
Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

Sampling Methods: From MCMC to Generative Modeling
Generative Modeling - 1

Anna Korba

CREST, ENSAE, Institut Polytechnique de Paris

1 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

Outline

Introduction

Likelihood-Based Generative Models
Variational Auto-Encoders
Normalizing Flows

Generative Adversarial Networks

2 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

Think of data x1, . . . , xn ∼ pdata i.i.d. (e.g. images). The goal of generative
modeling is to approximate pdata given access to a dataset D = x1, . . . , xn.

LSUN bedroom samples vs MMD GAN [Li et al. (2017)].
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Learning
Current generative models provide parametric approximations. Pro: parametric
methods scale efficiently. Con: may be limited to the choice of model family.

Learning a generative model can be framed as

min
θ

D(pdata, pθ)

where D is a distance or divergence between probability distributions.

3 main questions:

• What is the representation for the model family ?

• What is the objective function D?

• What is the optimization procedure for minimizing D?
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Inference

We may evaluate a generative model regarding:

• Density estimation: Given a datapoint x , what is the probability assigned by
the model, i.e., pθ(x)?

• Sampling: How can we generate novel data from the model distribution, i.e.,
xnew ∼ pθ(x)?

• Unsupervised representation learning: How can we learn meaningful feature
representations for a datapoint x ?

Disclaimer:

• Quantitative evaluation of generative models is non-trivial (in particular,
sampling and representation learning) and an area of active research. Some
quantitative metrics exist, but these metrics often fail to reflect desirable
qualitative attributes in the generated samples and the learned
representations.

• Not all model families permit efficient and accurate inference on all these
tasks. Indeed, the trade-offs in the inference capabilities of the current
generative models have led to the development of very diverse approaches as
we shall see in this course.

5 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

Inference

We may evaluate a generative model regarding:

• Density estimation: Given a datapoint x , what is the probability assigned by
the model, i.e., pθ(x)?

• Sampling: How can we generate novel data from the model distribution, i.e.,
xnew ∼ pθ(x)?

• Unsupervised representation learning: How can we learn meaningful feature
representations for a datapoint x ?

Disclaimer:

• Quantitative evaluation of generative models is non-trivial (in particular,
sampling and representation learning) and an area of active research. Some
quantitative metrics exist, but these metrics often fail to reflect desirable
qualitative attributes in the generated samples and the learned
representations.

• Not all model families permit efficient and accurate inference on all these
tasks. Indeed, the trade-offs in the inference capabilities of the current
generative models have led to the development of very diverse approaches as
we shall see in this course.

5 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

Outline

Introduction

Likelihood-Based Generative Models
Variational Auto-Encoders
Normalizing Flows

Generative Adversarial Networks

6 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

KL/Likelihood maximization

We recognize a f -divergence
∫
f
(
µ
π

)
dπ where f (x) = x log(x). Taking

f (x) = − log(x) yields the (forward) KL i.e. KL(π|µ).

Choosing D as the forward KL, i.e. D(µθ|π) = KL(π|µθ) yields Maximum
Likelihood, which is useful for fitting a model (x1, . . . , xn ∼ π) since:

min
θ

KL(π|µθ) =

∫
log

(
π

µθ

)
dπ

⇔ min
θ
−
∫

log(µθ(x))dπ(x) ≈
1

n

n∑
i=1

log(µθ(xi )) := −L(θ|D).

Optimisation can be done through (stochastic) gradient ascent of L

θt+1 = θt + γt∇θL(θt |Bt) (1)

where Bt is a batch of data at time t.
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Generative process with latent variables

Consider a directed, latent variable model as shown below.

In the model above, z and x denote the latent and observed variables
respectively. The joint distribution expressed by this model is given as

pθ(x, z) = p(x|z)p(z).

From a generative modeling perspective, this model describes a generative
process for the observed data x using the following procedure

z ∼ p(z)

x ∼ p(x|z).

Intuitively, z represents the “high-level” semantic information about x .
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Learning

One way to measure how closely p(x, z) fits the observed dataset D is to
measure the Kullback-Leibler (KL) divergence between the data distribution
(which we denote as pdata(x)) and the model’s marginal distribution
p(x) =

∫
p(x, z)dz.

