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Ranking Data

Set of items JnK := {1, . . . , n}

Definition (Ranking)
A ranking is a strict partial order≺ over JnK, i.e. a binary relation
satisfying the following properties:
Irreflexivity For all i ∈ JnK, i ̸≺ i

Transitivity For all i, j,k ∈ JnK, if i ≺ j and j ≺ k then i ≺ k
Asymmetry For all i, j ∈ JnK, if i ≺ j then j ̸≺ i
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Common types of rankings
Set of items JnK := {1, . . . , n}

▶ Full ranking. All the items are ranked, without ties

a1 ≻ a2 ≻ · · · ≻ an

▶ Partial ranking. All the items are ranked, with ties (”buckets”)

a1,1, . . . , a1,n1 ≻ · · · ≻ ar,1, . . . , ar,nr with
r∑

i=1

ni = n

⇒ includes Top-k ranking: a1, . . . , ak ≻ the rest
▶ Incomplete ranking. Only a subset of items are ranked,

without ties

a1 ≻ · · · ≻ ak with k < n

⇒ includes Pairwise comparison: a1 ≻ a2
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Ranking data arise in a lot of applications

Traditional applications
▶ Elections: JnK= a set of candidates

→ A voter ranks a set of candidates
▶ Competitions: JnK= a set of players

→ Results of a race
▶ Surveys: JnK= political goals

→ A citizen ranks according to its priorities

Modern applications
▶ E-commerce: JnK= items of a catalog

→ A user expresses its preferences (see ”implicit feedback”)
▶ Search engines: JnK= web-pages

→ A search engine ranks by relevance for a given query
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Detailed example: analysis of full rankings
Consider:
▶ A set of n items: JnK = {1, . . . , n} (Ex: {1, 2, 3, 4})
▶ A full ranking: a1 ≻ a2 ≻ · · · ≻ an (Ex: 2 ≻ 1 ≻ 3 ≻ 4)
▶ Also seen as the permutation σ that maps an item to its rank:

a1 ≻ · · · ≻ an ⇔ σ ∈ Sn such that σ(ai) = i

Ex: σ(2) = 1, σ(1) = 2, · · · ⇒ σ = 2134

▶ Sn: set of permutations of JnK, the symmetric group.
Ex: S4 = 1234, 1324, 1423, . . . , 4321

Probabilistic Modeling. The dataset is a collection of random
permutations drawn IID from a probability distribution P overSn:

DN = (Σ1, . . . ,ΣN ) ∈ SN
n with Σi ∼ P
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Detailed example: analysis of full rankings

How to analyze a dataset of permutationsDN = (Σ1, . . . ,ΣN )?

Challenges
▶ A random permutationΣ ∈ Sn can be seen as a random

vector (Σ(1), . . . ,Σ(n)) ∈ Rn... but
The random variablesΣ(1), . . . ,Σ(n) are highly dependent
and the sumΣ+ Σ′ is not a random permutation!
⇒No natural notion of variance forΣ

▶ The set of permutationsSn is finite... but
Exploding cardinality: |Sn| = n!
⇒ Few statistical relevance

▶ Apply a method from p.d.f. estimation (e.g. kernel density
estimation)... but
No canonical ordering of the rankings!
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Main approaches

“Parametric” approach
▶ Fit a predefined generative model on the data
▶ Analyze the data through that model

“Nonparametric” approach
▶ Choose a structure onSn

▶ Analyze the data with respect to that structure
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Parametric Approach - Example of Models

▶ Mallowsmodel [Mallows, 1957]
Parameterized by a central ranking σ0 ∈ Sn and a dispersion
parameter γ ∈ R+

P (σ) = Ce−γd(σ0,σ) with d a distance onSn.

