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Sampling Methods: From MCMC to Generative Modeling
Bayesian learning and Langevin algorithm

Anna Korba

CREST, ENSAE, Institut Polytechnique de Paris

1/34



Outline

Bayesian learning
Langevin

Bayesian deep learning

2/34



Bayesian learning Langevin Bayesian deep learning References
0e0000000 000000000000 000 00000000

Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.
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Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.

(1) Let D = (wj,yi)5_; a dataset of i.i.d. examples with features w, label y.

(2) Assume an underlying model parametrized by x € RY, e.g.:

y=g(w,x)+e e~ N(0Id).
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Motivation for Sampling (1): Bayesian inference

Goal of Bayesian inference: learn the best distribution over a parameter x
to fit observed data.

(1) Let D = (wj,yi)5_; a dataset of i.i.d. examples with features w, label y.

(2) Assume an underlying model parametrized by x € RY, e.g.:
y=g(w,x)+e €~ N(0,Id).

Step 1. Compute the Likelihood:

1< )
p(D|x) <><Hp yilx, wi) & exp( 52_: lyi — g(wi, x)[I%).

i=1
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Step 2. Choose a prior distribution (initial guess) on the parameter:

2
X
X~ po, eg. po(x)ox exp(—%)
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Step 2. Choose a prior distribution (initial guess) on the parameter:

el

X~ po, eg. po(x) o< exp(—"5

Step 3. Bayes' rule yields the formula for the posterior distribution over the
parameter x:

p(x|D) = w where Z = /Rd p(D]x)po(x)dx

is called the normalization constant and is intractable.

References
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Step 2. Choose a prior distribution (initial guess) on the parameter:

el

x~po, g polx) o exp(—

Step 3. Bayes' rule yields the formula for the posterior distribution over the
parameter x:

p(x|D) = w where Z = /]Rd p(D]x)po(x)dx

is called the normalization constant and is intractable.

Denoting 7 := p(-|D) the posterior on parameters x € RY, we have:

m(x) o exp (~V(x)), V() = 2Zuy,— w2,

i.e. 7's density is known "up to a normalization constant”.
7 is a probability distribution over parameters of a model.
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The posterior 7 is interesting for

® measuring uncertainty on prediction through the distribution of g(w;, ),
X ~ T,

® prediction for a new input w:

7= | ew.x)dn()

" Bayesian model averaging”

i.e. predictions of models parametrized by x € RY are reweighted by 7(x).
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Ox. of .

‘m

Mz

Here, Sampling methods construct an approximation py = %
m=1

9(w, Tm)

Input w
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Sampling as Optimization

Actually, in many cases (e.g. it is underlying many algorithms), the sampling
problem (approximating ) can be viewed as optimization over P(R?):

min  D(u|w
min ()

where D is a divergence or distance, hence that is minimized for p = .

7/34
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The Kullback-Leibler divergence

D could be the (reverse) Kullback-Leibler (KL) divergence:

KL(u|m) = { {_R;O'og (50 dul) itn <

We recognize a f-divergence [ f (£) dr where f(x) = x log(x). Taking
f(x) = — log(x) yields the (forward) KL i.e. KL(7|u).
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The Kullback-Leibler divergence

D could be the (reverse) Kullback-Leibler (KL) divergence:

KL(u|m) = { @;@log (50 dul) itn <

We recognize a f-divergence [ f (£) dr where f(x) = x log(x). Taking
f(x) = — log(x) yields the (forward) KL i.e. KL(7|u).

The (reverse) KL as an objective is convenient when the unnormalized density
of 7 is known since it does not depend on the normalization constant!

Indeed writing 7(x) = e~V /Z we have:

KL(r) = [ 1oz (£7() di(x) + log(2).