The distribution that “best” fits the data is thus obtained by minimizing the
KL divergence.

min
p∈Px,z:={∫ p(x,z)dz|p(z)∈Pz,p(x|z)∈Px|z.}

KL(pdata(x)|p(x))

As we have seen previously, optimizing an empirical estimate of the KL
divergence is equivalent to maximizing the marginal log-likelihood over D:

max
p∈Px,z

∑
x∈D

log p(x) =
∑
x∈D

log

∫
p(x, z)dz.

However, it turns out this problem is generally intractable for high-dimensional
z as it involves an integration (or sums in the case z is discrete) over all the
possible latent sources of variation z.
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Learning

One option is to estimate the objective via Monte Carlo. For any given
datapoint x, we can obtain the following estimate for its marginal log-likelihood

log p(x) ≈ log
1

k

k∑
i=1

p(x|z(i)), where z(i) ∼ p(z)

.
In practice however, optimizing the above estimate suffers from high variance in
gradient estimates.

Rather than maximizing the log-likelihood directly, an alternate is to instead
construct a lower bound that is more amenable to optimization.

We will introduce a variational family Q of distributions that approximate
p(x , z). We will assume a parameteric setting where any distribution in the
model family Px,z is specified via a set of parameters θ ∈ Θ and distributions in
the variational family Q are specified via a set of parameters λ ∈ Λ.
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Given Px,z and Q, we note that the following relationships hold true for any x
and all variational distributions qλ(z) ∈ Q:

log pθ(x) = log

∫
pθ(x, z)dz

= log

∫
qλ(z)

qλ(z)
pθ(x, z)dz

≥
∫

qλ(z) log
pθ(x, z)

qλ(z)
dz

= Eqλ(z)

[
log

pθ(x, z)

qλ(z)

]
:= ELBO(x; θ, λ)

where we have used Jensen’s inequality. Note that qλ(z) stands for qλ(z |x).
The Evidence Lower Bound (ELBO) admits a tractable unbiased Monte Carlo
estimator

1

k

k∑
i=1

log
pθ(x, z

(i))

qλ(z(i))
, where z(i) ∼ qλ(z), (2)

so long as it is easy to sample from and evaluate densities for qλ(z).
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Which variational distribution should we pick? Even though the above
derivation holds for any choice of variational parameters λ, the tightness of the
lower bound depends on the specific choice of q.

In particular, the gap between the original objective (marginal log-likelihood
log pθ(x)) and the ELBO equals the KL divergence between the approximate
posterior q(z) and the true posterior p(z|x). The gap is zero when the
variational distribution qλ(z) exactly matches pθ(z|x).
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Black-Box Variational Inference (BBVI)
In summary, we can learn a latent variable model by maximizing the ELBO
w.r.t. both the (generative) model parameters θ (decoder) and the variational
parameters λ (encoder)

max
θ

∑
x∈D

max
λ

Eqλ(z)

[
log

pθ(x, z)

qλ(z)

]
.

First-order stochastic gradient methods
• Step 1: We first do per-sample optimization of q by iteratively applying the

update

λ(i) = λ(i) + ∇̃λ ELBO(x(i); θ, λ(i)),

where ELBO(x; θ, λ) = Eqλ(z)

[
log pθ(x,z)

qλ(z)

]
, and ∇̃λ denotes an unbiased

estimate of the ELBO gradient. This step seeks to approximate the
log-likelihood log pθ(x

(i)).
• Step 2: We then perform a single update step based on the mini-batch

θ = θ + ∇̃θ

∑
i

ELBO(x(i); θ, λ(i)),

which corresponds to the step that hopefully moves pθ closer to pdata.
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Gradient estimation - REINFORCE trick

The gradients ∇λ ELBO and ∇θ ELBO can be estimated via Monte Carlo
sampling. While it is straightforward to construct an unbiased estimate of
∇θ ELBO by simply pushing ∇θ through the expectation operator, the same
cannot be said for ∇λ. Instead, we see that

∇λ Eqλ(z)

[
log

pθ(x, z)

qλ(z)

]
= Eqλ(z)

[
log

(
pθ(x, z)

qλ(z)

)
· ∇λ log qλ(z)

]
.