▶ Plackett-Lucemodel [Luce, 1959], [Plackett, 1975]
Each item i is parameterized bywi withwi ∈ R+:

P (σ) =

n∏
i=1

wσi∑n
j=iwσj

Ex: 2 ≻ 1 ≻ 3 = w2
w1+w2+w3

w1
w1+w3
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Nonparametric approaches - Examples 1
▶ Harmonic analysis

Fourier analysis [Clémençon et al., 2011], [Kondor and Barbosa, 2010]

ĥλ =
∑

σ∈Sn

h(σ)ρλ(σ) où ρλ(σ) ∈ Cdλ×dλ for all λ ⊢ n.

Multiresolution analysis for incomplete rankings [Sibony et al., 2015]

▶ Embeddings of permutations
Permutation matrices [Plis et al., 2011]

Sn → Rn×n, σ 7→ Pσ with Pσ(i, j) = I{σ(i) = j}

Kemeny embedding [Jiao et al., 2016]

Sn → Rn(n−1)/2, σ 7→ ϕσ with ϕσ =


...

sign(σ(i)− σ(j))
...


i<j
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Nonparametric approaches - Examples 2

Modeling of pairwise comparisons as a graph:

i

j

k

l

i ≻
j

i ≻ k

i ≻
l

k
≻
j

l
≻
k

HodgeRank exploits the topology of the graph
[Jiang et al., 2011]
Approximation of pairwise comparisonmatrices
[Shah and Wainwright, 2015]
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Some ranking problems

Perform some task on a dataset ofN rankingsDN = (Σ1, . . . ,ΣN ).

Examples
▶ Top-1 recovery: Find the “most preferred” item inDN

e.g. Output of an election
▶ Aggregation: Find a full ranking that “best summarizes”DN

e.g. Ranking of a competition
▶ Clustering: SplitDN into clusters

e.g. Segment customers based on their answers to a survey
▶ Prediction: Predict a ranking given some information

e.g. In a recommendation setting
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Ranking Regression

Problem: Given a vectorX (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutationΣ inSn.

Example: n=4 items (fruits)

=⇒ ≻ ≻ ≻

15



Ranking Regression

Problem: Given a vectorX (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutationΣ inSn.

Example: n=4 items (fruits)

=⇒ ≻ ≻ ≻

15



Related Work

▶ Has been referred to as label ranking in the literature
[Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]

▶ Related to multiclass andmultilabel classification
▶ A lot of applications, e.g : document categorization,

meta-learning
▶ rank a set of topics relevant for a given document
▶ rank a set of algorithms according to their suitability for a new

dataset, based on the characteristics of the dataset

▶ A lot of approaches rely on parametric modelling
[Cheng and Hüllermeier, 2009], [Cheng et al., 2009],
[Cheng et al., 2010]

⇒We develop an approach free of any parametric assumptions
(local learning) relying on results and framework developped in
[Korba et al., 2017] for ranking aggregation.
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Problem and Setting

Suppose we observe (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of the
pair (X, Σ), where
▶ X ∼ µ, where µ is a distribution on some feature spaceX
▶ Σ ∼ PX , where PX is the conditional probability distribution

(onSn): PX(σ) = P[Σ = σ|X]

Ex: Users iwith characteristicsXi order items by preference resulting
inΣi.

Goal: Learn a predictive ranking rule :
s : X → Sn

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
n items.

17



Objective

Performance: Measured by the risk:

R(s) = EX ∼ µ,Σ ∼ PX
[dτ (s(X),Σ)]

where d is the Kendall’s tau distance, i.e. for σ, σ′ ∈ Sn:

dτ (σ, σ
′) =

∑
1≤i<j≤n

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

Ex: σ= 1234, σ′= 2413⇒ dτ (σ, σ
′) = 3 (disagree on (12),(14),(34)).
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Piecewise Constant Ranking Rules

Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition ofX built
from the training data (X1,Σ1), . . . , (XN ,ΣN ).

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)

19



Piecewise Constant Ranking Rules

Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition ofX built
from the training data (X1,Σ1), . . . , (XN ,ΣN ).

