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Setting

» Let 2" C R? be the closure of a convex open set

» Let #,(2") the set of probability measures on 2" with finite
second moment

The space #2,(2") is endowed with the Wassertein-2 distance from
Optimal transport:

Wivp) = nt [leoylPdn(ey)  Wvipe 2(2)
whereII(v, u) is the set of possible couplings between v and .
In other words I1(v, i) contains all possible distributions 7 on
2 x Z suchthatif (X,Y) ~nwthenX ~vandY ~ pu.
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Maximum Mean Discrepancy

> Letk: 2 x 2 — Rapositive, semi-definite kernel

» 7 its corresponding RKHS. It is a Hilbert space with inner
product (.,.) ,» and norm ||.|| .

Suppose k is characteristic, ie the map:
(gZQ(JQf) — A
V= k(x,.)dv(x
[, K avi)

isinjective.
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Maximum Mean Discrepancy

Maximum Mean Discrepancy ( ) defines a
distance on 2, (Z"):

MMD(, V) = || fuvllz, where

foul) /k )dv(x /k Vp(x

fu,v is called the witness function and is the difference between the
mean embeddings of v and p.

Now fix the (target) distribution (1. We consider the functional:
F: P(Z)—R

1
Vi EMMDZ(u,v)

6/35



Outline

Background on gradient flows
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Problem considered

Transport probability mass from a starting distribution v to a target
distribution 11, by finding a continuous path (v;);>o decreasing
F (V).

—> Gradient flows over the space of distributions &2,(.2")
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Problem considered

Transport probability mass from a starting distribution v to a target
distribution 11, by finding a continuous path (v;),>o decreasing
F (V).

—> Gradient flows over the space of distributions &2,(.2")

» novel flow over the space of distributions

» can model the optimization of some overparameterized neural
networks models

» we propose a trick to improve convergence
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Continuous time flows

In a euclidean setting, a curve x : [0,0] — R is the gradient flow, or
steepest descent of a differentiable function F : R? — Riif:

dxt

E = —VF(xt)

» Initial value problem: given xo, find the gradient flow (x;);>o.
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Continuous time flows

In a euclidean setting, a curve x : [0,0] — R is the gradient flow, or
steepest descent of a differentiable function F : RY — R if:

dx
d—tt = —VF(XI)
» Initial value problem: given xo, find the gradient flow (x;);>o.

By analogy, one can interpret the gradient flow of a functional
F : P(Z) - Rtobeacurvev: 0,00 — P,(2) that satisfies:

oV
5 = " YmF V)
for some generalized notion of gradient Vy,, w.r.t. the W, metric.
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Wassertein-2 gradient flows (([Ambrosio et al., 2008])

For a sufficiently regular % and v, we can write:

8,,97)
v

—Vw,Z(v) =div(vV

where % denotes the first variation of .# at v.

If it exists, it is the unique function such that forany v, v/ € 2,(2):

0F

nml(y(ws(v'—v))—y(v))—/ 2 )(@v' —av)

e—0 € z
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Wassertein gradient flows

Since —Vy, #(v) = div(vv%—f), all Wassertein gradient flows are
of the form:

v, _
§f+mew):0

continuity equation

Ruling the density p, of particles driven by a velocity field V, (—V %‘—‘f ).
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Wassertein gradient flows

Since —Vy, #(v) = div(vv%—f), all Wassertein gradient flows are
of the form:

v, _
87; +div(viV;) =0

continuity equation
Ruling the density p, of particles driven by a velocity field V, (—V %—‘f ).
In particular, if the functional . is a free energy:

ﬂ(v):/U(v(x))v(x)dx+ /V(x)v(x)dx —i—/W(x,y)v(x)v(y)dxdy

internal potential external potential interaction energy #

Then: o = div(v,Vaz

3 3y (v1)) =div(v,V(U' () +V + W xV,)).
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Maximum Mean Discrepancy Gradient Flow
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MMD functional

For a target distribution u (fixed), forany v € 92,(2"):

1 1
F(v)= EMMDz(u,v) = §||fu7V||2%7

> Since Z(v) = L([ fuvdp — [ fuvdv), wehave &2 = f,, ,
» Then, .# can be written as a free energy:

/v )dv(x 2/W dv(y) +C.

where Vis a confinement potential, W an interaction potential
and C a constant defined by:

__ / k(¥ )dp (), W(xx) = k(x,x), C— % / k(x, 2 )dp(x)dp (<)
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MMD Gradient flow

The MMD gradient flow w.r.t. W, is thus given by:

(?9\: =div(ViVfuy) = div(viV(V + W xVv)) y

where Vfy v, (2) = [ Vk(x,2)du(x) — [ Vk(x,z)dV,(x).