This equality follows from the log-derivative trick (also commonly referred to as
the REINFORCE trick). The gradient estimator ∇̃λ ELBO is thus

1

k

k∑
i=1

[
log

(
pθ(x, z

(i))

qλ(z(i))

)
· ∇λ log qλ(z

(i))

]
, where z(i) ∼ qλ(z).

However, it is often noted that this estimator suffers from high variance.
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The Reparametrization trick

The reparameterization trick introduces a fixed, auxiliary distribution p(ϵ) and
a differentiable function T (ϵ;λ) such that the procedure

ϵ ∼ p(ϵ)

z← T (ϵ;λ),

is equivalent to sampling from qλ(z). We can see that

∇λ Eqλ(z)

[
log

pθ(x, z)

qλ(z)

]
= Ep(ϵ)

[
∇λ log

pθ(x,T (ϵ;λ))

qλ(T (ϵ;λ))

]
.

In contrast to the REINFORCE trick, the reparameterization trick is often noted
empirically to have lower variance and thus results in more stable training.
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VAE [Kingma and Welling (2013)]
So far, we have described pθ(z), pθ(x|z), and qλ(z) abstractly.
• A popular choice for pθ(z) is the unit Gaussian pθ(z) = N (z|0, I ).
• pθ(x|z) is where we introduce a deep neural network:

pθ(x|z) = pω(x) , where ω = gθ(z), gθ : Z → Ω.

The function gθ (typically a deep NN) is also referred to as the decoding
distribution since it maps a latent code z to the parameters of a distribution
over observed variables x.
Example: pθ(x|z) = N (x|µθ(z),Σθ(z)).

• choose qλ such that the reparametrization trick is possible. For instance,
Gaussians:

λ = (µ,Σ)

qλ(z) = N (z|µ,Σ)
p(ϵ) = N (ϵ|0, I )

T (ϵ;λ) = µ+Σ1/2ϵ,

where Σ1/2 is the Cholesky decomposition of Σ. For simplicity, practitioners
often restrict Σ to be a diagonal matrix (which restricts the distribution
family to that of factorized Gaussians).
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Normalizing Flows

In normalizing flows, we wish to map simple distributions (easy to sample and
evaluate densities) to complex ones (learned via data).

The change of variables formula describe how to evaluate densities of a random
variable that is a deterministic transformation from another variable.

Let Z and X be random variables which are related by an (invertible) mapping
f : Rd → Rd such that X = f (Z) and Z = f −1(X ). Then

pX (x) = pZ (z)

∣∣∣∣det(∂f (z)

∂z

)∣∣∣∣−1
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• x and z need to be continuous and have the same dimension. ∂f−1(x)
∂x

is the
Jacobian matrix at x , i.e. a matrix of dimension d × d , where each entry at

location (i , j) is defined as
∂f−1

i (x)

∂xj
.

• det(A) denotes the determinant of a square matrix A

• For any invertible matrix A, det(A)−1 = det(A−1) (so

|det
(

∂f (z)
∂z

)
|−1 = |det

(
∂f (z)
∂z

−1
)
|, and by the implicit function theorem we

have ∂f (z)
∂z

−1
= ∂f−1(x)

∂x
, so for z = f −1(x) we have

pX (x) = pZ (f
−1(x))

∣∣∣∣det(∂f −1(x)

∂x

)∣∣∣∣ (3)

• Typically we choose Z such with a known density function pZ (to be able to
evaluate (3) in the likelihood) and easy to sample from, to generate new
samples as Z ∼ pZ , X = f (Z).

18 / 40



Introduction Likelihood-Based Generative Models Generative Adversarial Networks References

NF vs VAE

NF Generative process is

z ∼ p(z)
x = f (z)

If we want to calculate the
density of x, we need to
use the change-of-variable formula
for probability densities.

This requires f to be
invertible (bijection) and
differentiable.