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)

19



Compute Local Labels/Medians
For classification, the label of a cell (ex: a leaf) is themajority label
among the training data which fall in this cell.

4 classes: green, red, blue, yellow→ green will be the label for the
right cell.

Problem: Our labels are permutations σ:
For a cell C, ifΣ1, . . . ,ΣN ∈ C, how do we aggregate them into a
final label σ∗?
=⇒ Ranking aggregation problem.
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Ranking Aggregation - Methods
Suppose we have a dataset of rankings/permutations
DN = (σ1, . . . , σN )∈ SN

n . We want to find a global order
(”consensus”) σ∗ on the n items that best represents the dataset.

Kemeny’s rule (1959) - Optimization pb

Solve σ∗ = argmin
σ∈Sn

N∑
k = 1

d(σ, σk)

Problem: NP-hard.

Copeland method - Scoring method
Sort the items i according to their Copeland score sC :

sC(i) =
1

N

N∑
k = 1

n∑
j=1
j ̸=i

I[σk(i) < σk(j)]

which counts the number of pairwise victories of item i over the
other items j ̸= i⇒O(n2N) complexity.
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Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

DN = (Σ1, . . . ,ΣN ) with Σk ∼ P

where P distribution onSn.

Definition
A Kemenymedian of P is solution of:

σ∗
P = argmin

σ∈Sn

LP (σ), (1)

whereLP (σ) = EΣ∼P [d(σ,Σ)] is the risk of σ.

Question: Can we exhibit some conditions on P so that solving (1)
is tractable?
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Exact Solutions [Korba et al., 2017]
Let pi,j = P[Σ(i) < Σ(j)] prob. that item i ≻ j (is preferred to).

Strict Stochastic Transitivity (SST): (pi,j ̸= 1/2 ∀i, j)
pi,j > 1/2 and pj,k > 1/2 ⇒ pi,k > 1/2.

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):
min
i<j

|pi,j − 1/2| ≥ h.

Our result
Suppose P satisfies SST and NA(h) for a given h > 0. Then with
overwhelming probability 1− n(n−1)

4 e−αhN :

P̂ also verifies SST...and the Kemenymedian of P is given by the
empirical Copeland ranking:

σ∗
P (i) = 1 +

∑
j ̸=i

I{p̂i,j <
1

2
} for 1 ≤ i ≤ n

24
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Graph of pairwise probabilities

i

j

k

l

p̂ i,
j
>
1/
2

p̂i,k > 1/2

p̂
i,l >

1/2
p̂
k
,j
>
1/2

p̂ l
,k
>
1/
2

σ∗
P (i) = 1 +

∑
j ̸=i

I{p̂i,j <
1

2
} for 1 ≤ i ≤ n
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Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :
s : X → Sn

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
n items.

Performance: Measured by the risk:

R(s) = EX∼µ,Σ∼PX
[dτ (s(X),Σ)]

= EX∼µ [EΣ∼PX
[dτ (s(X),Σ)]]

= EX∼µ [LPX
(s(X))]

⇒ Ranking regression is an extension of ranking aggregation.
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Optimal Elements and Relaxation

Assumption
ForX ∈ X , PX is SST:⇒ σ∗

PX
= argminσ∈Sn

LPX
(σ) is unique.

Optimal elements
The predictors s∗ minimizingR(s) are the ones that maps any point
X ∈ X to the conditional Kemenymedian of PX :

s∗ = argmin
s∈S

R(s) ⇔ s∗(X) = σ∗
PX

Tominimize the riskR(s) approximately:

σ∗
PX

for anyX =⇒ σ∗
PC for anyX ∈ C

where PC(σ) = P[Σ = σ|X ∈ C].
⇒We develop Local consensus methods.
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Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the
training data (Xk,Σk)’s:

min
s∈S

R̂N (s) =
1

N

N∑
k=1

dτ (s(Xk), Σk)

where S is the set of measurable mappings.

