
The Wasserstein Proximal Gradient Algorithm
Adil Salim1, Anna Korba2, Giulia Luise3

1Visual Computing Center, KAUST. 2Gatsby Unit, University College London. 3 Department of Computer Science, University College London.

Goal

We propose an optimization algorithm, the
Wasserstein Proximal Gradient algorithm
(WPG), to solve

min
µ∈P2

∫
Fdµ +H(µ),

where P2 is the space of probability measures
over X = Rd with finite second moment, F is
a smooth convex function over X, and H is a
geodesically convex functional over P2.
We prove convergence rates for the WPG.
The WPG generalizes the proximal gradient al-
gorithm from X to P2. Its convergence rates
generalize those of the proximal gradient algo-
rithm.
The proof relies on viewing WPG as a dis-
cretization of a Wasserstein gradient flow, and
using geometric insights provided by this point
of view.

Background

Wasserstein distance.
Let µ, ν probability measures with finite second mo-
ments (µ, ν ∈ P2).
W 2(ν, µ) := inf{E‖Y −X‖2, X ∼ µ, Y ∼ ν}.

If µ � Leb, any minimizer (X, Y ) is written
(X, Y ) = (X,T νµ (X)).
The Wasserstein space = The metric space (P2,W ).

JKO operator.
Consider a functional H : P2→ (−∞,+∞] convex
along generalized geodesics: for every µ, ν, π ∈ P2
such that π � Leb and α ∈ [0, 1],
H(αT µπ + (1− α)T νπ ) ≤ αH(µ) + (1− α)H(ν).

Then,

JKOH(µ) := arg min
ν
H(ν) + 1

2
W 2(µ, ν) ⊂ P2.

Potential.
Consider a smooth convex function F . We define
the potential energy EF : P2→ R as,

EF (µ) :=
∫
Fdµ.

Wasserstein Proximal Gradient Algorithm

We consider the problem
min
µ∈P2
G := EF +H. (1)

Problem (1) covers several tasks encountered in Machine Learning, for instance the task of sampling w.r.t.
the distribution ∝ exp(−F ) [3].
We propose WPG, a natural optimization algorithm for solving (1):

µn+1 ∈ JKOγH((I − γ∇F )#µn),
where γ > 0 and # is the pushforward operation.

The WPG is natural but not as practical as its concurrents because of the JKO step. However, JKO operators
are widely used in numerical analysis. Moreover, we believe that efficient implementations are possible for
simple regularizers H used in ML, as it is the case for many proximity operators over Rda.

Intuition: The proximal gradient algorithm

Given a nonsmooth convex function G over X, the proximal gradient algorithm is a standard algorithm to
minimize F +G. It is written

xn+1 := proxγG(xn − γ∇F (xn)),

where proxG(x) := arg miny∈XG(y) + 1
2‖x− y‖

2 is the proximity operator of G (note the similarity with the
JKO operator).

Moreover, the proximal gradient algorithm can be seen as a discretization of the gradient flow
x′(t) = −∂(F +G)(x(t)). Indeed, (xn) satisfies

xn+1 − xn
γ

∈ −∇F (xn)− ∂G(xn+1).

It is a Forward Backward Euler discretization.

Wasserstein gradient flow

The iterations of WPG are similar to those of the proximal gradient algorithm, therefore one can expect that
WPG minimizes (1). Moreover, if H = EG, then WPG boils down to the proximal gradient algorithm.

Moreover, WPG can be seen as a Forward Backward Euler discretization of some continuous time flow.

Wasserstein gradient flow. The Wasserstein gradient flow (µ(t))t of G is the solution to the system of
Evolution Variational Inequalities (EVI) [1]: for every π s.t. G(π) <∞,

d

dt
W 2(µ(t), π) ≤ −2 (G(µ(t))− G(π)) . (2)

In the case F ≡ 0, the Wasserstein gradient flow can also be obtained as a continuous time limit of WPG [2].

asee www.proximity-operator.net

Contact

adil.salim@kaust.edu.sa, anna.korba@ensae.fr, g.luise.16@ucl.ac.uk.

Main Inequality

We analyze WPG as an optimization algo-
rithm. To this end, we use a numerical analysis
point of view. Namely, we prove that WPG satisfies
a discrete time version of (2).

If γ is small enough, for every π ∈ P2,
W 2(µn+1, π)−W 2(µn, π) ≤ −2(G(µn+1)− G(π)).

(3)
Along with a descent lemma implying that (G(µn))
is nonincreasing, we obtain convergence rates simi-
lar to those of the proximal gradient algo-
rithm.

Convergence rates

Main results

Assume that F is convex and L-smooth. Assume
thatH is convex along generalized geodesics. Let
γ < 1/L and µ? a minimizer of G.

Then, G(µn)− G(µ?) ≤ W 2(µ0,µ?)
2γn .

Moreover, if F is λ-strongly convex,
W 2(µn, µ?) ≤ (1− γλ)nW 2(µ0, µ?).
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