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Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.

(1) Let D = (wi , yi )
p
i=1 a dataset of i.i.d. examples with features w , label y .

(2) Assume an underlying model parametrized by x ∈ Rd , e.g.:

y = g(w , x) + ϵ, ϵ ∼ N (0, Id).

Step 1. Compute the Likelihood:

p(D|x)
(1)
∝

p∏
i=1

p(yi |x ,wi )
(2)
∝ exp(−1

2

p∑
i=1

∥yi − g(wi , x)∥2).
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Step 2. Choose a prior distribution (initial guess) on the parameter:

x ∼ p0, e.g. p0(x) ∝ exp(−∥x∥2

2
).

Step 3. Bayes’ rule yields the formula for the posterior distribution over the
parameter x :

p(x |D) =
p(D|x)p0(x)

Z
where Z =

∫
Rd

p(D|x)p0(x)dx

is called the normalization constant and is intractable.

Denoting π := p(·|D) the posterior on parameters x ∈ Rd , we have:

π(x) ∝ exp (−V (x)) , V (x) =
1

2

p∑
i=1

∥yi − g(wi , x)∥2 +
∥x∥2

2
.

i.e. π’s density is known ”up to a normalization constant”.
π is a probability distribution over parameters of a model.

4 / 34
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The posterior π is interesting for

• measuring uncertainty on prediction through the distribution of g(w , ·),
x ∼ π.

• prediction for a new input w :

ŷ =

∫
Rd

g(w , x)dπ(x)︸ ︷︷ ︸
”Bayesian model averaging”

i.e. predictions of models parametrized by x ∈ Rd are reweighted by π(x).

5 / 34



Bayesian learning Langevin Bayesian deep learning References

Here, Sampling methods construct an approximation µM = 1
M

M∑
m=1

δxm of π.
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Sampling as Optimization

Actually, in many cases (e.g. it is underlying many algorithms), the sampling
problem (approximating π) can be viewed as optimization over P(Rd):

min
µ∈P(Rd )

D(µ|π)

where D is a divergence or distance, hence that is minimized for µ = π.
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The Kullback-Leibler divergence

D could be the (reverse) Kullback-Leibler (KL) divergence:

KL(µ|π) =
{ ∫

Rd log
(
µ
π
(x)

)
dµ(x) if µ ≪ π

+∞ otherwise.

We recognize a f -divergence
∫
f
(
µ
π

)
dπ where f (x) = x log(x). Taking

f (x) = − log(x) yields the (forward) KL i.e. KL(π|µ).

The (reverse) KL as an objective is convenient when the unnormalized density
of π is known since it does not depend on the normalization constant!

Indeed writing π(x) = e−V (x)/Z we have:

KL(µ|π) =
∫
Rd

log
( µ

e−V
(x)

)
dµ(x) + log(Z).

But, it is not convenient when µ or π are discrete, because the KL is +∞
unless supp(µ) ⊂ supp(π).

8 / 34
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Examples

• (Parametric methods) Variational Inference : Restrict the search space to a
parametric families {µθ, θ ∈ Rp}. The problem rewrites as a
finite-dimensional optimization problem (i.e. over Rp):

min
θ∈Rp

D(µθ|π)

• Example: Gaussians with diagonal covariance matrices can be parametrized
by θ = (m, σ) ∈ R2d (see Bayes by Backprop in the last section)

• Example: use normalizing flows to construct a family µθ = fθ#p and
optimize the previous objective1. 1Rezende, D., Mohamed, S. (2015, June). Variational inference with

normalizing flows. In International conference on machine learning.

• (Non parametric methods) Markov Chain Monte Carlo (MCMC) methods,
Sequential Monte Carlo (SMC)...: generate a Markov chain in Rd whose law
converges to π ∝ exp(−V )

• Example: Langevin (next section)
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) [Roberts and Tweedie (1996)]

xm+1 = xm + γ∇ log π(xm) +
√

2γηm, ηm ∼ N (0, Id).

Picture from https://chi-feng.github.io/mcmc-demo/app.html.

Note that in the Bayesian inference setting, where π = exp(−V )
Z

, it is easily
implementable since the score ∇x log π(x) = −∇x(V (x) + log(Z)) = −∇V (x)

since ∇x log(Z) = 0.

10 / 34
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Langevin diffusion

Langevin diffusion is the Stochastic Differential Equation (SDE):

dxt = −∇V (xt)dt +
√
2dBt , xt ∼ pt

where Bt denotes the standard Brownian motion in Rd , defined as:

• B0 = 0 almost surely;

• For any t0 < t1 < · · · < tN , the increments Btn − Btn−1 are independent,
n = 1, 2, . . . ,N;

• The difference Bt − Bs and Bt−s have the same distribution:
N (0, (t − s) Id) for s < t;

• Bt is continuous almost surely.

