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Introduction to Ranking Data



Ranking Data

Setofitems [n] := {1,....n}

Definition (Ranking)
Aranking is a strict partial order < over [n], i.e. a binary relation
satisfying the following properties:

Irreflexivity Foralli € [n],i A i
Transitivity Foralli,j, k € [n],ifi <jandj < ktheni < k
Asymmetry Foralli,j € [n],ifi < jthenj £



Common types of rankings
Set of items [n] := {1,...,n}

» Full ranking. All the items are ranked, without ties
ap > ag > -+ > Qan

> Partial ranking. All the items are ranked, with ties ("buckets”)
.
L1y @iy > " > Gplye ey Gy, With Z n,=mn
i=1

= includes Top-k ranking: a1, ... a; = therest

» Incomplete ranking. Only a subset of items are ranked,
without ties

a1 = -+ =ap With k<n

= includes Pairwise comparison: a; > a-



Ranking data arise in a lot of applications

Traditional applications

» Elections: [n]=a set of candidates
— Avoter ranks a set of candidates

» Competitions: [n]=a set of players
— Results of a race

> Surveys: [n]= political goals
— A citizen ranks according to its priorities

Modern applications
» E-commerce: [n]=items of a catalog
— A user expresses its preferences (see "implicit feedback”)

» Search engines: [n]=web-pages
— A search engine ranks by relevance for a given query



Detailed example: analysis of full rankings
Consider:

» Asetofnitems: [n] = {1,... ,n} (Ex: {1,2,3,4})
» Afullranking: a1 = as = - = a, (Ex:2 =1 > 3 = 4)
> Also seen as the permutation o that maps an item to its rank:

a = >=a, < o€GG,suchthato(a;) =1

Exo(2)=1,0(1)=2,--- = 0 = 2134

» S,,: set of permutations of [n], the symmetric group.
Ex: &4 = 1234,1324, 1423, . .., 4321

Probabilistic Modeling. The dataset is a collection of random
permutations drawn IID from a probability distribution P over G,,:

(21,...,2n) €6 with %~ P
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Detailed example: analysis of full rankings

How to analyze a dataset of permutations Dy = (¥,

Challenges

» Arandom permutation ¥ € &,, can be seen as a random
vector (X(1),...,2(n)) € R™... but
The random variables (1), ..., ¥(n) are highly dependent
and the sum X + Y’ is not a random permutation!
=-No natural notion of variance for 3

» The set of permutations G,, is finite... but
Exploding cardinality: |&,,| = n!
= Few statistical relevance
» Apply a method from p.d.f. estimation (e.g. kernel density
estimation)... but
No canonical ordering of the rankings!



Main approaches

“Parametric” approach
> Fit a predefined generative model on the data
» Analyze the data through that model

“Nonparametric” approach
» Choose astructureon G,
> Analyze the data with respect to that structure



Parametric Approach - Example of Models

> Mallows model
Parameterized by a central ranking og € &,, and a dispersion
parametery € R™

P(o) = Ce~14o0,0) with d a distance on &,,.



Parametric Approach - Example of Models

> Mallows model
Parameterized by a central ranking og € &,, and a dispersion
parametery € R™

P(o) = Ce~14o0,0) with d a distance on &,,.

» Plackett-Luce model ,
Each item i is parameterized by w; with w; € R™:

n
We,
Po)=]l<w
il_[l 2 =i Wo,

Ex:2>~1>3= w2 ol

w1 tw2tws3 witws



Nonparametric approaches - Examples 1

» Harmonic analysis
@ Fourier analysis [Clémencon et al., 2011], [Kondor and Barbosa, 2010]

hy = Z h(o)pa(o) ol px(c) € C* forall A F n.
ceS,

@ Multiresolution analysis for incomplete rankings [Sibony et al., 2015]



Nonparametric approaches - Examples 1

» Harmonic analysis
@ Fourier analysis [Clémencon et al., 2011], [Kondor and Barbosa, 2010]

hy = Z h(o)pa(o) ol px(c) € C* forall A F n.
ceS,

@ Multiresolution analysis for incomplete rankings [Sibony et al., 2015]
» Embeddings of permutations
@ Permutation matrices [Plis et al., 2011]

Gn = R 5 Py with Py(i, §) = {o(i) = j}

@ Kemeny embedding [Jiao et al., 2016]

S, = R"V2 5y b, withg, = | sign(o(i) — o(j))

i<j



Nonparametric approaches - Examples 2

Modeling of pairwise comparisons as a graph:

@ HodgeRank exploits the topology of the graph

@ Approximation of pairwise comparison matrices



Some ranking problems

Perform some task on a dataset of N rankings Dy = (X1, ..., 2y).