But, it is not convenient when 4 or 7 are discrete, because the KL is +oco
unless supp(p) C supp(r).
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® (Parametric methods) Variational Inference : Restrict the search space to a
parametric families {g, 0 € RP}. The problem rewrites as a
finite-dimensional optimization problem (i.e. over R”):

min D(po|m)

® Example: Gaussians with diagonal covariance matrices can be parametrized
by 8 = (m, ) € R (see Bayes by Backprop in the last section)

® Example: use normalizing flows to construct a family pg = foxp and
Optimize the preViOUS Objectivel. LRezende, D., Mohamed, S. (2015, June). Variational inference with

normalizing flows. In International conference on machine learning.
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Examples

® (Parametric methods) Variational Inference : Restrict the search space to a
parametric families {g, 0 € RP}. The problem rewrites as a
finite-dimensional optimization problem (i.e. over R”):

min D(ue|m
min D(yio|7)
® Example: Gaussians with diagonal covariance matrices can be parametrized

by 8 = (m, ) € R (see Bayes by Backprop in the last section)

® Example: use normalizing flows to construct a family pg = foxp and
Optimize the preViOUS Objectivel. LRezende, D., Mohamed, S. (2015, June). Variational inference with

normalizing flows. In International conference on machine learning.

® (Non parametric methods) Markov Chain Monte Carlo (MCMC) methods,
Sequential Monte Carlo (SMC)...: generate a Markov chain in R? whose law
converges to m o exp(—V)

® Example: Langevin (next section)
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) [Roberts and Tweedie (1996)]

Xmt1 = Xm + YV log w(xm) + /290m, 1m ~ N(0,1d).

Picture from https://chi-feng.github.io/mcmc-demo/app.html.

Note that in the Bayesian inference setting, where m = eXp(;V), it is easily
implementable since the score Vi log m(x) = —V,(V(x) + log(Z)) = —=VV/(x)

since Vy log(Z) = 0.
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Langevin diffusion

Langevin diffusion is the Stochastic Differential Equation (SDE):
dxi = =V V(x;)dt +V2dB;, x: ~ p:

where B; denotes the standard Brownian motion in RY, defined as:
® By = 0 almost surely;

® Forany to < t1 < --- < ty, the increments B;, — B;,_, are independent,
n=12...,N,

® The difference B; — Bs and B:_s have the same distribution:
N(0,(t —s)Id) for s < t;

® B, is continuous almost surely.

Langevin diffusion defines a Markov process as follows:

t
Xt = Xo — / VV(xs)ds + V2B,
0

where xg is some initialization.
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Time-discretization

An Euler-Maruyama time-discretization of Langevin diffusion yields:

Xt41 = Xt — ’YVV(Xt) + V2, M N(Ov Id)' (1)
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Time-discretization

An Euler-Maruyama time-discretization of Langevin diffusion yields:

Xt+1 = Xt — ’YVV(Xt) + v 29ne, M~ N(07 Id)~ (1)
Proof:

v
szxo—/ VV(x0)dt++/2v7n
0
-
:xo—</ dt)VV(Xo)+\/2777
0

=x0 —YVV(x0)+ 2v7.
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Time-discretization

An Euler-Maruyama time-discretization of Langevin diffusion yields:

Xep1 = xe — YV V(xe) + V2yn:, e ~ N(0,1d).
Proof:

v
szxo—/ VV(x0)dt++/2v7n
0
-
:Xo—(/ dt)VV(Xo)+\/2’y77
0

=x0 —vYVV(x0)+ V2v17.

We can now iterate this approach k times, which gives us a recursion, which
can be easily implementable on a computer:

Xy R X(k—1)y — YV V (X(k=1)7) + v/ 27 s

where nx ~ N(0,1d) for all k. Dropping the dependency on  in the indices
yields the scheme (1).
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Ornstein-Uhlenbeck

Example: 7 exp(—@),
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Ornstein-Uhlenbeck

lIx[1> lix1?

Example: 7 oc exp(—*5-), log7(x) = —=V(x) = =45+, Vlogm(x) = —x.
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Ornstein-Uhlenbeck
2 2
Example: 7 exp(—@), logm(x) = —V(x) = — ”XZH , Vlog m(x) = —x.