Langevin diffusion defines a Markov process as follows:

xt = x0 −
∫ t

0

∇V (xs)ds +
√
2Bt ,

where x0 is some initialization.

12 / 34
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Time-discretization

An Euler-Maruyama time-discretization of Langevin diffusion yields:

xt+1 = xt − γ∇V (xt) +
√

2γηt , ηt ∼ N (0, Id). (1)

Proof:

xγ ≈ x0 −
∫ γ

0

∇V (x0) dt +
√

2γ η

= x0 −
(∫ γ

0

dt

)
∇V (x0) +

√
2γ η

= x0 − γ∇V (x0) +
√

2γ η.

We can now iterate this approach k times, which gives us a recursion, which
can be easily implementable on a computer:

xkγ ≈ x(k−1)γ − γ∇V (x(k−1)γ) +
√

2γ ηk ,

where ηk ∼ N (0, Id) for all k. Dropping the dependency on γ in the indices
yields the scheme (1).

13 / 34
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Ornstein-Uhlenbeck

Example: π ∝ exp(− ∥x∥2
2

),

log π(x) = −V (x) = − ∥x∥2
2

, ∇ log π(x) = −x .

(continuous time) Langevin diffusion = Ornstein-Uhlenbeck process:

dxt = −xt + dBt .

(discrete time) xt+1 = xt − γxt +
√
2γηt , ηt ∼ N (0, Id).

Recall above we plot xt+1 = xt + γ∇ log π(xt) +
√
2γηt for π ∝ exp(− ∥x∥2

2
).
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The Fokker-Planck equation

Question: how does the law pt of xt evolve? does it converge to π?

For simplicity, let us assume d = 1, so that Langevin diffusion becomes:

dxt = −∂xV (xt)dt +
√
2 dBt ,

To understand how p(x , t) evolves, we will use the Fokker–Planck equation,
which governs the evolution of p(x , t) through the following partial differential
equation (PDE):

∂tp(x , t) = ∂x [∂xV (x)p(x , t)] + ∂2
xp(x , t).

This equation characterizes how the “change” in p(·, t) behaves, i.e., ∂tp(x , t).

Remark: for d > 1, the Fokker-Planck equation writes:

∂tp(x , t) = ∇ · (∇V (x)p(x , t)) + ∆(p(x , t)).

(where ∇· and ∆ are the divergence and Laplacian operators: analog to above
but summing all partial derivatives for x1, . . . , xd).

15 / 34
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The Fokker-Planck equation

Now, the idea is: if p(·, t) converges to a distribution as t → ∞, then whenever
this limit is reached, there should not be any more changes in p. In other
words, whenever p(·, t) hits its limit, ∂tp(x , t) has to be equal to 0.

Therefore, we can simply “check” if π ∝ exp(−V ) is a limit of p(·, t) by
replacing p(x , t) with π(x) in the Fokker–Planck equation and observing
whether the right-hand side is equal to 0 or not. Let us apply this procedure:

∂x [∂xV (x)π(x)] + ∂2
xπ(x) = ∂x [∂xV (x)π(x) + ∂xπ(x)]

= ∂x [∂xV (x)π(x)− ∂xV (x)π(x)]

= 0,

where we used the fact that

∂xV (x) = −∂x log π(x) = − 1

π(x)
∂xπ(x),

hence
∂xπ(x) = −π(x)∂xV (x).

Conclusion: π is an equilibrium for the FP equation !

16 / 34
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Ornstein–Uhlenbeck Process

We now focus on a specific case of a Langevin diffusion and we will prove that:

For the SDE:
dXt = −βXt dt + σ dBt

The solution is:

Xt = e−βtX0 + σe−βt

∫ t

0

eβs dBs

with stationary/limiting distribution π = N (0, σ2

2β
)

and we have:

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)
Observe that:

• The farther into the future, the more the initial value gets ”forgotten”

17 / 34
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Proof

Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by µ(t) = eβt :

eβtdXt = −βeβtXt dt + σeβtdBt

But using (Itô’s) product rule:

d
(
eβtXt

)
= eβtdXt + βeβtXt dt

So we get:

d
(
eβtXt

)
= σeβtdBt

Step 2 (Integrate both sides)
Now integrate from 0 to t:

eβtXt − X0 = σ

∫ t

0

eβs dBs

Rewriting:

Xt = e−βtX0 + σe−βt

∫ t

0

eβs dBs
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Proof (continued)

Step 3 (Distribution of the integral term )
Let: It :=

∫ t

0
eβs dBs . This is an Itô integral of a deterministic function ⇒ it’s a

Gaussian random variable with:

• Mean: E[It ] = 0

• Variance :

Var(It) = E

[(∫ t

0

eβs dBs

)2
]
=

∫ t

0

(
eβs

)2

ds (using Itô isometry)

=

∫ t

0

e2βs ds =

[
1

2β
e2βs

]t

0

=
1

2β
(e2βt − 1).