Examples

» Top-1recovery: Find the “most preferred” item in Dy
e.g. Output of an election

> Aggregation: Find a full ranking that “best summarizes” Dy
e.g. Ranking of a competition

» Clustering: Split Dy into clusters
e.g. Segment customers based on their answers to a survey

» Prediction: Predict a ranking given some information
e.g. In arecommendation setting
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Ranking Regression



Ranking Regression

Problem: Given a vector X (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutation > in &,,.



Ranking Regression

Problem: Given a vector X (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutation > in &,,.

Example: n=4 items (fruits)

_ @ D e %



Related Work

» Has been referred to as label ranking in the literature
[Tsoumakas et al., 2009], [Vembu and Gartner, 2010]

» Related to multiclass and multilabel classification

> Alot of applications, e.g : document categorization,
meta-learning

> rank a set of topics relevant for a given document
» rank a set of algorithms according to their suitability for a new
dataset, based on the characteristics of the dataset

> Alot of approaches rely on parametric modelling
[Cheng and Hiillermeier, 2009], [Cheng et al., 2009],
[Cheng et al., 2010]



Related Work

» Has been referred to as label ranking in the literature

» Related to multiclass and multilabel classification
> Alot of applications, e.g : document categorization,

meta-learning

> rank a set of topics relevant for a given document
» rank a set of algorithms according to their suitability for a new
dataset, based on the characteristics of the dataset

> Alot of approaches rely on parametric modelling

> >

= We develop an approach free of any parametric assumptions
(local learning) relying on results and framework developped in
for ranking aggregation.



Problem and Setting

Suppose we observe (X, %), ..., (Xn, X ) i.i.d. copies of the
pair (X, ), where
» X ~ u,where pis adistribution on some feature space X
> > ~ Py,where Px is the conditional probability distribution
(on &,): Px(0) = P[X = 0| X]
Ex: Users i with characteristics X; order items by preference resulting
in El

Goal: Learn a predictive ranking rule:
s X — 6,
xr — s(x)
which given a random vector X, predicts the permutation > on the
n items.



Obijective

Performance: Measured by the risk:

R(s) = Ex ~ p5 ~ Py [dr (s(X), X))



Obijective

Performance: Measured by the risk:
R(s) =Ex ~ 5 ~ Py dr (s(X), X)]

where d is the Kendall’s tau distance, i.e. for 0,0’ € G,,:

dr(o,0") = Y H(o(i) —o(4))(o'() —o'(j)) < 0},

1<i<j<n

Ex: 0=1234, 0'=2413 = d.(0,0’) = 3 (disagree on (12),(14),(34)).



Piecewise Constant Ranking Rules

Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition of X" built
from the training data (X1, %), ..., (Xy, 2n).



Piecewise Constant Ranking Rules

Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition of X" built
from the training data (X1, %), ..., (Xy, 2n).
Two methods are investigated:
» k-nearest neighbor (Voronoi partitioning)

» decision tree (Recursive partitioning)




Compute Local Labels/Medians
For classification, the label of a cell (ex: a leaf) is the majority label
among the training data which fall in this cell.

4 classes: green, red, blue, yellow — green will be the label for the
right cell.

20



Compute Local Labels/Medians
For classification, the label of a cell (ex: a leaf) is the majority label
among the training data which fall in this cell.

4 classes: green, red, blue, yellow — green will be the label for the
right cell.

Problem: Our labels are permutations o

ForacellC,if>,..., Xy € C,how do we aggregate them into a
final label o*?

= Ranking aggregation problem.
20
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Background on Ranking Aggregation/Medians

21



Ranking Aggregation - Methods
Suppose we have a dataset of rankings/permutations
Dy = (01,...,0N) € G,QV. We want to find a global order
("consensus”) o* on the n items that best represents the dataset.
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Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations
(01,...,0n5) € &Y. We want to find a global order

("consensus”) o* on the n items that best represents the dataset.

