Ranking Median Regression: Learning to Order through Local Consensus

Anna Korba* Stéphan Clémençon* Eric Sibony[†]

* Telecom ParisTech, † Shift Technology

Universitá degli studi di Genova June 26 2018

Outline

- 1. Introduction to Ranking Data
- 2. Ranking Regression
- 3. Background on Ranking Aggregation/Medians
- 4. Risk Minimization for Ranking (Median) Regression
- 5. Algorithms Local Median Methods
- 6. Ongoing work Structured prediction methods
- 7. Conclusion

Outline

Introduction to Ranking Data

- **Ranking Regression**
- Background on Ranking Aggregation/Medians
- Risk Minimization for Ranking (Median) Regression
- Algorithms Local Median Methods
- Ongoing work Structured prediction methods
- Conclusion

Ranking Data

Set of items $\llbracket n \rrbracket := \{1, \ldots, n\}$

Definition (Ranking)

A ranking is a strict partial order \prec over [n], *i.e.* a binary relation satisfying the following properties:

Irreflexivity For all $i \in [n]$, $i \not\prec i$

Transitivity For all $i, j, k \in [n]$, if $i \prec j$ and $j \prec k$ then $i \prec k$

Asymmetry For all $i, j \in [n]$, if $i \prec j$ then $j \not\prec i$

Common types of rankings Set of items $[n] := \{1, ..., n\}$

Full ranking. All the items are ranked, without ties

 $a_1 \succ a_2 \succ \cdots \succ a_n$

Partial ranking. All the items are ranked, with ties ("buckets")

$$a_{1,1},\ldots,a_{1,n_1}\succ\cdots\succ a_{r,1},\ldots,a_{r,n_r}$$
 with $\sum_{i=1}^r n_i = n$

 \Rightarrow includes **Top-k ranking**: $a_1, \ldots, a_k \succ$ the rest

Incomplete ranking. Only a subset of items are ranked, without ties

$$a_1 \succ \cdots \succ a_k$$
 with $k < n$

 \Rightarrow includes **Pairwise comparison**: $a_1 \succ a_2$

Ranking data arise in a lot of applications

Traditional applications

- ► Elections: [[n]] = a set of candidates → A voter ranks a set of candidates
- ► Competitions: [[n]] = a set of players → Results of a race
- ► Surveys: [[n]] = political goals → A citizen ranks according to its priorities

Modern applications

- ► E-commerce: [[n]] = items of a catalog → A user expresses its preferences (see "implicit feedback")
- ► Search engines: [[n]] = web-pages → A search engine ranks by relevance for a given query

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A full ranking: $a_1 \succ a_2 \succ \cdots \succ a_n$ (Ex: $2 \succ 1 \succ 3 \succ 4$)
- Also seen as the permutation σ that maps an item to its rank:

$$a_1 \succ \cdots \succ a_n \quad \Leftrightarrow \quad \sigma \in \mathfrak{S}_n$$
 such that $\sigma(a_i) = i$

Ex:
$$\sigma(2) = 1, \sigma(1) = 2, \dots \Rightarrow \sigma = 2134$$

S_n: set of permutations of [[n]], the symmetric group.
 Ex: S₄ = 1234, 1324, 1423, ..., 4321

Probabilistic Modeling. The dataset is a collection of random permutations drawn IID from a probability distribution P over \mathfrak{S}_n :

$$\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N) \in \mathfrak{S}_n^N$$
 with $\Sigma_i \sim P$

How to analyze a dataset of permutations $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$? Challenges

• A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \dots, \Sigma(n)) \in \mathbb{R}^n$... but

How to analyze a dataset of permutations $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$? Challenges

• A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \ldots, \Sigma(n)) \in \mathbb{R}^n$... but The random variables $\Sigma(1), \ldots, \Sigma(n)$ are highly dependent and the sum $\Sigma + \Sigma'$ is not a random permutation! \Rightarrow No natural notion of variance for Σ

- A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \ldots, \Sigma(n)) \in \mathbb{R}^n$... but The random variables $\Sigma(1), \ldots, \Sigma(n)$ are highly dependent and the sum $\Sigma + \Sigma'$ is not a random permutation! \Rightarrow No natural notion of variance for Σ
- The set of permutations \mathfrak{S}_n is finite... but