Therefore:

σe−βt It ∼ N
(
0, σ2e−2βt · 1

2β
(e2βt − 1)

)
= N

(
0,

σ2

2β
(1− e−2βt)

)
.

So the full solution is : Xt = e−βtX0 + σe−βt It , where

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)
. Done!
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=

∫ t

0

e2βs ds =

[
1

2β
e2βs

]t

0

=
1

2β
(e2βt − 1).

Therefore:

σe−βt It ∼ N
(
0, σ2e−2βt · 1

2β
(e2βt − 1)

)
= N

(
0,

σ2

2β
(1− e−2βt)

)
.

So the full solution is : Xt = e−βtX0 + σe−βt It , where

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)
. Done!

19 / 34



Bayesian learning Langevin Bayesian deep learning References

Proof (continued)

Step 3 (Distribution of the integral term )
Let: It :=

∫ t

0
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(Very) Important remarks

N (0, I) p0
Xt ∼ pt

Figure: Representing Xt an OU process (with β = σ = 1), and pt its (time) marginals

• We know that the full solution :

Xt = e−βtX0 + Gaussian noise (2)

where Gaussian noise ∼ N
(
0, σ2

2β
(1− e−2βt)

)
and that conditionally on X0:

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)
(3)

• The marginals (pt)t≥0, where pt the law of Xt in (2) are not Gaussian in
general !! (see gray density in the figure above)

• but the conditional laws in (3) are Gaussian
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Introducing some initial Condition

When are the marginals pt Gaussian? Answer: when p0 is Gaussian.

Assume X0 ∼ N
(
0, σ2

2β

)
.

Then we have ⇒ Xt ∼ N
(
0, σ2

2β

)
.

Proof: Recall Xt = A+ B where A = e−βtX0, B = σe−βt
∫ t

0
eβsdWs .

• A ∼ N (0, e−2βt · σ2

β
)

• B ∼ N (0, σ2

2β
(1− e−2βt))

• A ⊥ B ⇒ A+ B ∼ N (0, sum of variances)

Above, the law of Xt does not depend on time, because we have started the

process at the stationary distribution π(x) = N
(
0, σ2

2β

)
:

If: X0 ∼ π(x) ⇒ Xt ∼ π(x) for all t

In general, for a X0 ∼ N (0, σ2
0), we would have

Xt ∼ N
(
0, e−2βtσ2

0 +
σ2

2β
(1− e−2βt)

)
.
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Back to general Langevin diffusion
• We have spent quite a lot of time on Ornstein-Uhlenbeck (OU):

dxt = −βxt dt + σ dBt

Solution:

xt = e−βtx0 + σe−βt

∫ t

0

eβs dBs

Distribution:

Xt | X0 ∼ N
(
e−βtX0,

σ2

2β
(1− e−2βt)

)

• Let’s go back to a general Langevin diffusion :

dxt = −∇V (xt)dt +
√
2dBt , xt ∼ pt

Solution:

xt = x0 −
∫ t

0

∇V (xs)ds +
√
2Bt ,

• Remember that OU is a specific case of Langevin, where the

target/stationary distribution is: π = N (0, σ2

2β
), where π(x) ∝ exp(−β∥x∥2

σ2 )

• for general Langevin, the stationary distribution is π ∝ exp(−V ).
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Langevin diffusion (and its discretized versions) is an example of a
non-parametric method: we built a process xt ∈ Rd , whose distribution pt
converges to π as t → ∞
• The law (pt)t≥0 of Langevin diffusion (xt)t≥0 is known to follow a gradient

flow to minimize D(p|π) = KL(p|π): dpt = −∇W2 KL(pt |π)dt (see 1)

π
ptp0

P2(Rd)

KL(p | π)

Recall above we plot xt+1 = xt + γ∇ log π(xt) +
√
2γηt for π ∝ exp(− ∥x∥2

2
),

x0 ∼ p0.

1Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The variational formulation of the Fokker–Planck equation. SIAM journal on
mathematical analysis.
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When does Langevin diffusion’s law converges (fast) to π?

• Consider a standard Gaussian distribution π(x) ∝ exp(− ∥x∥2
2

), i.e.
π ∝ exp(−V ) with V 1-strongly convex, i.e. π is (1-)strongly log-concave.

Then KL(pt |π) = exp(−2t)KL(p0|π).

• If π is a perturbation of a strongly-log-concave distribution, then the rate
degrades with the size of the perturbation.

(see Holley–Stroock theorem and log-Sobolev inequalities, (Bakry et al.,
2014)).
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Langevin in the multimodal case

Mixture of equally weighted 16 Gaussians with unit variance and uniformly
chosen centers in [−40, 40]2, a standard sampling benchmark. ULA was
initialized with N (0, I2), step-size h = 0.01. ULA was run with 5.104 steps (one
minute run).

The theoretical convergence is so slow, that in practice Langevin gets
stuck for infinite time the modes close to its initialization !
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Recall Bayesian inference
Given labelled data (wi , yi )

p
i=1, we want to sample from the posterior

distribution over the parameters of a model g(·, x)

π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss on labeled data (wi , yi )

p
i=1

+
∥x∥2

2︸ ︷︷ ︸
prior reg.

.

I.e., π(x) = exp(−V (x))
Z

, V (x) = − log p(D|x)− log p0(x) with Z intractable.

Ensemble prediction for an input
w :

ŷ =

∫
Rd

g(w , x)dπ(x)︸ ︷︷ ︸
”Bayesian model averaging”

Predictions of models
parametrized by x ∈ Rd

are reweighted by π(x). recall that a frequentist NN would

predict ŷ = g(w , x∗) where x∗ =
argmaxx∈Rd log p(D|x)
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Langevin for (Bayesian) deep NN?

Given labelled data D = (wi , yi )
p
i=1, we want to sample from the posterior

distribution over the parameters of a model g(·, x)

π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss on labeled data (wi , yi )

p
i=1

+
∥x∥2

2︸ ︷︷ ︸
prior reg.

.

• Recall that we know that the convergence speed of Langevin diffusion
depends on how much ”V is convex” and if it has few local minimas

• is x 7→ V (x) convex for g(., x) a neural network parametrized by x?

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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https://www.telesens.co/2019/01/16/neural-network-loss-visualization.

28 / 34

https://www.telesens.co/2019/01/16/neural-network-loss-visualization.


Bayesian learning Langevin Bayesian deep learning References

Langevin for (Bayesian) deep NN?

Given labelled data D = (wi , yi )
p
i=1, we want to sample from the posterior

distribution over the parameters of a model g(·, x)

π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss on labeled data (wi , yi )

p
i=1

+
∥x∥2

2︸ ︷︷ ︸
prior reg.

.

• Recall that we know that the convergence speed of Langevin diffusion
depends on how much ”V is convex” and if it has few local minimas

• is x 7→ V (x) convex for g(., x) a neural network parametrized by x?

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.

28 / 34

https://www.telesens.co/2019/01/16/neural-network-loss-visualization.


Bayesian learning Langevin Bayesian deep learning References

Langevin for (Bayesian) deep NN?

Given labelled data D = (wi , yi )
p
i=1, we want to sample from the posterior

distribution over the parameters of a model g(·, x)

π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss on labeled data (wi , yi )

p
i=1

+
∥x∥2

2︸ ︷︷ ︸
prior reg.

.

• Recall that we know that the convergence speed of Langevin diffusion
depends on how much ”V is convex” and if it has few local minimas

• is x 7→ V (x) convex for g(., x) a neural network parametrized by x?

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.

28 / 34

https://www.telesens.co/2019/01/16/neural-network-loss-visualization.


Bayesian learning Langevin Bayesian deep learning References

Different strategies in practice/in the literature

Close to what we’ve seen previously:

• Stochastic Langevin dynamics: approximate

∇V (x) = ∇
(

p∑
i=1

∥yi − g(wi , x)∥2 + ∥x∥2
2

)
by a batch of data samples

(wi , yi )
m
i=1 with m << p

• Variational Inference

find qθ = argmin
p∈Pθ

KL(p|π)

where Pθ is a family of parametric distributions (upcoming in few slides).
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Different strategies in practice/in the literature

More heuristic:
• Monte Carlo Dropout

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning.

• Deep ensembles

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and
scalable predictive uncertainty estimation using deep ensembles. Advances in
neural information processing systems.
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Variational Inference for BNN - Bayes by Backprop example

Variational Inference
find qθ = argmin

p∈Pθ

KL(p|π)

where Pθ is a family of parametric distributions.

