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Introduction

• Let {1, . . . , n} a set of items to be ranked.

• A full ranking i1 � · · · � in is seen as a permutation σ ∈ Sn that

maps an item ij to its rank j .

Ex: 2 � 3 � 1⇔ σ(2) = 1, σ(3) = 2, σ(1) = 3.

Suppose we observe ((X1,Σ1), . . . , (XN ,ΣN) i.i.d. copies of the pair

(X , Σ), where

• X ∼ µ, where µ is a distribution on some feature space X
• Σ ∼ PX , conditional prob. distr. on the symmetric group Sn

Ex: Users i with characteristics Xi order items by order of preference Σi .

Goal of Ranking Regression

Learn a predictive ranking rule s : X → Sn which given a random

vector X (e.g characteristics of an user), predicts the order/permutation

Σ on the n items (e.g its true preferences).
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Ranking Median Regression

Formally, find s ∈ S minimizing the following (theoretical) risk:

R(s) = EX∼µ,Σ∼PX
[dτ (s(X ),Σ)] , (1)

where d is the Kendall’s tau distance, i.e for all (σ, σ′) ∈ S2
n:

dτ (σ, σ′) =
∑
i<j

I{(σ(j)− σ(i)) · (σ′(j)− σ′(i)) < 0}

Definition

For any σ ∈ Sn, the risk of σ is L(σ) = EΣ∼P [d(Σ, σ)]. A Kemeny

median is any

σ∗P = argmin
σ∈Sn

L(σ) (2)

Optimal predictors s∗ minimizing (1) are the rules that maps any point X

to any Kemeny median of PX (minimizing (2)):

s∗ = argmin
s∈S

R(s) ⇔ s(X ) = σ∗PX
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Local Consensus Methods for Ranking Median Regressions

Idea: approximate s∗ with piecewise constant ranking rules (s ∈ SP), by

computing local Kemeny medians.

Empirical Risk Minimization: Consider a statistical version of

theoretical risk based on the training data (Xi ,Σi )’s:

R̂N(s) =
1

N

N∑
k=1

dτ (s(Xk), Σk)

and solutions of the optimization problem:

min
s∈SP

R̂N(s),

Our Approach

Generate partitions tailored to the training data and yielding a ranking

rule with nearly minimum predictive error. Two methods are

investigated: K-Nearest Neighbor and Decision-tree.
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Thank you!
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