VAE generative process

z ∼ p(z)
η = f (z)
x ∼ p(x|η)

In VAEs dim z < dim x,
hence f not bijective
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A simple example (1)
For z ∈ R, let p(z) = N (z | 0, 1) and x = T (z) = 2z + 1

Q: What is the density of x?
A: The density is px(x) = N (x | 1, 22)

The change of variable formula for scalar densities:

px(x) = pz(z)

∣∣∣∣dzdx
∣∣∣∣ = pz(T

−1(x))

∣∣∣∣ ddx T−1(x)

∣∣∣∣
We have that

T−1(x) =
x − 1

2
and

∣∣∣∣ ddx T−1(x)

∣∣∣∣ = 1

2

Using the Gaussian formula: N (z | 0, 1) = 1√
2π

exp
(
− 1

2
z2
)

⇒ px(x) = pz

(
x − 1

2

)
· 1
2
=

1

2
· 1√

2π
exp

(
−1

2

(
x − 1

2

)2
)

= N (x | 1, 22)
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A simple example (2)

• Recall inverse transform sampling:
• Procedure for sampling from p(x)
• p(x) is any1 continuous univariate probability distribution
• Use the cumulative distribution function (CDF):

F (x) =

∫ x

−∞
p(x ′) dx ′

• We obtain samples x from p(x) by the procedure:

z ∼ U(0, 1), x = F−1(z)

• This is a flow with p(z) = U(0, 1) and T (z) = F−1(z)!

• Assuming CDF is invertible, this transforms U(0, 1) to any distribution.
• So, a flow can represent nearly any distribution!

• A similar argument can be made in multiple dimensions.

1p(x) must be differentiable wrt. x and the CDF must be invertible (works if p(x) > 0 for all x)
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Flows: the Jacobian
Recall Z and X are random variables which are related by an (invertible)
mapping f : Rd → Rd such that X = f (Z) and Z = f −1(X ). Then

pX (x) = pZ (z)

∣∣∣∣det(∂f (z)

∂z

)∣∣∣∣−1

•
∣∣∣det( ∂f (z)

∂z

)∣∣∣ quantifies the relative change

of volume around z due to f

• When
∣∣∣det( ∂f (z)

∂z

)∣∣∣ = 1, then transformation

is volume preserving

• we have the equivalent formulation:

pX (x) = pZ (f
−1(x))

∣∣∣∣det(∂f −1(x)

∂x

)∣∣∣∣ .
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Normalizing Flows: generic principle

In a Normalizing flow model, the mapping between Z and X is chosen as
fθ : Rd → Rd ; it is deterministic and invertible such that X = fθ(Z) and
Z = f −1

θ (X ). Assume we have a dataset x1, . . . , xn ∼ pX . We can define the
MLE:

θ̂ = argmax
θ

n∑
i=1

log(pZ (f
−1
θ (xi ))) + log

(∣∣∣∣det(∂f −1
θ (xi )

∂xi

)∣∣∣∣) .

We need fθ such that both:

• det

(
∂f−1

θ
(xi )

∂xi

)
is tractable

• fθ is ”expressive” enough

Regarding tractability:

• for MLE we need f −1
θ and

∂f−1
θ

(x)

∂x
(or ∂fθ(z)

∂z
) (we don’t need fθ)

• for sampling/generating we need fθ
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Stacking: Composable transformation

To get rich enough mappings, one can consider a compositional transformation
X = F (Z) = fθk ◦ · · · ◦ fθ1(Z).
• it is a diffeomorphism (i.e. F is invertible and F ,F−1 are differentiable) if

each of the fθj satisfies this property

• In this case the change of variables formula is (chain rule for the Jacobian):

pX (x) = pZ (z1)
k∏

j=1

∣∣∣∣det(∂fθj (zj)

∂zj

)∣∣∣∣−1

where z1 = z , zj+1 = fθj (zj) for j = 1, . . . , k.

Hence the name ”Normalizing Flows”

• “Flow”: Refers to the sequence of transformation F = fθk ◦ · · · ◦ fθ1 where a
sample z flows from the base to the output x

• “Normalising”: Refers to the reverse flow where a data point x flows back to
a normal distributed base, i.e., data is normalised
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Example: Triangular maps

We will consider F = fθk ◦ · · · ◦ fθ1 to be a triangular map, i.e. for
x = (x1, . . . , xd) ∈ Rd and z = (z1, . . . , zd) ∈ Rd , we want fθj (z) to be a

function of the first j coordinates (z1, . . . , z j) (instead of all d coordinates).