(continuous time) Langevin diffusion = Ornstein-Uhlenbeck process:

dXt = —X; + dBt

References
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Ornstein-Uhlenbeck
Example: 7 exp(—@), logm(x) = —V(x) = —

dXt = —X; + dBt

(discrete time) xe+1 = Xe — Yxe + v29n:,  ne ~ N(0,1d).

”XZHZ, Viogm(x) = —x.

(continuous time) Langevin diffusion = Ornstein-Uhlenbeck process:

References
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Ornstein-Uhlenbeck
X2”2, Viogm(x) = —x.

Example: 7 o exp(—@), logm(x) = —V(x) = -1

(continuous time) Langevin diffusion = Ornstein-Uhlenbeck process:
dXt = —X; + dBt

(discrete time) xe+1 = Xe — Yxe + v29n:,  ne ~ N(0,1d).

& Density

Recall above we plot x¢4+1 = x¢ + 7V log m(x¢) + /2y for m o< exp(— IIXH ).
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The Fokker-Planck equation

Question: how does the law p; of x; evolve? does it converge to w7
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The Fokker-Planck equation

Question: how does the law p; of x; evolve? does it converge to w7

For simplicity, let us assume d = 1, so that Langevin diffusion becomes:

dx = —0xV(x) dt +V2dBx,
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The Fokker-Planck equation

Question: how does the law p; of x; evolve? does it converge to w7

For simplicity, let us assume d = 1, so that Langevin diffusion becomes:
dx = —0xV(x) dt +V2dBx,

To understand how p(x, t) evolves, we will use the Fokker—-Planck equation,
which governs the evolution of p(x, t) through the following partial differential
equation (PDE):

dep(x, t) = Ox [0V (x)p(x; t)] + O p(x. t).

This equation characterizes how the “change” in p(:, t) behaves, i.e., 9:p(x, t).
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The Fokker-Planck equation

Question: how does the law p; of x; evolve? does it converge to w7

For simplicity, let us assume d = 1, so that Langevin diffusion becomes:
dx = —0xV(x) dt +V2dBx,

To understand how p(x, t) evolves, we will use the Fokker—-Planck equation,
which governs the evolution of p(x, t) through the following partial differential
equation (PDE):

dep(x, t) = Ox [0V (x)p(x; t)] + O p(x. t).

This equation characterizes how the “change” in p(:, t) behaves, i.e., 9:p(x, t).

Remark: for d > 1, the Fokker-Planck equation writes:
Orp(x,t) =V - (VV(x)p(x,t)) + A(p(x, t)).

(where V- and A are the divergence and Laplacian operators: analog to above
but summing all partial derivatives for xi, ..., xq).
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The Fokker-Planck equation
Now, the idea is: if p(:, t) converges to a distribution as t — oo, then whenever

this limit is reached, there should not be any more changes in p. In other
words, whenever p(-, t) hits its limit, 9;p(x, t) has to be equal to 0.
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The Fokker-Planck equation

Now, the idea is: if p(:, t) converges to a distribution as t — oo, then whenever
this limit is reached, there should not be any more changes in p. In other
words, whenever p(-, t) hits its limit, 9;p(x, t) has to be equal to 0.

Therefore, we can simply “check” if 7 oc exp(—V) is a limit of p(-, t) by
replacing p(x, t) with 7(x) in the Fokker—Planck equation and observing
whether the right-hand side is equal to 0 or not. Let us apply this procedure:
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The Fokker-Planck equation

Now, the idea is: if p(:, t) converges to a distribution as t — oo, then whenever
this limit is reached, there should not be any more changes in p. In other
words, whenever p(-, t) hits its limit, 9;p(x, t) has to be equal to 0.

Therefore, we can simply “check” if 7 oc exp(—V) is a limit of p(-, t) by
replacing p(x, t) with 7(x) in the Fokker—Planck equation and observing
whether the right-hand side is equal to 0 or not. Let us apply this procedure:

Dx [0 V(x)7(x)] 4+ 827(x) = By [0x V (X)7(x) + ()]
= Ok [0« V(X)7(x) — OV (x)7(x)]
=0,

where we used the fact that
1

OV (x) = =0k logm(x) = )

8)<7r(X)7

hence
Oxm(x) = —m(x)0x V().

