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Setting

▶ LetX ⊂ Rd be the closure of a convex open set
▶ LetP2(X ) the set of probability measures onX with finite

secondmoment

The spaceP2(X ) is endowed with the Wassertein-2 distance from
Optimal transport:

W 2
2 (ν ,µ) = inf

π∈Π(ν ,µ)

∫
∥x− y∥2 dπ(x,y) ∀ν ,µ ∈ P2(X )

where Π(ν ,µ) is the set of possible couplings between ν and µ .
In other words Π(ν ,µ) contains all possible distributions π on
X ×X such that if (X ,Y )∼ π then X ∼ ν andY ∼ µ .
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Maximum Mean Discrepancy

▶ Let k : X ×X → R a positive, semi-definite kernel
▶ H its corresponding RKHS. It is a Hilbert space with inner

product ⟨., .⟩H and norm ∥.∥H .

Suppose k is characteristic, ie the map:

P2(X )→ H

ν 7→
∫

X
k(x, .)dν(x)

is injective.
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Maximum Mean Discrepancy

MaximumMean Discrepancy ([Gretton et al., 2012]) defines a
distance onP2(X ):

MMD(µ,ν) = ∥ fµ,ν∥H , where

fν ,µ(.) =
∫

k(x, .)dν(x)−
∫

k(x, .)dµ(x)

fµ,ν is called the witness function and is the difference between the
mean embeddings of ν and µ .

Now fix the (target) distribution µ. We consider the functional:

F : P2(X )→ R

ν 7→ 1
2

MMD2(µ,ν)
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Problem considered

Transport probability mass from a starting distribution ν to a target
distribution µ , by finding a continuous path (νt)t≥0 decreasing
F (νt).

=⇒ Gradient flows over the space of distributionsP2(X )

This talk: Establish conditions for convergence of MMD gradient
flow to its global optimum

▶ novel flow over the space of distributions
▶ canmodel the optimization of some overparameterized neural

networks models
▶ we propose a trick to improve convergence
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Continuous time flows
In a euclidean setting, a curve x : [0,∞]→ Rd is the gradient flow, or
steepest descent of a differentiable function F : Rd → R if:

dxt

dt
=−∇F(xt)

▶ Initial value problem: given x0, find the gradient flow (xt)t≥0.

By analogy, one can interpret the gradient flow of a functional
F : P2(X )→ R to be a curve ν : [0,∞]→ P2(X ) that satisfies:

∂νt

∂ t
=−∇W2F (νt)

for some generalized notion of gradient ∇W2 , w.r.t. theW2 metric.
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Wassertein-2 gradient flows ([Ambrosio et al., 2008])

For a sufficiently regularF and ν , we can write:

−∇W2F (ν) = div(ν∇
∂F

∂ν
)

where ∂F
∂ν denotes the first variation ofF at ν .

If it exists, it is the unique function such that for any ν ,ν ′ ∈ P2(X ):

lim
ε→0

1
ε
(F (ν + ε(ν ′−ν))−F (ν)) =

∫
X

∂F

∂ν
(ν)(dν ′−dν)
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Wassertein gradient flows
Since−∇W2F (ν) = div(ν∇ ∂F

∂ν ), all Wassertein gradient flows are
of the form:

∂νt

∂ t
+div(νtVt) = 0

continuity equation

Ruling the density ρt of particles driven by a velocity fieldVt (−∇ ∂F
∂ν ).

In particular, if the functionalF is a free energy:

F (ν)=
∫

U(ν(x))ν(x)dx︸ ︷︷ ︸
internal potentialU

+
∫

V (x)ν(x)dx︸ ︷︷ ︸
external potential V

+
∫

W (x,y)ν(x)ν(y)dxdy︸ ︷︷ ︸
interaction energyW

Then :
∂νt

∂ t
= div(νt∇

∂F

∂ν
(νt)) = div(νt∇(U ′(νt)+V +W ∗νt)).
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MMD functional
For a target distribution µ (fixed), for any ν ∈ P2(X ):

F (ν) =
1
2

MMD2(µ,ν) =
1
2
∥ fµ,ν∥2

H

▶ SinceF (ν) = 1
2(
∫

fµ,νdµ −
∫

fµ,νdν), we have ∂F
∂ν = fµ,ν

▶ Then,F can be written as a free energy:

F (ν) =
∫

V (x)dν(x)︸ ︷︷ ︸
V

+
1
2

∫
W (x,y)dν(x)dν(y)︸ ︷︷ ︸

W

+C.

where V is a confinement potential, W an interaction potential
andC a constant defined by:

V (x) =−
∫

k(x,x′)dµ(x′), W (x,x′) = k(x,x′), C =
1
2

∫
k(x,x′)dµ(x)dµ(x′)

13/ 35



MMD Gradient flow

The MMD gradient flow w.r.t. W2 is thus given by:

∂νt

∂ t
= div(νt∇ fµ,νt ) = div(νt∇(V +W ∗νt)) (1)

where ∇ fµ,νt (z) =
∫

∇k(x,z)dµ(x)−
∫

∇k(x,z)dνt(x).