The Jacobian (denoted J) for a triangular map fθ is shown below.

Jfθ(z) =


∂fθ,1(z)

∂z1
0 . . . 0

∂fθ2 (z)

∂z1
∂fθ,2(z)

∂z2
. . . 0

...
...

. . .
...

∂fθ,d (z)

∂z1
∂fθ,d (z)

∂z2
. . .

∂fθd
(z)

∂zd


• The determinant is simply the product of the diagonals and has a complexity

of O(d) instead of O(d2) . instead of O(d3).

• The Jacobian of F is: JF (z) = Jfθk (fθk−1 ◦ · · · ◦ fθ1(z)) · · · Jfθ1 (z)
• Each Jfθj has the lower triangular structure as shown above, so their product

as well !
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Example: Affine coupling layers
• Affine coupling layers were introduced by Dinh et al. (2015)

• Key components in RealNVP2 (Real-valued Non-Volume Preserving flows)
• The transformation T : z→ z′ partitions z = [z≤d , z>d ] at d < D:

z′≤d = z≤d

z′>d = exp (s(z≤d))⊙ z>d + t(z≤d)

where s : Rd → RD−d , t : Rd → RD−d and we denoted
∀i ≤ d : z ′i = zi
∀i > d : z ′i = exp(s(z≤d)i )zi + t(z≤d)i (Entry-wise product)

i.e., one affine layer ”transforms second half using first half of the
input”.
This builds up dependencies across all variables. It is a special case of
”autoregressive floww”.

• Since z′>d is an affine transformation of z>d , it’s easily invertible (unlike
standard neural networks!):

z≤d = z′≤d

z>d = exp (−s(z≤d))⊙
(
z′>d − t(z≤d)

)
1Dinh L, Krueger D, and Bengio Y. NICE: Non-linear independent components estimation. ICLR workshop track, 2015.
2Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP. ICLR, 2017.
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Affine coupling layers, the Jacobian

Let’s write it in the following block form:

∂T (z)

∂z
=


∂z′≤d

∂z≤d

∂z′≤d

∂z>d

∂z′>d

∂z≤d

∂z′>d

∂z>d


Recall that z′≤d = z≤d , and so we find

∂z′≤d

∂z≤d
=


∂z′1
∂z1

· · · ∂z′1
∂zd

...
. . .

...
∂z′d
∂z1

· · · ∂z′d
∂zd

 =

1 · · · 0
...

. . .
...

0 · · · 1

 = Id×d

∂z′≤d

∂z>d
=


∂z′1

∂zd+1
· · · ∂z′1

∂zD
...

. . .
...

∂z′d
∂zd+1

· · · ∂z′d
∂zD

 =

0 · · · 0
...

. . .
...

0 · · · 0

 = 0d×(D−d)
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Affine coupling layers, the Jacobian
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=
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∂z′≤d

∂z>d

∂z′>d
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
Recall that ∀i > d : z ′i = exp(s(z≤d)i )zi + t(z≤d)i

∂z′>d

∂z>d
=


∂z′d+1

∂zd+1
· · · ∂z′d+1

∂zD
...

. . .
...

∂z′D
∂zd+1

· · · ∂z′D
∂zD

 =

exp(s(z≤d)1) · · · 0
...

. . .
...

0 · · · exp(s(z≤d)D−d)


= diag(exp(s(z≤d)))
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Affine coupling layers, the Jacobian

Let’s write it in the following block form:

∂T (z)

∂z
=


∂z′≤d

∂z≤d

∂z′≤d

∂z>d

∂z′>d

∂z≤d

∂z′>d

∂z>d


• This means that:

JT (z) =

[
Id×d 0d×(D−d)
∂z′>d

∂z≤d
diag(exp(s(z≤d)))

]
• Since JT (z) is triangular, we have:

det JT (z) =
D−d∏
i=1

exp(s(z≤d)i ) = exp

(
D−d∑
i=1

s(z≤d)i

)
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RealNVP

RealNVP1 stacks many affine coupling layers (with masking or permutations)
to get complex transformations.
• Recall one affine coupling layer transforms part of the input while keeping

the rest unchanged:
• Layer 1: transform second half using first half
• Layer 2: transform second half using first half
• And so on

This lets the model slowly build up complex dependencies across all variables.