This type of equation is associated in the probability theory
literature to the so-called McKean-Vlasov process

dX; =—Vfu, v, (X;)dt Xo~ Vo

depends on the current distribution of the process!

whose distribution satisfy (1).
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Investigating MMD gradient flow convergence
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First strategy - Convexity on the space of distributions

Definition

Acurvep :[0,1] = Z(Z) is a geodesic between v and u if:
p(0)=v, p(1) = p,and

L(p) = min {L(P),p(0) = v,p(1) = u} = Wa(v, ).

(1)-Geodesic convexity: Convexity of the functional .# on geodesic
curves of 2,(Z").

\2

F(p(1)) < (1= F (p(O) +1F(p(1)) —1(1—1) 2 d(p(0).p(1))

(classic A-convexity on R? : F((1 —t)x+1y) < (1 —1)F(x) +tF(y) — (1 —1 )/j x—y%)
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First strategy - Convexity on the space of distributions

Definition

Acurvep :[0,1] = Z(Z) is a geodesic between v and u if:
p(0)=v, p(1) = p,and

L(p) = min{L(3),p(0) = v,p(1) =} = W(v, ).

(1)-Geodesic convexity: Convexity of the functional .# on geodesic
curves of 2,(Z").

A 2
Fp@) <1-1)F(p(0)+:F(p(1))—1(1—1)5d(p(0),p(1))
(classic A-convexity on R? : F((1 —t)x+1y) < (1 —1)F(x) +tF(y) — (1 —1 ,L x—y%)
Our finding: The MMD is 1 -convex with 1 < 0.
Too bad... 4 > 0 would have guaranteed that all gradient flows of
# would converge the unique minimizer of %
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Second strategy - Obtain a Lojasiewicz inequality

dF(v;)
dt
Applying Gronwall’s lemma results in: = .7 (v;) = 0(1).

< —CF(v)? (2)
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Second strategy - Obtain a Lojasiewicz inequality

dF(v;)
dt

Applying Gronwall’s lemma results in: = .7 (v,) = ﬁ(%).

» on the left we have the weighted Sobolev semi-norm:

< —CF(v)? (2)

dF(v)
dt

= — [V @Pv® = —lfunl,

> on the right the RKHS norm: .Z (v,)= 5| /i1, |,
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Second strategy - Obtain a Lojasiewicz inequality

dF(v;)
dt

Applying Gronwall’s lemma results in: = .7 (v,) = ﬁ(%).

» on the left we have the weighted Sobolev semi-norm:

< —CFw)? (2)

dF(v)
dt

N _/HVfu,v,(X)szz(X) - *‘.f.'“-\nH;’mm
> on the right the RKHS norm: .Z (v,)= 5| /i1, |,

Let Ly (v) = {f, [ f(x)*dV(x) < o}, and ||.|[z-1(y) the weighted
negative Sobolev norm, defined for p,q € 2,(%") by:

17 = alli-1(v) = SUPser, (v) 7l <1 |/ F()dP(x) = [ f(x)dg(x)].

linearizes the W5 !
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A condition for global convergence

It can be shown that:
I fevll3e < ez 188 = Vell =1y, -

Proof. Take g = || fuv, H;-,Evr)fﬂ,w
> bydef, |[gdv, — [gdu| = || fuv, H;ﬂlv’) Uf;t,v;dvf — [ fuvdp] = lfuv H,;;v[)Hfu,v,H,z;f
> geLy(v,) and|lglly) < 1,50 [ gdvi — [gdu] < [[Vi — i1y,

Hence, provided |1t — v, Hzfl(v,) < £, we obtain the Lojasiewicz
inequality (2) and the rate &'(1/1) (thus global convergence).

However in practice it is hard to guarantee this condition

( ).

TUndera Lipschitz assumption on Vk, forall v,u € 25(27), fuv € La(V)
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A practical algorithm to descend the MMD flow
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Euler scheme (Time-discretization of the flow)
Forany T : 2" — %2 ameasurable map,and v € &,(%), we
denote the pushforward measure by Ty v.

Tyv(A) = v(T~1(A)) for every measurable set A,
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Euler scheme (Time-discretization of the flow)

Forany T : 2" — %2 ameasurable map,and v € &,(%), we
denote the pushforward measure by Ty v.