Kemeny’s rule (1959) - Optimization pb
.

Solve ¢* = argmin Z d(o, o)
0€6n .

Problem: NP-hard.

Copeland method - Scoring method
Sort the items ¢ according to thelr Copeland score s¢:

C’ ]\'ZZHOI‘ <(TA )]

k=1j=1
. . j¢.l . . .
which counts the number of pairwise victories of item 7 over the

otheritems j #i = O(n?N) complexity.

22



Statistical Ranking Aggregation [Korba et al., 2017]
Probabilistic Modeling
Dy = (217...,2)\:) with Xp~P

where P distribution on &,,.

23



Statistical Ranking Aggregation
Probabilistic Modeling
Dy =(Z1,...,8y) with X;~P
where P distribution on G,,.

Definition
A Kemeny median of P is solution of:

op = argmin Lp(o), m
UEGn

where Lp(o) = Exp[d(c, X)] is the risk of 0.

Question: Can we exhibit some conditions on P so that solving (1)
is tractable?

23



Exact Solutions [Korba et al., 2017]

Letp; ; = P[X(i) < X(j)] prob. thatitem i > j (is preferred to).
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Exact Solutions [Korba et al., 2017]
Letp; ; = P[X(i) < X(j)] prob. thatitem i > j (is preferred to).

Strict Stochastic Transitivity (SST): (p; ; # 1/2 Vi, j)

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):
Our result

Suppose P satisfies SST and NA(h) for a given h > 0. Then with
overwhelming probability 1 — %e_ah]":

P also verifies SST...and the Kemeny median of P is given by the
empirical Copeland ranking:

1
op(i) =14+ Hpi, < 5b fori<i<n
i

24



Graph of pairwise probabilities

1 .
op(i) =14+> Hpi, < 5} forl<i<n
i

= sort the ¢’s by increasing input degree

25
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Risk Minimization for Ranking (Median) Regression
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Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :
s X — 6,
x — s(x)
which given a random vector X, predicts the permutation > on the
n items.

Performance: Measured by the risk:

R(S) = EXNM,ENPX [dT (S(X)7 Z)]
= EXNM [EZNPX [dT (3(X>7 Z)H
= EXNH [LPX (S(X)ﬂ

27



Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :
s X — 6,
x — s(x)
which given a random vector X, predicts the permutation > on the
n items.

Performance: Measured by the risk:

R(S) = EXNM,ENPX [dT (S(X)7 Z)]
=Ex~u Espy [dr (s(X), 2]
= EXN” [LPX (S(X)>]

= Ranking regression is an extension of ranking aggregation.

27



Optimal Elements and Relaxation

Assumption
For X € X, Px isSST: = op = argmin,cg, Lpy (o) is unique.
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Optimal Elements and Relaxation

Assumption
For X € X, Px isSST: = op = argmin,cg, Lpy (o) is unique.

Optimal elements

The predictors s* minimizing R (s) are the ones that maps any point
X € X to the conditional Kemeny median of Py:

s* =argminR(s) & s°(X)=o0p,
seS

To minimize the risk R (s) approximately:
op, forany X = op, forany X € C

where Pe(0) = P[X = 0| X € C].
=- We develop Local consensus methods.

28



Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the
training data (X, >5)’s:

1 N
mi — d-(
56272\ Nkz:_1 i

where S is the set of measurable mappings.
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Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the
training data (X, >5)’s:

1 N
mi — d-(
56272\ Nkz:_1 T

where S is the set of measurable mappings.

= We consider asubset Sp C S:
» rich enough so thatinf,cs, R(s) — infses R(s) is "small”
» ideally appropriate for greedy optimization.

= Sp=space of piecewise constant ranking rules

29



Our results

Rates of convergence

> classical rates O(1/+/N) for ERM.
» fastrates O(1/N) under a "uniform” NA(h).

Approximation Error
Suppose that:
There exists M < oo such that:

V(z,2') € X2, 3, Ipij(a) — pij(a)] < M- |lz — 2]

Then:
R(sp) —R(s*) < M.ép

where dp is the max. diameter of P’s cells.

30
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Algorithms - Local Median Methods

31



Partitioning Methods
Goal: Generate partitions Py from the training data
(X1,%1),. .-, (XN, 2N).