⇒We consider a subset SP ⊂ S :
▶ rich enough so that infs∈SP R(s)− infs∈S R(s) is ”small”
▶ ideally appropriate for greedy optimization.

⇒SP= space of piecewise constant ranking rules
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Our results

Rates of convergence
▶ classical ratesO(1/

√
N) for ERM.

▶ fast ratesO(1/N) under a ”uniform”NA(h).

Approximation Error
Suppose that:
There existsM < ∞ such that:
∀(x, x′) ∈ X 2,

∑
i<j |pi,j(x)− pi,j(x

′)| ≤ M · ||x− x′||.
Then:

R(s∗P)−R(s∗) ≤ M.δP

where δP is the max. diameter ofP ’s cells.
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Partitioning Methods
Goal: Generate partitionsPN from the training data
(X1,Σ1), . . . , (XN ,ΣN ).

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)

For C ∈ PN , consider its empirical distribution:

P̂C =
1

NC

∑
k:Xk∈C

δΣk
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Final Labels in Practice
▶ If P̂C is SST, compute σ∗

P̂
with Copelandmethod based on the

p̂i,j ’s

▶ Else, compute σ̃∗
P̂
with empirical Borda count ([Jiang et al., 2011])

σ̃∗
P̂
(i) =

1

N

N∑
k=1

Σk(i) for 1 ≤ i ≤ n
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K-Nearest Neigbors Algorithm
1. Fix k ∈ {1, . . . , N} and a query point x ∈ X
2. Sort (X1,Σ1), . . . , (XN ,ΣN ) by increasing order of the

distance to x : ∥X(1,N) − x∥ ≤ . . . ≤ ∥X(N,N) − x∥
3. Consider next the empirical distribution calculated using the k

training points closest to x

P̂ (x) =
1

k

k∑
l=1

δΣ(l,N)

and compute the pseudo-empirical Kemenymedian, yielding
the k-NN prediction at x:

sk,N (x)
def
= σ̃∗

P̂ (x)
.

⇒We recover the classical boundR(sk,N )−R∗ = O( 1√
k
+ k

N )
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Decision Tree
Split recursively the feature spaceX to minimize some impurity
criterion.
Analog to Gini criterion in multiclassification: m classes, fi
proportion of class i→ IG(C) =

∑m
i=1 fi(C)(1− fi(C))

Here, for a cell C ∈ PN :
▶ Impurity [Alvo and Philip, 2014]:

γ
P̂C

=
1

2

∑
1≤i<j≤n

p̂i,j(C) (1− p̂i,j(C))

(ordering n elements can be seen as
(
n
2

)
classification tasks)

which is tractable and satisfies the double inequality

γ̂
P̂C

≤ min
σ∈Sn

L
P̂C
(σ) ≤ 2γ̂

P̂C
.

▶ Terminal value : Compute the pseudo-empirical median of a
cell C:

sC(x)
def
= σ̃∗

P̂C
.
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Simulated Data
▶ We generate two explanatory variables, varying their nature

(numerical, categorical)⇒ Setting 1/2/3
▶ We generate a partition of the feature space
▶ On each cell of the partition, a dataset of full rankings is

generated, varying the distribution (constant, Mallows with ̸=
dispersion): D0/D1/D2

Di
Setting 1 Setting 2 Setting 3

n=3 n=5 n=8 n=3 n=5 n=8 n=3 n=5 n=8

D0

0.0698* 0.1290* 0.2670* 0.0173* 0.0405* 0.110* 0.0112* 0.0372* 0.0862*
0.0473** 0.136** 0.324** 0.0568** 0.145** 0.2695** 0.099** 0.1331** 0.2188**
(0.578) (1.147) (2.347) (0.596) (1.475) (3.223) (0.5012) (1.104) (2.332)