A typical neural network of depth L (with non-linearity h(·)) for input w and
parameter x writes:

g(w , x) = ALh
(
AL−1h

(
. . . h

(
A1w + b1

))
+ bL−1

)
+ bL,

hl = h(Alhl−1 + bl), h1 = h(A1w + b1).

Neural network parameters: x = {Al , bl}Ll=1.

We will describe the approach of ”Bayes by Backprop”1.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight
uncertainty in neural network. In International conference on machine learning.

30 / 34



Bayesian learning Langevin Bayesian deep learning References

Variational Inference for BNN - Bayes by Backprop example

Variational Inference
find qθ = argmin

p∈Pθ

KL(p|π)

where Pθ is a family of parametric distributions.

A typical neural network of depth L (with non-linearity h(·)) for input w and
parameter x writes:

g(w , x) = ALh
(
AL−1h

(
. . . h

(
A1w + b1

))
+ bL−1

)
+ bL,

hl = h(Alhl−1 + bl), h1 = h(A1w + b1).

Neural network parameters: x = {Al , bl}Ll=1.

We will describe the approach of ”Bayes by Backprop”1.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight
uncertainty in neural network. In International conference on machine learning.

30 / 34



Bayesian learning Langevin Bayesian deep learning References

Step 1: Construct the qθ(x) ≈ p(x | D) = π(x) Distribution
Example: Mean-field (=”factorized”) Gaussian
distribution:

qθ =
L∏

l=1

q(Al) q(bl)

q(Al) =
∏
ij

q(Al
ij), q(Al

ij) = N (Al
ij ;M

l
ij ,V

l
ij)

q(bl) =
∏
i

q(bl
i ), q(bl

i ) = N (bl
i ;m

l
i , v

l
i )

Variational parameters: θ =
{
M l

ij ,V
l
ij ,m

l
i , v

l
i

}L

l=1

In dimension two, a simple example of qθ is a
factorized Gaussian:

qθ (A111, A
1
12) = N (A111; 0, 1)·N (A112; 0, 1),

where qθ is the product of two independent
standard normal distributions over the
parameters A111 and A112.

Note that the ”factor” assumption in mean-field
decorrelates variables.
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Step 2: Fit the qθ Distribution

Variational inference: θ∗ = argmax L(θ) where L is the ELBO

L(θ) = Eqθ [log p(D | x)]−KL[qθ ∥ p0(x)]

First scalable technique: Stochastic optimization

• i.i.d. assumption: log p(D | x) =
∑N

i=1 log p(yi | wi , x)

• Mini-batch training: {(wm, ym)}Mm=1 ∼ DM

L(θ) ≈ N

M

M∑
i=1

Eqθ [log p(yi | wi , x)]−KL[qθ ∥ p0(x)]

Reweighting to ensure calibrated posterior concentration.
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Step 2: Fit the qθ Distribution
Variational inference: θ∗ = argmax L(θ) where L is the ELBO

L(θ) = Eqθ [log p(D | x)]−KL[qθ ∥ p0(x)]

2nd Scalable Technique: Monte Carlo Sampling

• Eqθ [log p(y | w , x)] is intractable even with
Gaussian qθ

• Solution: Monte Carlo estimate:

Eqθ [log p(y | w , x)] ≈ 1

K

K∑
k=1

log p(y | w , xk), xk ∼ qθ

• Reparameterization trick to sample from mean-field
Gaussians:

xk = mθ + σθ ⊙ ϵk , ϵk ∼ N (0, I )

• Therefore:

Eqθ [log p(y | w , x)] ≈ 1

K

K∑
k=1

log p(y | w , xk), xk = mθ+σθϵk
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Combining both steps and final prediction
Full ELBO approximation:

L(θ) ≈ N

M

M∑
m=1

1

K

K∑
k=1

log p(ym | wm, xk)−KL[qθ ∥ p(x)], xk ∼ qθ

analytic between two Gaussians (if not, can also be estimated with Monte Carlo)

In regression: p(y | w , x) = N (fx(w), σ2),

In classification: p(y | w , x) = Categorical(logit = fx(w))

Step 3: Compute Prediction with Monte Carlo Approximations

p(y∗ | w∗,D) ≈ 1

K

K∑
k=1

p(y∗ | w∗, xk), xk ∼ qθ

Mean-field Gaussian case: xk = mθ + σθ ⊙ ϵk , ϵk ∼ N (0, I )
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