Two methods are investigated:
» k-nearest neighbor (Voronoi partitioning)

» decision tree (Recursive partitioning)

Re
© Re
R
« —
Re
R
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Partitioning Methods
Goal: Generate partitions Py from the training data
(X1,%1),. .-, (XN, ZnN).

Two methods are investigated:
» k-nearest neighbor (Voronoi partitioning)

» decision tree (Recursive partitioning)

For C € Py, consider its empirical distribution:

~ 1
Pe=g D o,
C pXpec

32



Final Labels in Practice

> Ifﬁc is SST, compute o—}; with Copeland method based on the
Di’s

33



Final Labels in Practice
> Ifﬁc is SST, compute a}; with Copeland method based on the
Di’s
» Else, compute 5;3 with empirical Borda count ( )

N
. 1 . .
o5(i) = N g Yp(@) forl<i<n
k=1

Inconsistent (divergence-free)

ker{div)

im{grad) ker{A) im{curl”)

Gradient flows Harmonic flows Curl flows

(globally acyclic) (locally acyclic) (locally cyclic)

~ lerfeurl) -7

Locally consistent (curl-free)

Ficure 2. Hodge/Helmholtz decomposition of pairwise rankings
33



K-Nearest Neigbors Algorithm

1. Fixk € {1, ..., N}andaquerypointzx € X

2. Sort (X1,%1),..., (XN, XnN) by increasing order of the
distancetox: || Xz —zl| < ... < || X(v,3) — 2]

3. Consider next the empirical distribution calculated using the k
training points closest to x

k

~ 1

P(z) = % Z‘SEU,N)
=1

and compute the pseudo-empirical Kemeny median, yielding
the k-NN prediction at z:

def
Sk,N(:L') = 0-13(1’)

= We recover the classical bound R (s n) — R* = O(ﬁ + %)

34



Decision Tree
Split recursively the feature space X’ to minimize some impurity

criterion.
Analog to Gini criterion in multiclassification: m classes, f;

proportion of class i — I(C) = Y| £i(C)(1 — £i(C))
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Decision Tree

Split recursively the feature space X’ to minimize some impurity
criterion.

Analog to Gini criterion in multiclassification: m classes, f;
proportion of classi — I(C) = -1 fi(C)(1 — fi(C))
Here, foracellC € Py:
» Impurity [Alvo and Philip, 2014]:
1 N .
TP =5 > 1) (1-pis(C))
1<i<j<n
(ordering n elements can be seen as (g) classification tasks)
which is tractable and satisfies the double inequality

Vp, < Jmin Lg, (o) < 293,
» Terminalvalue : Compute the pseudo-empirical median of a

cell C:

35



Simulated Data

> We generate two explanatory variables, varying their nature
(numerical, categorical) = Setting 1/2/3

» We generate a partition of the feature space

» On each cell of the partition, a dataset of full rankings is
generated, varying the distribution (constant, Mallows with #
dispersion): Dy/D1/D2

D Setting 1 Setting 2 Setting 3
! n=3 n=5 n=8 n=3 n=5 n=8 n=3 n=5 n=8

0.0698* 0.1290* 0.2670* | 0.0173*  0.0405* 0.110* 0.0112*  0.0372*  0.0862*
Dy | 0.0473** 0136** 0.324** | 0.0568** 0.145**  0.2695** | 0.099** 0.1331** 0.2188™*
(0.578) (1.147) (2.347) (0.596) (1.475) (3.223) | (0.5012)  (1.104) (2.332)

0.3475*  0.569* 0.9405* | 0.306* 0.494* 0.784* 0.289* 0.457* 0.668"
Dy | 0.307** 0.529** 0.921** | 0.308**  0.536**  0.862** | 0.3374** 0.5714** 0.8544**
(0.719) (1.349)  (2.606) (0.727) (1.634) (3.424) | (0.5254)  (1.138) (2.287)

0.8656"  1.522*  2.503" | 0.8305* 1.447*  2.359" | 0.8105° 1.437"  2.189"
Dy | 07228** 1.322** 2226 | 0723** 1.3305**  2.163** | 0.7312** 1.3237**  2.252**
(0.981)  (1.865)  (3.443) | (1.014)  (2.0945) (4.086) | (0.8504) (1.709)  (3.005)

Table: Empirical risk averaged on 50 trials on simulated data.