D1

0.3475 * 0.569* 0.9405 * 0.306* 0.494* 0.784* 0.289* 0.457* 0.668*
0.307** 0.529** 0.921** 0.308** 0.536** 0.862** 0.3374** 0.5714** 0.8544**
(0.719) (1.349) (2.606) (0.727) (1.634) (3.424) (0.5254) (1.138) (2.287)

D2

0.8656* 1.522* 2.503* 0.8305 * 1.447 * 2.359* 0.8105* 1.437* 2.189*
0.7228** 1.322** 2.226** 0.723** 1.3305** 2.163** 0.7312** 1.3237** 2.252**
(0.981) (1.865) (3.443) (1.014) (2.0945) (4.086) (0.8504) (1.709) (3.005)

Table: Empirical risk averaged on 50 trials on simulated data.

(): Clustering +PL, *: K-NN, **: Decision Tree
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Structured prediction approach

Goal: Learn a predictive ranking rule : s : X → Sn

The ranking regression/label ranking problem is then defined as:

mins:X→SnR(s),  with R(s) = EX ∼ µ,Σ ∼ PX
[∆ (s(X),Σ)]

Consider a family of loss functions based on some ranking
embedding ϕ : Sn → F that maps the permutations σ ∈ Sn into a
Hilbert spaceF :

∆(σ, σ′) = ∥ϕ(σ)− ϕ(σ′)∥2F .

Motivation:
▶ Kendall’s tau and Hamming distances can be written with

Kemeny and Permutation matrices embeddings respectively
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Structured prediction approach

mins : X → SnR(s),  with R(s) = EX∼µ,Σ∼PX
[∆ (s(X),Σ)] (2)

and
∆(σ, σ′) = ∥ϕ(σ)− ϕ(σ′)∥2F .

We can approach structured prediction (see
[Ciliberto et al., 2016, Brouard et al., 2016]) in two steps:
▶ Step 1 - Surrogate problem: Solve an empirical version of (2)

by replacing∆with:

L(g(x), ϕ(σ)) = ∥g(x)− ϕ(σ)∥2F .

=⇒ ĝ : X → F
▶ Step 2 - Pre-image problem: solve, for any x inX , the

pre-image problem that provides a prediction in the original
spaceSn:

ŝ(x) = argmin
σ∈Sn

∥ϕ(σ)− ĝ(x)∥2F
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Ranking Embeddings
[Ciliberto et al., 2016] have proven consistency results under some
assumptions on the loss∆/the mapping ϕ, which apply to:
▶ Kendall’s τ distance:

∆τ (σ, σ
′) =

∑
i<j

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0}

→ ϕ(σ) =


...

sign(σ(i)− σ(j))
...


1≤i<j≤n

∈ Rn(n−1)/2

▶ Hamming distance:

∆H(σ, σ′) =

n∑
i=1

I[σ(i) ̸= σ′(i)].

→ ϕ(σ) = (I{σ(i) = j})i,j=1,...,n ∈ Rn×n

▶ consistency holds, but still the pre-image problem is hard
40



Structured prediction results
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Conclusion

Ranking data presents great and interesting challenges:
▶ Most of the maths from euclidean spaces cannot be applied
▶ But our intuitions still hold
▶ Based on our results on ranking aggregation, we develop a

novel approach to ranking regression/label ranking
▶ Our contributions: theoretical results for this problem and new

algorithms

Openings:
▶ How to extend to incomplete rankings (+with ties)?
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US General Social Survey

Participants were asked to rank 5 aspects about a job: ”high
income”, ”no danger of being fired”, ”short working hours”,
”chances for advancement”, ”work important and gives a feeling of
accomplishment”.

▶ 18544 samples collected between 1973 and 2014.
▶ 8 individual attributes are considered: sex, race, birth cohort,

highest educational degree attained, family income, marital
status, number of children, household size

▶ plus 3 attributes of work conditions: working status,
employment status, and occupation.

Results:
Risk of decision tree: 2,763→ Splitting variables:
1) occupation 2) race 3) degree
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