- A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \ldots, \Sigma(n)) \in \mathbb{R}^n$... but The random variables $\Sigma(1), \ldots, \Sigma(n)$ are highly dependent and the sum $\Sigma + \Sigma'$ is not a random permutation! \Rightarrow No natural notion of variance for Σ
- ► The set of permutations \mathfrak{S}_n is finite... but Exploding cardinality: $|\mathfrak{S}_n| = n!$ \Rightarrow Few statistical relevance

- A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \ldots, \Sigma(n)) \in \mathbb{R}^n$... but The random variables $\Sigma(1), \ldots, \Sigma(n)$ are highly dependent and the sum $\Sigma + \Sigma'$ is not a random permutation! \Rightarrow No natural notion of variance for Σ
- ► The set of permutations \mathfrak{S}_n is finite... but Exploding cardinality: $|\mathfrak{S}_n| = n!$ \Rightarrow Few statistical relevance
- Apply a method from p.d.f. estimation (e.g. kernel density estimation)... but

- A random permutation $\Sigma \in \mathfrak{S}_n$ can be seen as a random vector $(\Sigma(1), \ldots, \Sigma(n)) \in \mathbb{R}^n$... but The random variables $\Sigma(1), \ldots, \Sigma(n)$ are highly dependent and the sum $\Sigma + \Sigma'$ is not a random permutation! \Rightarrow No natural notion of variance for Σ
- ► The set of permutations \mathfrak{S}_n is finite... but Exploding cardinality: $|\mathfrak{S}_n| = n!$ \Rightarrow Few statistical relevance
- Apply a method from p.d.f. estimation (e.g. kernel density estimation)... but No canonical ordering of the rankings!

Main approaches

"Parametric" approach

- Fit a predefined generative model on the data
- Analyze the data through that model

"Nonparametric" approach

- Choose a structure on \mathfrak{S}_n
- Analyze the data with respect to that structure

Parametric Approach - Example of Models

▶ Mallows model [Mallows, 1957] Parameterized by a central ranking $\sigma_0 \in \mathfrak{S}_n$ and a dispersion parameter $\gamma \in \mathbb{R}^+$

 $P(\sigma) = Ce^{-\gamma d(\sigma_0, \sigma)}$ with d a distance on \mathfrak{S}_n .

Parametric Approach - Example of Models

▶ Mallows model [Mallows, 1957] Parameterized by a central ranking $\sigma_0 \in \mathfrak{S}_n$ and a dispersion parameter $\gamma \in \mathbb{R}^+$

 $P(\sigma) = Ce^{-\gamma d(\sigma_0, \sigma)}$ with d a distance on \mathfrak{S}_n .

▶ **Plackett-Luce model** [Luce, 1959], [Plackett, 1975] Each item *i* is parameterized by w_i with $w_i \in \mathbb{R}^+$:

$$P(\sigma) = \prod_{i=1}^{n} \frac{w_{\sigma_i}}{\sum_{j=i}^{n} w_{\sigma_j}}$$

Ex: $2 \succ 1 \succ 3 = \frac{w_2}{w_1 + w_2 + w_3} \frac{w_1}{w_1 + w_3}$

Nonparametric approaches - Examples 1

Harmonic analysis

• Fourier analysis [Clémençon et al., 2011], [Kondor and Barbosa, 2010]

$$\hat{h}_{\lambda} = \sum_{\sigma \in \mathfrak{S}_n} h(\sigma) \rho_{\lambda}(\sigma) \text{ où } \rho_{\lambda}(\sigma) \in \mathbb{C}^{d_{\lambda} \times d_{\lambda}} \text{ for all } \lambda \vdash n.$$

• Multiresolution analysis for incomplete rankings [Sibony et al., 2015]

Nonparametric approaches - Examples 1

Harmonic analysis

• Fourier analysis [Clémençon et al., 2011], [Kondor and Barbosa, 2010]

$$\hat{h}_{\lambda} = \sum_{\sigma \in \mathfrak{S}_n} h(\sigma) \rho_{\lambda}(\sigma) \text{ où } \rho_{\lambda}(\sigma) \in \mathbb{C}^{d_{\lambda} \times d_{\lambda}} \text{ for all } \lambda \vdash n.$$

- Multiresolution analysis for incomplete rankings [Sibony et al., 2015]
- Embeddings of permutations
 - Permutation matrices [Plis et al., 2011]

$$\mathfrak{S}_n \to \mathbb{R}^{n \times n}, \quad \sigma \mapsto P_\sigma \quad \text{with } P_\sigma(i,j) = \mathbb{I}\{\sigma(i) = j\}$$