Tyv(A) = v(T~1(A)) for every measurable set A,

Starting from vy € 7,(2") and using a step-size y > 0, a sequence
v, € P(Z) is given by iteratively applying

Vir1 = ([ =YV fuv,)#Va- (3)
For all n, equation (3) is the distribution of the process defined by

}(n+4 =X, —-}A7j1th<)(n) )Q)fv Vo.
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A noisy update as regularization
The condition we exhibited for global convergence may not hold
and (.Z (V,))nen Might be stuck at a local minima.

dF (V)
dt

- f/HVf#,v,(x)szv,(x) at equilibrium  —» /HVfW(x)szv*(x) —0

If v* positive everywhere this implies f,, ,+ = cte = 0as soon as 0 ¢ /7. But v* might be
singular...

Our proposal: Inject noise into the gradient during updates:
-Xﬁ+4 ::)Cl__?NVJﬁJ%(X%'+_BHLLJ7 n Eioa
where U, ~ .#°(0,1) and B, is the noise level at n.

A\Different from adding a noise outside the gradient (i.e. diffusion)!
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Guarantees
Proposition
For a choice of B, such that:

8A%B; 7 (Va) < / IV fiuv, (e Bute) [P Vi (x) ) dg (u) (4)
the following inequality holds:

F W)= F ) < =20 392) [19 0,5+ B Py, () dg(w)

where A and L are Lipschitz constants on the first derivatives of k.
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Guarantees
Proposition
For a choice of B, such that:

8A%B; 7 (Va) < / IV fiuv, (e Bute) [P Vi (x) ) dg (u) (4)
the following inequality holds:

F W)= F ) < =20 392) [19 0,5+ B Py, () dg(w)

where A and L are Lipschitz constants on the first derivatives of k.
Moreover under (4)
F (Va) < F(vp)e TERP,

where T = 4A%y(1 - 3yL.

So Y, B? — oo with (4) implies global convergence.
22/35



The sample-based approximate scheme
How can we simulate
<Xﬁ+1 ::)gl__7A7fhﬂh()g1+_ﬁ&l]n)a n>0?

It depends on:

» the current distribution v, = approximate it by the empirical
distribution of a system of V interacting particles

» the target distribution 1 = replace it by the empirical
distribution of the M samples that we have access to (/1)
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The sample-based approximate scheme
How can we simulate
<Xﬁ+1 ::)gl__7A7fhﬂh()g1+_ﬁ&l]n)a n>0?

It depends on:
» the current distribution v, = approximate it by the empirical
distribution of a system of V interacting particles
» the target distribution 1 = replace it by the empirical
distribution of the M samples that we have access to (/1)

(X=X =1 (6 B
Vi1 e
X =X — YV fus, (X + BuUY)
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The sample-based approximate scheme
How can we simulate
<Xﬁ+1 ::)gl__7A7fhﬂh()g1+_ﬁ&l]n)a n>0?

It depends on:
» the current distribution v, = approximate it by the empirical
distribution of a system of V interacting particles
» the target distribution 1 = replace it by the empirical
distribution of the M samples that we have access to (/1)

(X=X =1 (6 B
Vi1 e
X =X — YV fus, (X + BuUY)

Our guarantees: For any iterationn € Nand 7" > 0, if 8, < B:

Ci(vo,B,T) + G (u,T)
VN VM

IE[W2(On¢ Vn)] <
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Applications
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Overparameterized single-layer neural network

Single-layer neural network, parameterized by 6 € 2". Let (x,y)
denote the input/output data.

-
d-dim input (5 {0} Zw z.0,)
zecQCR?
,0) = co((w,z) +b)
R o((w,x

0 = {c,w,b}

Figure:
Consider the supervised learning problem:

2

min Eq
Y)~p
(91,‘..,9,1)6 5

Parameter space

L
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Motivation

If n — oo, the previous problem can be rewritten:

2
min  Z(v = Eqpy~ y—/l//x,@dve
ey (v) (x)~p (x,0)dv(0)
Y(x,v)

Distributions over the parameter space

If 3 € Po(2) st Eyop ] = [ wix,0)du(e),
— L (v) =MMD?*(v,u) withk(6,0") =E.., [w(x,0)  y(x,0")].