16/34



Langevin
000008000000 000

The Fokker-Planck equation

Now, the idea is: if p(:, t) converges to a distribution as t — oo, then whenever
this limit is reached, there should not be any more changes in p. In other
words, whenever p(-, t) hits its limit, 9;p(x, t) has to be equal to 0.

Therefore, we can simply “check” if 7 oc exp(—V) is a limit of p(-, t) by
replacing p(x, t) with 7(x) in the Fokker—Planck equation and observing
whether the right-hand side is equal to 0 or not. Let us apply this procedure:

Dx [0 V(x)7(x)] 4+ 827(x) = By [0x V (X)7(x) + ()]
= Ok [0« V(X)7(x) — OV (x)7(x)]
=0,

where we used the fact that
1

OV (x) = =0k logm(x) = )

8)<7r(X)7

hence
Oxm(x) = —m(x)0x V().

Conclusion: 7 is an equilibrium for the FP equation !
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Ornstein—Uhlenbeck Process

References

We now focus on a specific case of a Langevin diffusion and we will prove that:

For the SDE:
dXt == _B)G.L dt + (2 dBt

The solution is:

t
X, =e Pt + ae_m/ e”* dB,
0

with stationary/limiting distribution = = A/(0, %)
and we have:

2
Xi | Xo ~ N (e*f“xo, ;Lﬁ(l - e*25f))

Observe that:

® The farther into the future, the more the initial value gets " forgotten”
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Proof

Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by pu(t) = e”*:

’tdX, = —Be’* X, dt + o’ dB,
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Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by pu(t) = e”*:

’tdX, = —Be’* X, dt + o’ dB,

But using (Ité’s) product rule:

d (e’BtXt) — &tdX, + BePtX, dt
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Proof

Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by pu(t) = e”*:

’tdX, = —Be’* X, dt + o’ dB,
But using (Ité’s) product rule:
d (e’BtXt) — &tdX, + BePtX, dt

So we get:
d (eﬁtXt) = oePtdB;

18/34
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Proof

Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by pu(t) = e”*:

’tdX, = —Be’* X, dt + o’ dB,
But using (Ité’s) product rule:
d (e’BtXt) — &tdX, + BePtX, dt

So we get:
d (eﬁtXt) = oePtdB;
Step 2 (Integrate both sides)

Now integrate from 0 to t:

t
X — Xo=o0 / e”* dBs
0
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Proof

Step 1 (Multiply by the integrating factor)
Multiply both sides of the SDE by pu(t) = e”*:

’tdX, = —Be’* X, dt + o’ dB,
But using (Ité’s) product rule:
d (e’BtXt) — &tdX, + BePtX, dt
So we get:
Bt _ Bt
d (e Xt) =oce"” dB:

Step 2 (Integrate both sides)
Now integrate from 0 to t:

t
X, — X =0 / e”* dB,
0
Rewriting:

t
X =e Pt X + aefﬁf/ &% dB,
0

18/34
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Proof (continued)

Step 3 (Distribution of the integral term )
Let: I; := fot e”° dB.. This is an It& integral of a deterministic function = it's a
Gaussian random variable with:
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Proof (continued)

Step 3 (Distribution of the integral term )

Let: I; := fot e”° dB.. This is an It& integral of a deterministic function = it's a
Gaussian random variable with:

® Mean: E[l] =0
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Proof (continued)

Step 3 (Distribution of the integral term )

Let: I; := Ot e”° dB.. This is an It& integral of a deterministic function = it's a

Gaussian random variable with:
® Mean: E[/{] =0

® Variance :

Var(l) = E [(/Oteﬁs st)2

"o 1 o8] 1 op
= [ ePds= || =—=(e""=1).
/ 25+, = 25

t 2
:/ (eBS) ds (using It isometry)
0
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Proof (continued)