• To alternate which part of the input gets transformed, RealNVP uses
(binary)masks: A mask is just a binary vector like [1, 1, 0, 0], which decides
which part of the input is used as-is, and which part is transformed. Masks
alternate across layers so that every variable gets updated at some point.

1Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP. ICLR, 2017.
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Towards continuous time normalising flows

• The residual flow transformation, T , looks a lot like Euler discretization:

zt+1 = T (zt) = zt + gϕ(zt)

log | det JT1(z0)|+log | det JT2(z1)|+ · · ·+log | det JTK (zK−1)| = log | det JT (z0)|

• In the limit of infinite number layers and h→ 0, we are solving the ODE:

dzt
dt

= gϕ(zt), with continuous time t ∈ [0,K ]
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Likelihood-free training

We now move onto another family of generative models called generative
adversarial networks (GANs).

GANs are unique from all the other model families that we have seen so far,
such as VAEs, and normalizing flow models, because we do not train them
using maximum likelihood.

Why not? In fact, it is not so clear that better likelihood numbers necessarily
correspond to higher sample quality. We know that the *optimal generative
model* will give us the best sample quality and highest test log-likelihood.
However, models with high test log-likelihoods can still yield poor samples, and
vice versa.

To see why, consider pathological cases in which our model is comprised almost
entirely of noise, or our model simply memorizes the training set. Therefore, we
turn to *likelihood-free training* with the hope that optimizing a different
objective will allow us to disentangle our desiderata of obtaining high
likelihoods as well as high-quality samples.
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Two sample test and proxy

Recall that maximum likelihood required us to evaluate the likelihood of the
data under our model pθ. A natural way to set up a likelihood-free objective is
to consider the two-sample test, a statistical test that determines whether or
not a finite set of samples from two distributions are from the same distribution
using only samples from P and Q.

Concretely, given S1 = {x ∼ P} and S2 = {x ∼ Q}, we compute a test statistic
T according to the difference in S1 and S2 that, when less than a threshold α,
accepts the null hypothesis that P = Q.

Analogously, we have in our generative modeling setup access to our training
set S1 = D = {x ∼ pdata} and S2 = {x ∼ pθ}. The key idea is to train the
model to minimize a two-sample test objective between S1 and S2.

But this objective becomes extremely difficult to work with in high dimensions,
so we choose to optimize a surrogate objective that instead maximizes some
distance between S1 and S2.
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GAN - Generative Adversarial Network

We thus arrive at the generative adversarial network formulation. There are two
components in a GAN: (1) a generator and (2) a discriminator.

The generator Gθ is a directed latent variable model that deterministically generates
samples x from z, and the discriminator Dϕ is a classifier whose job is to distinguish
samples from the real dataset and the generator.

The image above is a graphical model of Gθ and Dϕ. x denotes samples (either from
data or generator), z denotes our noise vector, and y denotes the discriminator’s
prediction about x.
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GAN objective

The generator and discriminator both play a two player minimax game, where
the generator minimizes a two-sample test objective (pdata = pθ) and the
discriminator maximizes the objective (pdata ̸= pθ).

Intuitively, the generator tries to fool the discriminator to the best of its ability
by generating samples that look indistinguishable from pdata.

