ∼ N (0, I )

for t = T ,T − 1, . . . , 2, 1

X̂0 =
1√
ᾱt

X t −
√
1− ᾱt√
ᾱt

εθ(X t , t)

Zt ∼ N (0, I )

X t−1 =

√
ᾱtβt

1− ᾱt
X̂0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
X t +

√
1− ᾱt−1

1− ᾱt
βtZt

end
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Reinterpreting DDPM sampling

Since Xt | X0 ∼ N
(√

ᾱtX0, (1− ᾱt)I
)
, Tweedie’s formula tells us

E[X0 | Xt ] =
1√
ᾱt

Xt +
1− ᾱt√

ᾱt

∇Xt log pXt (Xt)

≈ 1√
ᾱt

Xt +
1− ᾱt√

ᾱt

sθ(Xt , t)

=
1√
ᾱt

Xt −
√
1− ᾱt√
ᾱt

εθ(Xt , t)

Also, using

p(xt−1 | xt , x0) =
p(xt | xt−1, x0) p(xt−1 | x0)

p(xt | x0)
=

p(xt | xt−1) p(xt−1 | x0)
p(xt | x0)

,

we can compute

p(Xt−1 | Xt ,X0) = N

(√
ᾱtβt

1− ᾱt
X0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
Xt ,

1− ᾱt−1

1− ᾱt
βt I

)
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Reinterpreting DDPM sampling

Using these identities, we can reinterpret DDPM sampling as

XT ∼ N (0, I )

for t = T ,T − 1, . . . , 2, 1

X̂0 =
1√
ᾱt

X t −
√
1− ᾱt√
ᾱt

εθ(X t , t) X t−1 ∼ p
(
X t−1 | X t ,X 0 = X̂0

)
end

At each step, (i) estimate X0 and (ii) sample X t−1 conditioned on X t and
X 0 = X̂0.
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DDPM = discretization of VP SDE

DDPM forward process in the limit βt → 0

Xt+1 =
√

1− βtXt +
√

βtZt ≈
(
1− βt

2

)
Xt +

√
βtZt

Consider the general VP forward-time SDE

dXt = −β(t)

2
Xtdt +

√
β(t)dWt

With ∆t = 1, the Euler–Maruyama discretization is

Xt+1 =

(
1− β(t)

2

)
Xt +

√
β(t)Zt

and the two agree.
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DDPM = discretization of VP SDE

DDPM sampling when βt → 0 (and slowly varying)

X t−1 =
1√

1− βt

(
X t −

βt√
1− ᾱt

εθ(X t , t)

)
+ σtZt

≈
(
1 +

βt

2

)
X t +

βt√
1− exp

(
−
∫ t

0
β(s) ds

)εθ(X t , t) + σtZt

Here, we identify β(t) = βt and argue that

ᾱt =
t∏

s=0

(1− βs) ≈
t∏

s=0

exp(−βs) = exp

(
−

t∑
s=0

βs

)
≈ exp

(
−
∫ t

0

β(s) ds

)
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DDPM = discretization of VP SDE

Reverse-time VP SDE

dX t =

(
β(t)

σt
εθ(X t , t)−

β(t)

2
X t

)
dt +

√
β(t)dW t

With ∆t = −1, the Euler–Maruyama discretization is

X t−1 = X t −

 β(t)√
1− exp

(
−
∫ t

0
β(s) ds

)εθ(X t , t) +
β(t)

2
X t

−
√

β(t)Zt

and the two agree.
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