Step 3 (Distribution of the integral term )

Let: I; := Ot e”° dB.. This is an It& integral of a deterministic function = it's a

Gaussian random variable with:
® Mean: E[/{] =0

® Variance :

Var(l) = E [(/Oteﬁs st)2

"o 1 o8] 1 op
= [ ePds= || = et —1).
/ 25+, = 25

t 2
:/ (eBS) ds (using It isometry)
0

Therefore:

Ue*f@t/t ~N <07 02672& . %(ezﬁt _ 1)) =N <07 ;ﬂ(l _ ef2l3t)) )
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Proof (continued)

Step 3 (Distribution of the integral term )

Let: I; := Ot e”° dB.. This is an It& integral of a deterministic function = it's a

Gaussian random variable with:
® Mean: E[/{] =0

® Variance :

Var(l) = E [(/Oteﬁs st)2

"o 1 o8] 1 op
= [ ePds= || =—=(e""=1).
/ 25+, = 25

t 2
:/ (eBS) ds (using It isometry)
0

Therefore:

2
Ue*f@t/t ~N <07 02672& . %(ezﬁt _ 1)) =N <07 ;75(1 _ ef2l3t)) )

So the full solution is : X: = e #t Xy + ce Pl where
Xe | Xo ~ N (ef’Bth, %(1 - e*wt)). Done!
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(Very) Important remarks

N(0,1) Xi ~ 0

Figure: Representing X; an OU process (with 3 = o = 1), and p; its (time) marginals

® \We know that the full solution :

X: = e "' Xy 4 Gaussian noise (2

where Gaussian noise ~ A (0, %(1 - efwt)) and that conditionally on Xp:
—Bt a? —28t

Xt‘XONN<e Xo,ﬁ(l_e ) (3)

earning References
)
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(Very) Important remarks

N(0,1) Xi ~ 0

Figure: Representing X; an OU process (with 3 = o = 1), and p; its (time) marginals

® \We know that the full solution :

X: = e "' Xy 4 Gaussian noise (2

where Gaussian noise ~ A (0, %(1 - efwt)) and that conditionally on Xp:
—Bt a? —28t
Xt ‘ XO NN <e Xo, ﬁ(l — € )) (3)

® The marginals (pt)¢>0, where p; the law of X; in (2) are not Gaussian in
general !l (see gray density in the figure above)

References
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(Very) Important remarks

N(0,1) Xi ~ 0

Figure: Representing X; an OU process (with 3 = o = 1), and p; its (time) marginals

® We know that the full solution :
X: = e "' Xy 4 Gaussian noise (2
where Gaussian noise ~ A (0, %(1 - e72*8t)) and that conditionally on Xp:

2
X | Xo ~ N <emeo, ;—B(l — efwt)) (3)

® The marginals (pt)¢>0, where p; the law of X; in (2) are not Gaussian in
general !l (see gray density in the figure above)
® but the conditional laws in (3) are Gaussian
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Introducing some initial Condition

When are the marginals p; Gaussian? Answer: when po is Gaussian.
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Introducing some initial Condition

When are the marginals p; Gaussian? Answer: when py is Gaussian.

Assume Xo ~ N (07 g)

Then we have = X; ~ N (0, %)

Proof: Recall X = A+ B where A=e "'X;, B=oce " [ e”dW..

° A~ N(0,e7 2. 7))
* B~N(0,5(1— e )
®* Al B= A+ B~ N(0,sum of variances)

References
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Introducing some initial Condition

When are the marginals p; Gaussian? Answer: when po is Gaussian.