Formally, the GAN objective can be written as:

min
θ

max
ϕ

V (Gθ,Dϕ) = Ex∼pdata
[logDϕ(x)] + Ez∼p(z)[log(1− Dϕ(Gθ(z)))]

• Discriminator Dϕ wants to: Output 1 for real data/ Output 0 for fake
data/So it maximizes the objective

• Generator Gθ wants to: Fool the discriminator/ Make Dϕ(Gθ(z)) ≈ 1/So it
minimizes the objective
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GAN objective

• For a fixed generator Gθ, the discriminator is maximizing the objective w.r.t.
ϕ: it assigns probability 1 to data points from the training set x ∼ pdata, and
assigns probability 0 to generated samples x ∼ pG . In this setup, the optimal
discriminator is:

D∗
G (x) =

pdata(x)

pdata(x) + pG (x)

Proof. The training criterion for the discriminator D, given any generator G ,
is to maximize the quantity V (G ,D)

V (G ,D) =

∫
x

pdata(x) logD(x) dx +

∫
z

pz(z) log(1− D(g(z))) dz

=

∫
x

pdata(x) logD(x) + pG (x) log(1− D(x)) dx (3)

For any (a, b) ∈ R2 \ {(0, 0)}, the function y 7→ a log(y) + b log(1− y)
achieves its maximum in [0, 1] at a

a+b
. The discriminator does not need to be

defined outside of Supp(pdata) ∪ Supp(pG ), concluding the proof. □

• For a fixed discriminator Dϕ, the generator minimizes this objective.
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And after performing some algebra, plugging in the optimal discriminator D∗
G (·)

into the overall objective V (Gθ,D
∗
G (x)) gives us:

C(G) = max
D

V (G ,D)

= Ex∼pdata [logD
∗
G (x)] + Ez∼pz [log (1− D∗

G (G(z)))]

= Ex∼pdata [logD
∗
G (x)] + Ex∼pG [log (1− D∗

G (x))]

= Ex∼pdata

[
log

(
pdata(x)

pdata(x) + pG (x)

)]
+ Ex∼pG

[
log

(
pG (x)

pdata(x) + pG (x)

)]
The DJSD term is the Jenson-Shannon Divergence:

DJSD(p, q) =
1

2

(
DKL

[
p,

p + q

2

]
+ DKL

[
q,

p + q

2

])
Hence, the optimal generator for the GAN objective becomes pG = pdata since
it is solving

min
θ

DJSD(pdata, pGθ ).
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GAN training

The way in which we train a GAN is as follows:
For epochs 1, . . . ,N do:

1. Sample minibatch of size m from data: x(1), . . . , x(m) ∼ D
2. Sample minibatch of size m of noise: z(1), . . . , z(m) ∼ pz

3. Take a gradient descent step on the generator parameters θ:

▽θV (Gθ,Dϕ) =
1

m
▽θ

m∑
i=1

log
(
1− Dϕ(Gθ(z

(i)))
)

4. Take a gradient ascent step on the discriminator parameters ϕ:

▽ϕV (Gθ,Dϕ) =
1

m
▽ϕ

m∑
i=1

[
logDϕ(x

(i)) + log(1− Dϕ(Gθ(z
(i))))

]
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Challenges

• During optimization, the generator and discriminator loss often continue to oscillate
without converging to a clear stopping point.

• Due to the lack of a robust stopping criteria, it is difficult to know when exactly the
GAN has finished training. Additionally, the generator of a GAN can often get stuck
producing one of a few types of samples over and over again (mode collapse).

• Most fixes to these challenges are empirically driven, and there has been a
significant amount of work put into developing new architectures, regularization
schemes, and noise perturbations in an attempt to circumvent these issues.
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GANS Variants

We have seen GAN’s original objective writes DJSD[pdata, pG ]. Several variants
exist

• f-GANs leverage the variational formulation of f -divergences

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
≥ sup

T∈T
(Ex∼p[T (x)]− Ex∼q[f

∗(T (x))])

f-Gans objective:

min
θ

max
ϕ

F (θ, ϕ) = Ex∼pdata [Tϕ(x)]− Ex∼pGθ
[f ∗(Tϕ(x))]

where f ∗(x) = sups⟨s, x⟩ − f (s). Intuitively, we can think about this
objective as the generator trying to minimize the divergence estimate, while
the discriminator tries to tighten the lower bound.

• IPMs Gans: MMD Gans [Bińkowski et al. (2018)], Wasserstein Gans
[Arjovsky et al. (2017)], Sinkhorn divergence Gans[Genevay et al. (2018)] ...
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