This type of equation is associated in the probability theory
literature to the so-calledMcKean-Vlasov process [Kac, 1956]:

dXt =−∇ fµ, νt︸︷︷︸
depends on the current distribution of the process!

(Xt)dt X0 ∼ ν0

whose distribution satisfy (1).

14/ 35



Outline

Introduction and tools

Background on gradient flows

Maximum Mean Discrepancy Gradient Flow

Investigating MMD gradient flow convergence

A practical algorithm to descend the MMD flow

Applications

Conclusion

15/ 35



First strategy - Convexity on the space of distributions
Definition
A curve ρ : [0,1]→ P(X ) is a geodesic between ν and µ if:
ρ(0) = ν , ρ(1) = µ , and
L(ρ) = min{L(ρ̃), ρ̃(0) = ν , ρ̃(1) = µ}=W2(ν ,µ).

(λ )-Geodesic convexity: Convexity of the functionalF on geodesic
curves ofP2(X ).

F (ρ(t))≤ (1− t)F (ρ(0))+ tF (ρ(1))− t(1− t)
λ
2

d(ρ(0),ρ(1))2

(classic λ -convexity onRd : F((1− t)x+ ty)≤ (1− t)F(x)+ tF(y)− t(1− t) λ
2 |x− y|2)

Our finding: The MMD is λ -convex with λ < 0.

Too bad... λ > 0 would have guaranteed that all gradient flows of
F would converge the uniqueminimizer ofF .
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Second strategy - Obtain a Lojasiewicz inequality

dF (νt)

dt
≤−CF (νt)

2 (2)

Applying Gronwall’s lemma results in: ⇒ F (νt) = O(1
t ).

▶ on the left we have the weighted Sobolev semi-norm:

dF (νt)

dt
= −

∫
∥∇ fµ,νt (x)∥2ν t(x) = −∥ fµ,νt∥2

Ḣ(νt)

▶ on the right the RKHS norm: F (νt)=
1
2∥ fµ,νt∥2

H

Let L2(ν) = { f ,
∫

f (x)2dν(x)< ∞}, and ∥.∥Ḣ−1(ν) the weighted
negative Sobolev norm, defined for p,q ∈ P2(X ) by:

∥p−q∥Ḣ−1(ν) = sup f∈L2(ν),∥ f∥Ḣ(ν)≤1 |
∫

f (x)d p(x)−
∫

f (x)dq(x)|.

linearizes theW2!
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A condition for global convergence

It can be shown that:

∥ fµ,νt∥2
H ≤ ∥ fµ,νt∥Ḣ(νt)

∥µ −νt∥Ḣ−1(νt)
.

Proof. Take g = ∥ fµ,νt ∥−1
Ḣ(νt )

fµ,νt

▶ by def, |
∫

gdνt −
∫

gdµ|= ∥ fµ,νt ∥−1
Ḣ(νt )

∣∣∫ fµ,νt dνt −
∫

fµ,νt dµ
∣∣= ∥ fµ,νt ∥−1

Ḣ(νt )
∥ fµ,νt ∥2

H

▶ g ∈ L2(νt)
1 and ∥g∥Ḣ(ν) ≤ 1, so |

∫
gdνt −

∫
gdµ| ≤ ∥νt −µ∥Ḣ−1(νt )

Hence, provided ∥µ −νt∥2
Ḣ−1(νt)

≤ 4
C , we obtain the Lojasiewicz

inequality (2) and the rateO(1/t) (thus global convergence).

However in practice it is hard to guarantee this condition
([Peyre, 2018]).

1Under a Lipschitz assumption on ∇k, for all ν ,µ ∈ P2(X ), fµ,ν ∈ L2(ν)
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Euler scheme (Time-discretization of the flow)

For any T : X → X ameasurable map, and ν ∈ P2(X ), we
denote the pushforwardmeasure by T#ν .