Assume Xo ~ N (07 %)

Then we have = X; ~ N (0, %)

Proof: Recall X = A+ B where A=e "'X;, B=oce " [ e”dW..
* A~ N(0,e7%Pt. 2)

* B~ N(0, 5 (1 e YY)

® Al B= A+ B~ N(0,sum of variances)

Above, the law of X; does not depend on time, because we have started the
. o 2
process at the stationary distribution 7(x) = N (0, g—ﬁ)

If: Xo ~7(x)= X¢ ~m(x) forallt

21/34
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Introducing some initial Condition

When are the marginals p; Gaussian? Answer: when py is Gaussian.
Assume Xo ~ N (07 %)

Then we have = X; ~ N (0, %)

Proof: Recall X = A+ B where A=e "'X;, B=oce " [ e”dW..
* A~ N(0,e 2. 2

* BN, 5(1— )

® Al B= A+ B~ N(0,sum of variances)

Above, the law of X; does not depend on time, because we have started the
process at the stationary distribution 7(x) = N (0, g—;)

If: Xo ~7(x)= X¢ ~m(x) forallt
In general, for a Xy ~ N(O,US), we would have

X, ~ N (o, e 2o} 4+ Z3(1 - e*mf)) .

21/34
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Back to general Langevin diffusion
® We have spent quite a lot of time on Ornstein-Uhlenbeck (OU):

dXt = —ﬁXt dt + o dBt

Solution:

Distribution:
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Back to general Langevin diffusion
® We have spent quite a lot of time on Ornstein-Uhlenbeck (OU):
dx = —fx; dt + o dB;
Solution:

t
xe = e Pixg + Jef’Bt/ e”* dB.
0

Distribution: )
Xe | Xo ~ N (e 71X, 2 (1 — e 2%
28
® | et's go back to a general Langevin diffusion :

dxe = —VV(x)dt + V2dB;, x: ~ p:

Solution: .
Xt = Xo —/ VV(xs)ds + \/§Bt,
0

® Remember that OU is a specific case of Langevin, where the
2
target/stationary distribution is: m = A/(0, %) where 7(x) exp(—’ﬁ'(lf%”)
® for general Langevin, the stationary distribution is 7 o< exp(—V).

22/34
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Langevin diffusion (and its discretized versions) is an example of a
non-parametric method: we built a process x; € R?, whose distribution p;

converges to T as t — 0o
® The law (p:)e>0 of Langevin diffusion (x:):>0 is known to follow a gradient
flow to minimize D(p|m) = KL(p|7): dpr = —Vw, KL(p¢|7)dt (see!)

KL(p | m)

Recall above we plot xe+1 = x¢ + 7V log m(x:) + /2y for m o< exp(— ||xH ),

Xo ~ Po-
]'Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The variational formulation of the Fokker—Planck equation. SIAM journal on

mathematical analysis.

23/34



Bayesian learning Langevin Bayesian deep learning
000000000 0000000000000 e0 00000000

When does Langevin diffusion’s law converges (fast) to 7?

2
® Consider a standard Gaussian distribution 7(x) o exp(f@), ie.

7w x exp(—V) with V 1-strongly convex, i.e. 7 is (1-)strongly log-concave.

Density

@)

Potential

Viz)

Then KL(p¢|7) = exp(—2t) KL(pol| 7).

References
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When does Langevin diffusion’s law converges (fast) to 77

® Consider a standard Gaussian distribution 7(x) o exp(f@), ie.
7w x exp(—V) with V 1-strongly convex, i.e. 7 is (1-)strongly log-concave.

Density

@)

Potential

Viz)

Then KL(p¢|7) = exp(—2t) KL(pol| 7).

® |f 7 is a perturbation of a strongly-log-concave distribution, then the rate
degrades with the size of the perturbation.

Perturbed Density

Perturhed Potential

(see Holley—Stroock theorem and log-Sobolev inequalities, (Bakry et al.,
2014)).
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Langevin in the multimodal case

Mixture of equally weighted 16 Gaussians with unit variance and uniformly
chosen centers in [—40, 40]?, a standard sampling benchmark. ULA was
initialized with A/(0, k), step-size h = 0.01. ULA was run with 5.10" steps (one
minute run).
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Langevin in the multimodal case

Mixture of equally weighted 16 Gaussians with unit variance and uniformly
chosen centers in [—40, 40]?, a standard sampling benchmark. ULA was
initialized with A/(0, k), step-size h = 0.01. ULA was run with 5.10" steps (one
minute run).