[Chizat and Bach, 2018], [Rotskoff et al., 2019]: gradient descent on
the parameters of a neural network can be seen as a particle
transport problem.
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Experiments - training a student-teacher network

» the teacher network Wr(x, i) is given by M particles
2 = (&1,...,Eu) which are fixed during training —
m=5 L,

» the student network Ws(x, ve) has N particles ® = (6, ..., 0y)
that are initialized randomly = v = + Y| &g,
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Experiments - training a student-teacher network

» the teacher network Wr(x, i) is given by M particles
2 = (&1,...,Eu) which are fixed during training —
‘u - \L/Z}I 1 (Sér

» the student network Ws(x, ve) has N particles ® = (6, ..., 0y)
that are initialized randomly = v = + Y| &g,

Performing gradient descent to minimize
m®inEx~p [(lPT (.X, .u) - lPS(xv v@))Z]

can be seen as a particle version of the gradient flow of the MMD
with a kernel given by k(60,0") = E,,[y(x,0")y(z,0)]
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Experiments - training a student-teacher network

» the teacher network Wr(x, i) is given by M particles
2 = (&1,...,Eu) which are fixed during training —
p=3 Xl O

» the student network Ws(x, ve) has N particles ® = (6, ..., 0y)
that are initialized randomly = v = + Y| &g,

Performing gradient descent to minimize
m®inEx~p [(lPT (.X, .u) - lPS(xv v@))Z]

can be seen as a particle version of the gradient flow of the MMD
with a kernel given by k(6,0") = E,.,[y(x,0")y(z,0)]
= approximated by
Z II/ xba )Cb, /)'
I’lb b
where (xi, ..., x,,) are n, samples from the data distribution.
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Experiments

Leads to the approximate update:

f;+1 = 9;; - ?’Vfu»vn(ef;)

training error per iteration validation error per epoch
107! 0.20
1072
0.15
5 10 5 —— MMD flow
o o —— Noisy MMD flow
¢ Y010
1074
S| MMD flow 0.05
107~ —— Noisy MMD flow
0 2x10% 4x10* 6x10* 8x10* 10° 0 2x10% 4x10° 6x10° 8x10° 10*
iterations epochs

— adding noise to the gradient seems to lead to global
convergence.
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Conclusion
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Summary and openings

What we have done:
» novel flow over the space of distributions
> theoretical results on the MMD flow
> trick to improve convergence
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Summary and openings

What we have done:
» novel flow over the space of distributions
> theoretical results on the MMD flow
> trick to improve convergence

Future work:

» Deeper understanding of the regularization proposed
(continuous formulation?) and of the choice of the kernel

» Other regularizations to improve convergence?

» Other gradient flows? (here: Vy, . # vs
who get a global convergence for — Vy pr.%).
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Convexity on vector spaces

Existence, uniqueness results on gradient flows rely on the notion of
convexity.

A function F defined on R is A-convex if D*F > Al;.4 or
equivalently if forany x,y € R? and ¢ € [0, 1]:

F((1=0)x+13) < (1= 0F @) +tFG) (105 e

» Uniqueness when 4 > 0: any gradient flow x(7) converges to
some x*.
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W, distance

W)= int [ le-yiPdn(ey)  Wvipe 2(2)

well(v

where II(v, u) is the set of possible couplings between v and p. In
other words I1(v, 1) contains all possible distributions 7 on
2 x Z suchthatif (X,Y) ~nwthenX ~vandY ~ pu.

W5 vs LQ?

L, geodesic: p(t) = (1 —1)p(0)+1p(1)
W, geodesic: p(t) = ((1 —t)Id +tTy0)p(1))#P(0)

Informally, L? distances are ”vertical” (values of the distributions)
whereas W, distances are "horizontal” (mass of the distributions).
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Gradient flows - comparison

Euclidean W5
Metric (X,d) (R4, |.]) (2,(RY),Ws)
Definition of Vy | (VF(x),v) = (VF(v), =div(EV)) 1an, 2, (me) =

F(x+hv)—F (x)

limy, o ZEHFQ | fiy, o FEERE)ev) - F (V)

h

FormulaforVx | VgaF(x) =VF(x) | Vy, % = —div(vV"ﬁ)

\%
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Comparison with Langevin

Seminal work of who revealed that the
Fokker-Planck equation is a gradient flow of the Kullback-Leibler
divergence:

v —div(vV) =0, where the vector fieldV = Vy,KL(v) = Vlog(ﬁ)

ot

Results in the Langevin Monte-Carlo algorithm (requires the
knowledge of Viog(u)):

Xnt1 = Xn —YViog(1)(X,) + &

where g, ~ .47(0,1).
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Free energies
1. #(v) = KL(u,v) admits a free-energy expression:

F(v) = /U(v(x))dx+/V(x)v(x)dx
4 4

with U (s) the internal potential (entropy function) and V
confinement potential defined as:

U(s) = slog(s), V(x) = —log(u(x))
2. Z(v) = 3MMD?*(u,v) also:

)= [ V()dv(x) + 5 [winaviave) +c.

v V4

where V is a confinement potential, W an interaction potential
and C a constant defined by:

Vix) = — / k(r, ) (), W(x,x) = k(x,¥), C= % / k(x, 2 )dp (x)du (<)
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