(): Clustering +PL, *: K-NN, **: Decision Tree



Outline

Ongoing work - Structured prediction methods
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Structured prediction approach

Goal: Learn a predictive rankingrule: s : X — G,
The ranking regression/label ranking problem is then defined as:

minsz;(_ﬁnR(s), with R(S) = EX ~ 1,3 ~ Px [A (S(X), E)]
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Structured prediction approach

Goal: Learn a predictive rankingrule: s : X — G,
The ranking regression/label ranking problem is then defined as:

minsz;(_m;nR(s), with R(S) = EX ~ 1,3 ~ Px [A (S(X), E)]

Consider a family of loss functions based on some ranking
embedding ¢ : ©,, — F that maps the permutationso € G,, into a
Hilbert space F:

A(o,0") = [|é(0) — ¢(o")||F-

Motivation:

» Kendall’s tau and Hamming distances can be written with
Kemeny and Permutation matrices embeddings respectively

38



Structured prediction approach

mins X = 6RR(S), with R(S) = EXN,u,ENPX [A (S(X), Z)] (2)

and
A(a,0') = [|¢(0) = d(a")|%-
We can approach structured prediction (see
) in two steps:
> Step 1- Surrogate problem: Solve an empirical version of (2)
by replacing A with:

L(g(x), ¢(a)) = llg(z) — $(o)[|5-
=g: X > F
> Step 2 - Pre-image problem: solve, for any z in X, the
pre-image problem that provides a prediction in the original
space G,
3(x) = argmin || ¢(o) - G(2)|%
ceS,

39



Ranking Embeddings
have proven consistency results under some
assumptions on the loss A/the mapping ¢, which apply to:
» Kendall’s 7 distance:

Ar(o,0") =Y H(o(i) — o ())(0"(i) — o'(j)) < 0}

1<J

— Qb(a) = Szgn(o'(z) — 0‘(])) c Rn(n—l)/z

1<i<j<n

» Hamming distance:

— ¢(0) = (o (i) = j})ij=1,..n € R*"
> consistency holds, but still the pre-image problem is hard
40



Structured prediction results

Table 2: Mean Kendall’s tau coefficient on benchmark datasets

authorship  glass iris vehicle vowel wine
kNN Kemeny 0.94+0.02 0.85+0.06 095+0.05 0.85+0.03 0.85+0.02 0.94+0.05
kNN Lehmer 0.93+0.02  0.85£0.05 095+0.04 0.844+0.03 0.78+0.03 0.94+0.06
ridge Hamming  -0.00+0.02 0.08+0.05 -0.10+0.13 -0.21+0.03 0.26+0.04 -0.36+0.03
ridge Lehmer 0.92+0.02  0.83+£0.05 097+0.03 0.85+0.02 0.86+0.01 0.84+0.08
ridge Kemeny 0.94+0.02 0.86+£0.06 097+0.05 0.89+0.03 0.92+0.01 0.94+0.05
Cheng PL 0.94+0.02  0.84+0.07 096+0.04 0.861+0.03 0.85+0.02 0.95+0.05
Cheng LWD 0.93+0.02  0.84+0.08 096+0.04 0.851+0.03 0.88+0.02 0.94+0.05
Zhou RF 0.91 0.89 0.97 0.86 0.87 0.95




Outline

Conclusion
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Conclusion

Ranking data presents great and interesting challenges:
» Most of the maths from euclidean spaces cannot be applied
» But our intuitions still hold

» Based on our results on ranking aggregation, we develop a
novel approach to ranking regression/label ranking

» Our contributions: theoretical results for this problem and new
algorithms

Openings:

» How to extend to incomplete rankings (+with ties)?
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US General Social Survey

Participants were asked to rank 5 aspects about a job: high
income”, “no danger of being fired”, ”short working hours”,
“chances for advancement”, "work important and gives a feeling of

accomplishment”.

» 18544 samples collected between 1973 and 2014.

» 8individual attributes are considered: sex, race, birth cohort,
highest educational degree attained, family income, marital
status, number of children, household size

» plus 3 attributes of work conditions: working status,
employment status, and occupation.
Results:
Risk of decision tree: 2,763 — Splitting variables:
1) occupation 2) race 3) degree
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