The theoretical convergence is so slow, that in practice Langevin gets
stuck for infinite time the modes close to its initialization !
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Recall Bayesian inference
Given labelled data (w;, y;)7_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)

m(x) x exp (~V(x), V(x) = Zny,— g +

\V/
prior reg.
loss on labeled data (w,-,y,-)f?:1
lLe., m(x) = M , V(x) = —log p(D|x) — log po(x) with Z intractable.

References
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Recall Bayesian inference
Given labelled data (w;, y;)7_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)
x
") o exp (< V(). V(x) = Z i — g )P+ 0

\V/

prior reg.

loss on labeled data (w,-,y,-)f?:1

lLe., m(x) = M , V(x) = —log p(D|x) — log po(x) with Z intractable.

Ensemble prediction for an input

w:
g(w, 1)
y= [ elwx)dn() - \,
R ? 9% 5 2 9w, 7n)
" Bayesian model averaging” 'Inpm w
9w, zar)
Predictions of models

parametrized by x € R?
are reweighted by 7(x).
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Recall Bayesian inference
Given labelled data (w;, y;)7_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)

X
7(x) o e (~V(x), V(x)= Z Iy — gt +
\V/
prior reg.
loss on labeled data (w,-,y,-)f?:1
lLe., m(x) = M , V(x) = —log p(D|x) — log po(x) with Z intractable.
Ensemble prediction for an input
w:
ofw, 1)
y= [ elwx)dn() 1 \,
R I3 i~ 2 olwzn)
" Bayesian model averaging” Taput w o)
Predictions of models
parametrized by x € R?
are reweighted by m(x). recall that a frequentist NN would
predict y = g(w,x*) where x* =

arg max, cpd log p(D|x)
27/34
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Langevin for (Bayesian) deep NN?

Given labelled data D = (wj, yi)%_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)

7)o op (V). VE) = 3 Iy — g(wi )l ¥
i=1 pri:/r:;

loss on labeled data (w,v,y;)ﬁ.’:1
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Langevin for (Bayesian) deep NN?

Given labelled data D = (wj, yi)%_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)

7)o op (V). VE) = 3 Iy — g(wi )l ¥
i=1 m.

loss on labeled data (w,v,y;)ﬁ.’:1

® Recall that we know that the convergence speed of Langevin diffusion
depends on how much "V is convex” and if it has few local minimas
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Langevin for (Bayesian) deep NN?

Given labelled data D = (wj, yi)%_;, we want to sample from the posterior

distribution over the parameters of a model g(-, x)

7)o op (V). VE) = 3 Iy — g(wi )l ¥
i=1 m.

loss on labeled data (w,v,y,‘)l.p:1

® Recall that we know that the convergence speed of Langevin diffusion
depends on how much "V is convex” and if it has few local minimas

® is x — V(x) convex for g(.,x) a neural network parametrized by x?
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Langevin for (Bayesian) deep NN?

Given labelled data D = (wj, yi)%_;, we want to sample from the posterior
distribution over the parameters of a model g(-, x)

7)o op (V). VE) = 3 Iy — g(wi )l ¥
i=1 m.

loss on labeled data (w;, y,')f:1

® Recall that we know that the convergence speed of Langevin diffusion
depends on how much "V is convex” and if it has few local minimas

® is x — V(x) convex for g(.,x) a neural network parametrized by x?

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Different strategies in practice/in the literature

Close to what we've seen previously:
® Stochastic Langevin dynamics: approximate
P
VV(x)=V (Z lly: — g(wi, x)||* + @) by a batch of data samples
i=1
(wi, yi)iZy with m << p

® Variational Inference

find go = arg min KL(p|~)
PEPy

where Py is a family of parametric distributions (upcoming in few slides).
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Different strategies in practice/in the literature

More heuristic:
® Monte Carlo Dropout

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning.