• Kemeny embedding [Jiao et al., 2016]

$$\mathfrak{S}_n \to \mathbb{R}^{n(n-1)/2}, \quad \sigma \mapsto \phi_\sigma \quad \text{with } \phi_\sigma = \left(\begin{array}{c} \vdots \\ sign(\sigma(i) - \sigma(j)) \\ \vdots \end{array}\right)_{i < j}$$

Nonparametric approaches - Examples 2

Modeling of pairwise comparisons as a graph:

- HodgeRank exploits the topology of the graph [Jiang et al., 2011]
- Approximation of pairwise comparison matrices [Shah and Wainwright, 2015]

Some ranking problems

Perform some task on a dataset of N rankings $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$.

Examples

- ► **Top-1 recovery:** Find the "most preferred" item in \mathcal{D}_N e.g. Output of an election
- ► Aggregation: Find a full ranking that "best summarizes" D_N e.g. Ranking of a competition
- Clustering: Split D_N into clusters
 e.g. Segment customers based on their answers to a survey
- Prediction: Predict a ranking given some information e.g. In a recommendation setting

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion

Ranking Regression

Problem: Given a vector X (e.g, the characteristics of an individual), the goal is to predict (her preferences) as a random permutation Σ in \mathfrak{S}_n .

Ranking Regression

Problem: Given a vector X (e.g, the characteristics of an individual), the goal is to predict (her preferences) as a random permutation Σ in \mathfrak{S}_n .

Example: *n*=4 items (fruits)

Related Work

- ► Has been referred to as **label ranking** in the literature [Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]
- Related to multiclass and multilabel classification
- A lot of applications, e.g : document categorization, meta-learning
 - rank a set of topics relevant for a given document
 - rank a set of algorithms according to their suitability for a new dataset, based on the characteristics of the dataset
- A lot of approaches rely on parametric modelling [Cheng and Hüllermeier, 2009], [Cheng et al., 2009], [Cheng et al., 2010]

Related Work

- ► Has been referred to as **label ranking** in the literature [Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]
- Related to multiclass and multilabel classification
- A lot of applications, e.g : document categorization, meta-learning
 - rank a set of topics relevant for a given document
 - rank a set of algorithms according to their suitability for a new dataset, based on the characteristics of the dataset
- A lot of approaches rely on parametric modelling [Cheng and Hüllermeier, 2009], [Cheng et al., 2009], [Cheng et al., 2010]

⇒ We develop an approach free of any parametric assumptions (**local learning**) relying on results and framework developped in [Korba et al., 2017] for **ranking aggregation**.

Problem and Setting

Suppose we observe $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$ i.i.d. copies of the pair (X, Σ) , where

- $X \sim \mu$, where μ is a distribution on some feature space \mathcal{X}
- $\Sigma \sim P_X$, where P_X is the conditional probability distribution (on \mathfrak{S}_n): $P_X(\sigma) = \mathbb{P}[\Sigma = \sigma | X]$

Ex: Users *i* with characteristics X_i order items by preference resulting in Σ_i .

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Objective

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$

Objective

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$

where d is the Kendall's tau distance, i.e. for $\sigma, \sigma' \in \mathfrak{S}_n$:

$$d_{\tau}(\sigma, \sigma') = \sum_{1 \le i < j \le n} \mathbb{I}\{(\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0\},\$$

Ex: σ = 1234, σ' = 2413 $\Rightarrow d_{\tau}(\sigma, \sigma') = 3$ (disagree on (12),(14),(34)).

Piecewise Constant Ranking Rules

Our approach: build *piecewise constant* ranking rules, i.e: Ranking rules that are constant on each cell of a partition of \mathcal{X} built from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Piecewise Constant Ranking Rules

Our approach: build *piecewise constant* ranking rules, i.e: Ranking rules that are constant on each cell of a partition of \mathcal{X} built from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Two methods are investigated:

k-nearest neighbor (Voronoi partitioning)

decision tree (Recursive partitioning)

Compute Local Labels/Medians

For classification, the label of a cell (ex: a leaf) is the **majority** label among the training data which fall in this cell.

4 classes: green, red, blue, yellow \rightarrow green will be the label for the right cell.

Compute Local Labels/Medians

For classification, the label of a cell (ex: a leaf) is the **majority** label among the training data which fall in this cell.

