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Ranking aggregation

Problem:
How to summarize a collection of rankings into one ranking?

Input

I Set of items: JnK := {1, . . . , n}
I N Rankings of the form : i1 � i2 � · · · � in

Output

A global order (”consensus”) σ∗ on the n objects.



Applications

Example 1: Elections

I Let a set of candidates {A,B,C ,D}.
I Each voter gives a full ranking of candidates, for example:

B � D � A � C

I The set of votes for the election is a full rankings datasets.

⇒ How to elect the winner?

Borda-Condorcet
debate from 18th

century

Jean-Charles de Borda Nicolas de Condorcet



Applications

Example 2: Meta-search engines

For a given query q, a meta-search engine returns the results of
several search engines.
⇒ How can we aggregate the ordered lists of all these search
engines?



Applications

Exemple 3: Gene expression

I Development of DNA micro-chips enables to measure
simultaneous levels of expression for thousands of genes.

I But these measures can vary greatly in scale!

I A possibility is to order genes by their level of expression in
each experiment.

⇒ How to agregate the results of all these experiments?



Ranking aggregation

Ranking i1 � · · · � in on JnK ⇐⇒ permutation σ on JnK s.t.
σ(ij) = j .

What permutation σ∗ ∈ Sn best represents a given a
collection of permutations (σ1, . . . , σN) ∈ SN

n ?

Definition (Consensus ranking (Kemeny, 1959))

A permutation σ∗ ∈ Sn is a best representative of the collection
(σ1, . . . , σN) ∈ SN

n with respect to a metric d on Sn if it is a
solution of :

minσ∈Sn

N∑
t=1

d(σ, σt).
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Kemeny’s rule

Definition (Kendall’s tau distance)

The Kendalls tau distance between two permutations is equal to
the number of their pairwise disagreements:

d(σ, π) =
∑

{i ,j}⊂JnK

I{σ and π disagree on {i , j}}

Example

σ= 123 (1 � 2 � 3)
π= 231 (2 � 3 � 1)
→ number of desagreements = on 2 pairs (12,13).



Kemeny aggregation

Definition (Kemeny’s rule)

Compute the exact Kemeny consensus(es) for the Kendall’s tau
distance.

minσ∈Sn

N∑
t=1

d(σ, σt) (1)

where d is the Kendall’s tau distance.



Kemeny’s rule

I Social choice justification: Satisfies many voting properties,
such as the Condorcet criterion: if an alternative is preferred
to all others in pairwise comparisons then it is the winner
[Young and Levenglick, 1978]

I Statistical justification: Outputs the maximum likelihood
estimator under the Mallows model [Young, 1988]

I Main drawback: It is NP-hard in the number of items n
[Bartholdi et al., 1989] even for N = 4 votes [Dwork et al.,
2001].
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Contribution

Previous contributions

I General guarantees for approximation procedures
([Coppersmith 2006], [Ailon 2008])

I Bounds on the approximation cost, computed from the
dataset ([Conitzer 2006], [Sibony 2014])

I Conditions for the exact Kemeny aggregation to become
tractable ([Betzler 2008])



Contribution

Setting

• Set of items JnK := {1, . . . , n}
• A rankings dataset DN = (σ1, . . . , σN) ∈ SN

n

• Let σ∗ ∈ KN a Kemeny consensus

• Let σ ∈ Sn a permutation, typically output by a
computationally efficient aggregation procedure on DN .

Our contribution
We give an upper bound on d(σ, σ∗) by using only tractable
quantities.

Remark: The Kendall’s distance takes values between 0 and
n×(n−1)

2 (the maximal number of disagreements is the number of
pairs).



Outline

Ranking aggregation and Kemeny’s rule

State of the art and contribution

Geometric analysis of Kemeny aggregation

Geometric interpretation and proof of the main result

Numerical experiments

Conclusion



Kemeny embedding

The Kemeny embedding is the mapping φ : Sn → R(n2) defined by:

φ : σ 7→


...

sign(σ(i)− σ(j))
...


1≤i<j≤n

where sign(x) = 1 if x ≥ 0 and −1 otherwise.

Example

123 7→

( )1 → pair 12

1 → pair 13

1 → pair 23
, 132 7→

( )1 → pair 12

1 → pair 13

−1 → pair 23



Kemeny aggregation in R(n
2)

Definition (Mean embedding)

For DN = (σ1, . . . , σN) ∈ SN
n , we define the barycenter:

φ (DN) :=
1

N

N∑
t=1

φ (σt) .



Kemeny aggregation in R(n
2)

Proposition (Barthelemy & Monjardet (1981))

For all σ, σ′ ∈ Sn,

‖φ(σ)‖ =

√
n(n − 1)

2
and ‖φ(σ)− φ(σ′)‖2 = 4d(σ, σ′),

and for any dataset DN = (σ1, . . . σN) ∈ SN
n , Kemeny’s rule (1) :

minσ∈Sn

N∑
t=1

d(σ, σt)

is equivalent to the minimization problem

min
σ∈Sn

‖φ(σ)− φ(DN)‖2 (2)



Illustration

Figure: Kemeny aggregation for n = 3.