® Deep ensembles

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and
scalable predictive uncertainty estimation using deep ensembles. Advances in
neural information processing systems.

Model1

Model 2

5
H
g
g
-1

- Prediction T

Model T

(a) MC Dropout (b) Ensemble Method
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Variational Inference for BNN - Bayes by Backprop example

Variational Inference

find go = arg min KL(p|~)
PEPy

where Py is a family of parametric distributions.

30/34



Bayesian learning Langevin Bayesian deep learning References
000000000 000000000000 000 00008000

Variational Inference for BNN - Bayes by Backprop example

Variational Inference

find go = arg min KL(p|~)
PEPy

where Py is a family of parametric distributions.

A typical neural network of depth L (with non-linearity h(-)) for input w and
parameter x writes:

g(w,x)::ALh(AL7U1(..h(A1w—%b{))4—b“4)—%bﬂ

h =hA'W+ b)), B =hA'w+bY).
Neural network parameters: x = {A’ b'}}_;.
We will describe the approach of " Bayes by Backprop™®.
Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight

uncertainty in neural network. In International conference on machine learning.

30/34



Bayesian learning Langevin Bayesian deep learning References
000000000 000000000000 000 0O0000e00

Step 1: Construct the gy(x) =~ p(x | D) = 7(x) Distribution
Example: Mean-field (="factorized”) Gaussian
distribution:

a0 = [ [ a(A") (b))

=1

——

a(A) = [T a(A)), a(A}) = N(A}: Mg, Vi) ——>

U)

a(b) =T a(b0), a(bi) = N(bi; mi, v))

In dimension two, a simple example of gg is a
factorized Gaussian:
Il

L L
Variational parameters: 0 = {M,;-, \/,-J’-, mj, v; },:1 ap (A, ALy) = N(Al}50,1)- N (Ady 0, 1),

where qg is the product of two independent

Y standard normal distributions over the
parameters A7 and Ap,.

\ Note that the "factor” assumption in mean-field
QDY @ /5':'3 D, decorrelates variables.
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Step 2: Fit the gy Distribution

Variational inference: 0" = arg max L(0) where L is the ELBO
L(0) = Eqp [log p(D | x)] — KL[qo || po(x)]

First scalable technique: Stochastic optimization
e i.i.d. assumption: log p(D | x) = 32N, log p(y: | wi, x)
® Mini-batch training: {(Wm, ym)}¥_; ~ DV

L(0) = % > Equllog p(yi | wi, x)] = KLgo || po(x)]

i=1

Reweighting to ensure calibrated posterior concentration.

References
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Step 2: Fit the gy Distribution
Variational inference: 0" = arg max L(0) where L is the ELBO
L(0) = Eqp [log p(D | x)] = KL[qo || po(x)]
2nd Scalable Technique: Monte Carlo Sampling

® E,, [log p(y | w,x)] is intractable even with
Gaussian gy

® Solution: Monte Carlo estimate:

Eq, [log p(y | w, x) Zlogp(y | w,xk), Xk~ qe

backprop

® Reparameterization trick to sample from mean-field

References

Gaussians: /

Xk = My + 09 © €, €k'\’-/\/'(07/) @

® Therefore:

K
1
o llog p(y | w,x)] % > log ply | w, ), xc = mo-toues
k=1

> ©
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Combining both steps and final prediction
Full ELBO approximation:

L(9) = I Z Z log p(ym | Wm, xx) — KL[qe || p(X)], Xk ~ qo

m=1 k=1
analytic between two Gaussians (if not, can also be estimated with Monte Carlo)

In regression: p(y | w,x) = N(f(w), o?),
In classification: p(y | w, x) = Categorical(logit = f(w))

Step 3: Compute Prediction with Monte Carlo Approximations

K
P(y* | W*aD) RZ | W*,Xk), Xk ~ qo
k=1

Mean-field Gaussian case: xk = mg + oo @ €k, € ~ N(0,/)

2 ) ) 0 B
I N

(o] ;e ]

X1 Xo X3 Xa X ) 33/34
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