T#ν(A) = ν(T−1(A)) for every measurable set A,

Starting from ν0 ∈ P2(X ) and using a step-size γ > 0, a sequence
νn ∈ P2(X ) is given by iteratively applying

νn+1 = (I − γ∇ fµ,νn)#νn. (3)

For all n, equation (3) is the distribution of the process defined by

Xn+1 = Xn − γ∇ fµ,νn(Xn) X0 ∼ ν0.
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A noisy update as regularization

The condition we exhibited for global convergence may not hold
and (F (νn))n∈N might be stuck at a local minima.

dF (νt)

dt
= −

∫
∥∇ fµ,νt (x)∥2dνt(x) at equilibrium =⇒

∫
∥∇ fµ,ν∗ (x)∥2dν∗(x) = 0

If ν∗ positive everywhere this implies fµ,ν∗ = cte = 0 as soon as 0 /∈ H . But ν∗ might be
singular...

Our proposal: Inject noise into the gradient during updates:

Xn+1 = Xn − γ∇ fµ,νn(Xn +βnUn), n ≥ 0,

whereUn ∼ N (0,1) and βn is the noise level at n.

BDifferent from adding a noise outside the gradient (i.e. diffusion)!
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Guarantees
Proposition
For a choice of βn such that:

8λ 2β 2
n F (νn)≤

∫
∥∇ fµ,νn(x+βnu)∥2dνn(x))dg(u) (4)

the following inequality holds:

F (νn+1)−F (νn)≤−γ
2
(1− 3

2
γL)

∫
∥∇ fµ,νn(x+βnu)∥2dνn(x))dg(u)

where λ and L are Lipschitz constants on the first derivatives of k.

Moreover under (4)

F (νn)≤ F (ν0)e−Γ∑n
i=0 β 2

i .

where Γ = 4λ 2γ(1− 3
2 γL.

So ∑n
i=0 β 2

i → ∞ with (4) implies global convergence.
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The sample-based approximate scheme
How can we simulate

Xn+1 = Xn − γ∇ fµ,νn(Xn +βnUn), n ≥ 0?

It depends on:
▶ the current distribution νn =⇒ approximate it by the empirical

distribution of a system of N interacting particles
▶ the target distribution µ =⇒ replace it by the empirical

distribution of the M samples that we have access to (µ̂)

ν̂n+1


X1

n+1 = X1
n − γ∇ fµ̂,ν̂n

(X1
n +βnU1

n )

...
XN

n+1 = XN
n − γ∇ fµ̂,ν̂n

(XN
n +βnUN

n )

Our guarantees: For any iteration n ∈ N and T > 0, if βn < B:

E[W2(ν̂n,νn)]≤
C1(ν0,B,T )√

N
+

C2(µ,T )√
M
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Overparameterized single-layer neural network
Single-layer neural network, parameterized by θ ∈ X . Let (x,y)
denote the input/output data.

Figure: [Rotskoff et al., 2019]

Consider the supervised learning problem:

min
(θ1,...,θn)∈ X︸︷︷︸

Parameter space

E(x,y)∼p

∥∥∥∥∥y− 1
n

n

∑
i=1

ϕ(x,θi)

∥∥∥∥∥
2
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Motivation

If n → ∞, the previous problem can be rewritten:

min
ν∈P2(X )︸ ︷︷ ︸

Distributions over the parameter space

L (ν) := E(x,y)∼p


∥∥∥∥∥∥∥∥∥y−

∫
ψ(x,θ)dν(θ)︸ ︷︷ ︸

Ψ(x,ν)

∥∥∥∥∥∥∥∥∥
2

If ∃µ ∈ P2(X ) s.t. Ey∼p(.|x)[y] =
∫

ψ(x,θ)dµ(θ),

=⇒ L (ν) = MMD2(ν ,µ)with k(θ ,θ ′) = Ex∼p
[
ψ(x,θ)T ψ(x,θ ′)

]
.

[Chizat and Bach, 2018], [Rotskoff et al., 2019]: gradient descent on
the parameters of a neural network can be seen as a particle
transport problem.
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Experiments - training a student-teacher network
▶ the teacher network ΨT (x,µ) is given by M particles

X = (ξ1, ...,ξM)which are fixed during training=⇒
µ = 1

M ∑M
j=1 δξ j

▶ the student network ΨS(x,νΘ) has N particles Θ = (θ1, ...,θN)
that are initialized randomly=⇒ νΘ = 1

N ∑N
i=1 δθ j

Performing gradient descent to minimize

min
Θ

Ex∼p
[
(ΨT (x,µ)−ΨS(x,νΘ))