Kemeny aggregation in R(n
2)

Kemeny aggregation naturally decomposes in two steps:

1. Compute the barycenter φ(DN) ∈ R(n2) (complexity O(Nn2))

2. Find the consensus σ∗ solution of problem (2)

Idea: ⇒ φ(DN) contains useful information.



Main result

For σ ∈ Sn, we define the angle θN(σ) between φ(σ) and φ(DN)
by:

cos(θN(σ)) =
〈φ(σ), φ(DN)〉
‖φ(σ)‖‖φ(DN)‖

,

with 0 ≤ θN(σ) ≤ π.

Theorem

Let DN ∈ SN
n be a dataset, KN the set of Kemeny consensuses

and σ ∈ Sn a permutation. For any k ∈ {0, . . . ,
(n
2

)
− 1}, one has

the following implication:

cos(θN(σ)) >

√
1− k + 1(n

2

) ⇒ max
σ∗∈KN

d(σ, σ∗) ≤ k.
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Upper bound and application on the sushi dataset

We define:

kmin(σ;DN) =

⌊(
n

2

)
sin2(θN(σ))

⌋
. (3)

the minimal k ∈ {0, . . . ,
(n
2

)
− 1} verifying the theorem condition.

Voting rule cos(θN(σ)) kmin(σ)

Borda 0.82 14
Copeland 0.82 14
QuickSort 0.82 14

Plackett-Luce 0.80 15
2-approval 0.74 20
1-approval 0.71 22

Pick-a-Perm 0.40 37
Pick-a-Random 0.28 41
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Extended cost function

Kemeny aggregation:

min
σ∈Sn

C ′N(σ) = ‖φ(σ)− φ(DN)‖2.

Relaxed problem:

min
x∈S
CN(x) := ‖x − φ(DN)‖2.



Illustration
For any x ∈ S, by denoting R the radius of S, one has:

CN(x) = R2 + ‖φ(DN)‖2 − 2R‖φ(DN)‖ cos(θN(x)).

Figure: Level sets of CN



Lemmas

Lemma (1)

A Kemeny consensus of a dataset DN is a permutation σ∗ s.t:

θN(σ∗) ≤ θN(σ) for all σ ∈ Sn.

Lemma (2)

For x ∈ S and r ≥ 0, one has:

cos(θN(x)) >

√
1− r2

4R2
⇒ min

x ′∈S\B(x ,r)
θN(x ′) > θN(x).



Illustration

Figure: Illustration of Lemma 2 with r taking integer values (representing
possible Kendall’s tau distance). Here minimum r satisfying the condition
is 2.



Embedding of a ball

Lemma (3)

For σ ∈ Sn and k ∈ {0, . . . ,
(n
2

)
},

φ (Sn \ B(σ, k)) ⊂ S \ B(φ(σ), 2
√

k + 1)
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Tightness of the bound

We denote by:

I n the number of items

I DN ∈ SN
n any dataset

I σ∗ the Kemeny consensus

I r any voting rule, and by σ the consensuses of DN given by r

We know that:
d(σ, σ∗) ≤ kmin .

The tightness of the bound is the difference between our
upper bound and the real distance:

s (r ,DN , n) := kmin − d(σ, σ∗) .



Results
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Figure: Boxplot of s (r ,DN , n) over sampling collections of datasets
shows the effect from different voting rules r with 500 bootstrapped
pseudo-samples of the APA dataset (n = 5,N = 5738).



Predictability of the method

I When n grows, the exact Kemeny consensus σ∗ quickly
becomes computationally impermissible.

I Once we have an approximate ranking σ and kmin is identified
via our method, the search scope for the exact Kemeny
consensuses can be narrowed down to those permutations
within a distance of kmin to σ.

I The total number of such permutations in Sn is upper
bounded by

(n+kmin−1
kmin

)
<< |Sn| = n! [Wang 2013].
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Figure: Boxplot of kmin over 500 bootstrapped pseudo-samples of the
sushi dataset (n = 10,N = 5000).
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Conclusion

I We have established a theoretical result that allows to control
the Kendall’s tau distance between a permutation and the
Kemeny consensuses of any dataset.

I This provides a simple and general method to predict, for any
ranking aggregation procedure, how close the outcome on a
dataset is from the Kemeny consensuses.



Future directions

I The geometric properties of the Kemeny embedding are rich
and could lead to many more results.

I We can imagine ranking aggregation procedures using a
smaller scope for Kemeny consensuses.

I Possible extensions to incomplete rankings.



Thank you
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