Ranking Median Regression: Learning to Order through Local Consensus

DISCML 2017

Stephan Clémençon, Anna Korba, Eric Sibony

December 8, 2017

Télécom ParisTech

Introduction

- Let $\{1, \ldots, n\}$ a set of items to be ranked.
- A full ranking i₁ ≻ · · · ≻ i_n is seen as a permutation σ ∈ 𝔅_n that maps an item i_j to its rank j.

Ex: $2 \succ 3 \succ 1 \Leftrightarrow \sigma(2) = 1, \sigma(3) = 2, \sigma(1) = 3.$

Introduction

- Let $\{1, \ldots, n\}$ a set of items to be ranked.
- A full ranking i₁ ≻ · · · ≻ i_n is seen as a permutation σ ∈ 𝔅_n that maps an item i_j to its rank j.

Ex: $2 \succ 3 \succ 1 \Leftrightarrow \sigma(2) = 1, \sigma(3) = 2, \sigma(1) = 3.$

Suppose we observe $((X_1, \Sigma_1), \dots, (X_N, \Sigma_N)$ i.i.d. copies of the pair (X, Σ) , where

- $X \sim \mu$, where μ is a distribution on some feature space \mathcal{X}
- $\Sigma \sim P_X$, conditional prob. distr. on the symmetric group \mathfrak{S}_n

Ex: Users *i* with characteristics X_i order items by order of preference Σ_i .

Introduction

- Let $\{1, \ldots, n\}$ a set of items to be ranked.
- A full ranking i₁ ≻ · · · ≻ i_n is seen as a permutation σ ∈ 𝔅_n that maps an item i_j to its rank j.

Ex: $2 \succ 3 \succ 1 \Leftrightarrow \sigma(2) = 1, \sigma(3) = 2, \sigma(1) = 3.$

Suppose we observe $((X_1, \Sigma_1), \dots, (X_N, \Sigma_N)$ i.i.d. copies of the pair (X, Σ) , where

- $X \sim \mu$, where μ is a distribution on some feature space \mathcal{X}
- $\Sigma \sim P_X$, conditional prob. distr. on the symmetric group \mathfrak{S}_n

Ex: Users i with characteristics X_i order items by order of preference Σ_i .

Goal of Ranking Regression

Learn a predictive ranking rule $s : \mathcal{X} \to \mathfrak{S}_n$ which given a random vector X (e.g characteristics of an user), predicts the order/permutation Σ on the *n* items (e.g its true preferences).

Ranking Median Regression

Formally, find $s \in S$ minimizing the following (theoretical) **risk**:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right], \tag{1}$$

where *d* is the Kendall's tau distance, i.e for all $(\sigma, \sigma') \in \mathfrak{S}_n^2$:

$$d_{ au}(\sigma,\sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(j) - \sigma(i)) \cdot (\sigma'(j) - \sigma'(i)) < 0\}$$

Ranking Median Regression

Formally, find $s \in S$ minimizing the following (theoretical) risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right], \tag{1}$$

where *d* is the Kendall's tau distance, i.e for all $(\sigma, \sigma') \in \mathfrak{S}_n^2$:

$$d_{ au}(\sigma,\sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(j) - \sigma(i)) \cdot (\sigma'(j) - \sigma'(i)) < 0\}$$

Definition

For any $\sigma \in \mathfrak{S}_n$, the risk of σ is $L(\sigma) = \mathbb{E}_{\Sigma \sim P}[d(\Sigma, \sigma)]$. A Kemeny median is any

$$\sigma_P^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} L(\sigma) \tag{2}$$

Ranking Median Regression

Formally, find $s \in S$ minimizing the following (theoretical) risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right], \tag{1}$$

where d is the Kendall's tau distance, i.e for all $(\sigma, \sigma') \in \mathfrak{S}_n^2$:

$$d_{ au}(\sigma,\sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(j) - \sigma(i)) \cdot (\sigma'(j) - \sigma'(i)) < 0\}$$

Definition

For any $\sigma \in \mathfrak{S}_n$, the risk of σ is $L(\sigma) = \mathbb{E}_{\Sigma \sim P}[d(\Sigma, \sigma)]$. A Kemeny median is any

$$\sigma_P^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} L(\sigma) \tag{2}$$

Optimal predictors s^* minimizing (1) are the rules that maps any point X to any Kemeny median of P_X (minimizing (2)):

$$s^* = \operatorname*{argmin}_{s \in \mathcal{S}} \mathcal{R}(s) \quad \Leftrightarrow \quad s(X) = \sigma^*_{P_X}$$

Local Consensus Methods for Ranking Median Regressions

Idea: approximate s^* with piecewise constant ranking rules ($s \in S_P$), by computing **local Kemeny medians**.

Local Consensus Methods for Ranking Median Regressions

Idea: approximate s^* with piecewise constant ranking rules ($s \in S_P$), by computing **local Kemeny medians**.

Empirical Risk Minimization: Consider a statistical version of theoretical risk based on the training data (X_i, Σ_i) 's:

$$\widehat{\mathcal{R}}_N(s) = rac{1}{N} \sum_{k=1}^N d_{\tau}(s(X_k), \ \Sigma_k)$$

and solutions of the optimization problem:

$$\min_{s\in\mathcal{S}_{\mathcal{P}}}\widehat{\mathcal{R}}_N(s),$$

Local Consensus Methods for Ranking Median Regressions

Idea: approximate s^* with piecewise constant ranking rules ($s \in S_P$), by computing **local Kemeny medians**.

Empirical Risk Minimization: Consider a statistical version of theoretical risk based on the training data (X_i, Σ_i) 's:

$$\widehat{\mathcal{R}}_N(s) = rac{1}{N} \sum_{k=1}^N d_{\tau}(s(X_k), \ \Sigma_k)$$

and solutions of the optimization problem:

$$\min_{s\in\mathcal{S}_{\mathcal{P}}}\widehat{\mathcal{R}}_N(s),$$

Our Approach

Generate partitions tailored to the training data and yielding a ranking rule with nearly minimum predictive error. Two methods are investigated: K-Nearest Neighbor and Decision-tree.

Thank you!