2]
can be seen as a particle version of the gradient flow of the MMD
with a kernel given by k(θ ,θ ′) = Ex∼p[ψ(x,θ ′)ψ(z,θ)]
=⇒ approximated by

k̂(θ ,θ ′) =
1
nb

nb

∑
b=1

ψ(xb,θ)T ψ(xb,θ ′).

where (x1, ...,xnb) are nb samples from the data distribution.
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Experiments

Leads to the approximate update:

θ i
n+1 = θ i

n − γ∇ f̂µ,νn(θ
i
n)
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=⇒ adding noise to the gradient seems to lead to global
convergence.
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Summary and openings

What we have done:
▶ novel flow over the space of distributions
▶ theoretical results on the MMD flow
▶ trick to improve convergence

Future work:
▶ Deeper understanding of the regularization proposed

(continuous formulation?) and of the choice of the kernel
▶ Other regularizations to improve convergence?
▶ Other gradient flows? (here: ∇W2F vs [Rotskoff et al., 2019]

who get a global convergence for→ ∇WFRF ).
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localization of wasserstein distance.
ESAIM: Control, Optimisation and Calculus of Variations,
24(4):1489–1501.

Rotskoff, G., Jelassi, S., Bruna, J., and Vanden-Eijnden, E.
(2019).
Global convergence of neuron birth-death dynamics.
In ICML.

31/ 35



Convexity on vector spaces
Existence, uniqueness results on gradient flows rely on the notion of
convexity.

A function F defined onRd is λ -convex if D2F ≥ λ Id×d or
equivalently if for any x,y ∈ Rd and t ∈ [0,1]:

F((1− t)x+ ty)≤ (1− t)F(x)+ tF(y)− t(1− t)
λ
2
|x− y|2

▶ Uniqueness when λ > 0: any gradient flow x(t) converges to
some x⋆.
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W2 distance

W 2
2 (ν ,µ) = inf

π∈Π(ν ,µ)

∫
∥x− y∥2 dπ(x,y) ∀ν ,µ ∈ P2(X )

where Π(ν ,µ) is the set of possible couplings between ν and µ . In
other words Π(ν ,µ) contains all possible distributions π on
X ×X such that if (X ,Y )∼ π then X ∼ ν andY ∼ µ .

W2 vs L2?
L2 geodesic: ρ(t) = (1− t)ρ(0)+ tρ(1)
W2 geodesic: ρ(t) = ((1− t)Id + tTρ(0),ρ(1))#ρ(0)

Informally, Lp distances are ”vertical” (values of the distributions)
whereasWp distances are ”horizontal” (mass of the distributions).
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Gradient flows - comparison

Euclidean W2

Metric (X ,d) (Rd , |.|) (P2(Rd),W2)

Definition of ∇X ⟨∇F(x),v⟩= ⟨∇F (ν),−div(ξ ν)⟩TanµP2(Rd) =

limh→0
F(x+hv)−F(x)

h limh→0
F ((I+hξ )#ν)−F (ν)

h

Formula for ∇X ∇Rd F(x) = ∇F(x) ∇W2F =−div(ν∇ ∂F
∂ν )
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Comparison with Langevin

Seminal work of [Jordan et al., 1998] who revealed that the
Fokker-Planck equation is a gradient flow of the Kullback-Leibler
divergence:

∂ν
∂ t

−div(νV )= 0, where the vector fieldV = ∇W2KL(ν) = ∇log(
ν
µ
).

Results in the Langevin Monte-Carlo algorithm (requires the
knowledge of ∇log(µ)):

Xn+1 = Xn − γ∇log(µ)(Xn)+ εn

where εn ∼ N (0,1).
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Free energies
1. F (ν) = KL(µ,ν) admits a free-energy expression:

F (ν) =
∫

U(ν(x))dx︸ ︷︷ ︸
U

+
∫

V (x)ν(x)dx︸ ︷︷ ︸
V

withU(s) the internal potential (entropy function) andV
confinement potential defined as:

U(s) = s log(s), V (x) =−log(µ(x))

2. F (ν) = 1
2 MMD2(µ,ν) also:

F (ν) =
∫

V (x)dν(x)︸ ︷︷ ︸
V

+
1
2

∫
W (x,y)dν(x)dν(y)︸ ︷︷ ︸

W

+C.

whereV is a confinement potential,W an interaction potential
andC a constant defined by:

V (x) =−
∫

k(x,x′)dµ(x′), W (x,x′) = k(x,x′), C =
1
2

∫
k(x,x′)dµ(x)dµ(x′)
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