4 classes: green, red, blue, yellow \rightarrow green will be the label for the right cell.

Problem: Our labels are *permutations* σ :

For a cell C, if $\Sigma_1, \ldots, \Sigma_N \in C$, how do we aggregate them into a final label σ^* ?

 \implies Ranking aggregation problem.

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion

Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \sum_{k=1}^{N} d(\sigma, \sigma_k)$$
Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \sum_{k=1}^{N} d(\sigma, \sigma_k)$$

Problem: NP-hard.

Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \sum_{k=1}^{N} d(\sigma, \sigma_k)$$

Problem: NP-hard.

Copeland method - Scoring method

Sort the items i according to their Copeland score s_C :

$$s_C(i) = \frac{1}{N} \sum_{\substack{k=1 \ j \neq i}}^N \sum_{\substack{j=1 \ j \neq i}}^n \mathbb{I}[\sigma_k(i) < \sigma_k(j)]$$

which counts the number of pairwise victories of item *i* over the other items $j \neq i \Rightarrow O(n^2 N)$ complexity.

Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

 $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$ with $\Sigma_k \sim P$

where P distribution on \mathfrak{S}_n .

Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

 $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$ with $\Sigma_k \sim P$

where P distribution on \mathfrak{S}_n .

Definition A **Kemeny median** of *P* is solution of:

 $\sigma_{P}^{*} = \operatorname*{argmin}_{\sigma \in \mathfrak{S}_{n}} L_{P}(\sigma), \tag{1}$

where $L_{\mathbf{P}}(\sigma) = \mathbb{E}_{\Sigma \sim \mathbf{P}}[d(\sigma, \Sigma)]$ is **the risk** of σ .

Question: Can we exhibit some conditions on P so that solving (1) is tractable?

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

 $p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$$

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2$$
 and $p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2$.

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result Suppose P satisfies **SST and NA**(h) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$:

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$$

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result Suppose *P* satisfies **SST and NA**(*h*) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$: \hat{P} also verifies **SST**...

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$$

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result

Suppose P satisfies **SST and NA**(h) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$:

 \widehat{P} also verifies **SST**...and the Kemeny median of P is given by the empirical Copeland ranking:

$$\sigma_{\boldsymbol{P}}^*(i) = 1 + \sum_{j \neq i} \mathbb{I}\{\widehat{\boldsymbol{p}_{i,j}} < \frac{1}{2}\} \quad \text{ for } 1 \leq i \leq n$$

Graph of pairwise probabilities

$$\sigma_{P}^{*}(i) = 1 + \sum_{j \neq i} \mathbb{I}\{\widehat{p}_{i,j} < \frac{1}{2}\} \quad \text{for } 1 \leq i \leq n$$

 \Rightarrow sort the *i*'s by increasing input degree

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion

Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[\mathbb{E}_{\Sigma \sim \mathbf{P}_X} \left[d_\tau \left(s(X), \Sigma \right) \right] \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[L_{\mathbf{P}_X} \left(s(X) \right) \right]$$

Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[\mathbb{E}_{\Sigma \sim \mathbf{P}_X} \left[d_\tau \left(s(X), \Sigma \right) \right] \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[L_{\mathbf{P}_X} \left(s(X) \right) \right]$$

 \Rightarrow Ranking regression is an extension of ranking aggregation.

Optimal Elements and Relaxation

Assumption

For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal Elements and Relaxation

Assumption For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal elements

The predictors s^* minimizing $\mathcal{R}(s)$ are the ones that maps any point $X \in \mathcal{X}$ to the **conditional** Kemeny median of P_X :

$$s^* = \operatorname*{argmin}_{s \in \mathcal{S}} \mathcal{R}(s) \ \Leftrightarrow \ s^*(X) = \sigma^*_{\textit{P}_{\pmb{X}}}$$

Optimal Elements and Relaxation

Assumption

For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal elements

The predictors s^* minimizing $\mathcal{R}(s)$ are the ones that maps any point $X \in \mathcal{X}$ to the **conditional** Kemeny median of P_X :

$$s^* = \operatorname*{argmin}_{s \in \mathcal{S}} \mathcal{R}(s) \ \Leftrightarrow \ s^*(X) = \sigma^*_{P_X}$$

To minimize the risk $\mathcal{R}(s)$ approximately:

$$\sigma^*_{P_X}$$
 for any $X \Longrightarrow \sigma^*_{P_C}$ for any $X \in \mathcal{C}$

where $P_{\mathcal{C}}(\sigma) = \mathbb{P}[\Sigma = \sigma | X \in \mathcal{C}].$

 \Rightarrow We develop Local consensus methods.

Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the training data (X_k, Σ_k) 's:

$$\min_{s \in \mathcal{S}} \widehat{\mathcal{R}}_{N}(s) = \frac{1}{N} \sum_{k=1}^{N} d_{\tau}(s(\boldsymbol{X}_{k}), \boldsymbol{\Sigma}_{k})$$

where $\ensuremath{\mathcal{S}}$ is the set of measurable mappings.

Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the training data (X_k, Σ_k) 's:

$$\min_{s \in \mathcal{S}} \widehat{\mathcal{R}}_{N}(s) = \frac{1}{N} \sum_{k=1}^{N} d_{\tau}(s(\boldsymbol{X}_{k}), \boldsymbol{\Sigma}_{k})$$

where ${\cal S}$ is the set of measurable mappings.

- $\Rightarrow \mathsf{We \ consider \ a \ subset} \ \mathcal{S}_\mathcal{P} \subset \mathcal{S}:$
 - ▶ rich enough so that $\inf_{s \in S_P} \mathcal{R}(s) \inf_{s \in S} \mathcal{R}(s)$ is "small"
 - ideally appropriate for greedy optimization.
- $\Rightarrow \mathcal{S}_{\mathcal{P}}$ = space of piecewise constant ranking rules

Our results

Rates of convergence

- classical rates $\mathcal{O}(1/\sqrt{N})$ for ERM.
- fast rates $\mathcal{O}(1/N)$ under a "uniform" **NA**(*h*).

Approximation Error

Suppose that:

There exists $M < \infty$ such that:

 $\forall (x,x') \in \mathcal{X}^2, \ \sum_{i < j} |p_{i,j}(x) - p_{i,j}(x')| \le M \cdot ||x - x'||.$ Then:

$$\mathcal{R}(s_{\mathcal{P}}^*) - \mathcal{R}(s^*) \le M.\delta_{\mathcal{P}}$$

where $\delta_{\mathcal{P}}$ is the max. diameter of \mathcal{P} 's cells.

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion

Partitioning Methods

Goal: Generate partitions \mathcal{P}_N from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Two methods are investigated:

k-nearest neighbor (Voronoi partitioning)

decision tree (Recursive partitioning)

Partitioning Methods

Goal: Generate partitions \mathcal{P}_N from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Two methods are investigated:

k-nearest neighbor (Voronoi partitioning)

decision tree (Recursive partitioning)

For $\mathcal{C} \in \mathcal{P}_N$, consider its empirical distribution:

$$\widehat{P}_{\mathcal{C}} = \frac{1}{N_{\mathcal{C}}} \sum_{k: X_k \in \mathcal{C}} \delta_{\Sigma_k}$$

Final Labels in Practice

• If $\widehat{P}_{\mathcal{C}}$ is SST, compute $\sigma^*_{\widehat{P}}$ with Copeland method based on the $\widehat{p}_{i,j}$'s

Final Labels in Practice

• If $\hat{P}_{\mathcal{C}}$ is SST, compute $\sigma_{\hat{P}}^*$ with Copeland method based on the $\hat{p}_{i,j}$'s

Else, compute $\widetilde{\sigma}_{\widehat{p}}^*$ with empirical Borda count ([Jiang et al., 2011])

$$\widetilde{\sigma}_{\widehat{P}}^{*}(i) = \frac{1}{N} \sum_{k=1}^{N} \Sigma_{k}(i) \quad \text{ for } 1 \leq i \leq n$$

Locally consistent (curl-free)

FIGURE 2. Hodge/Helmholtz decomposition of pairwise rankings

K-Nearest Neigbors Algorithm

- 1. Fix $k \in \{1, \ldots, N\}$ and a query point $x \in \mathcal{X}$
- 2. Sort $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$ by increasing order of the distance to $x : ||X_{(1,N)} x|| \le \ldots \le ||X_{(N,N)} x||$
- 3. Consider next the empirical distribution calculated using the k training points closest to \boldsymbol{x}

$$\widehat{P}(x) = \frac{1}{k} \sum_{l=1}^{k} \delta_{\Sigma_{(l,N)}}$$

and compute the pseudo-empirical Kemeny median, yielding the *k*-NN prediction at *x*:

$$s_{k,N}(x) \stackrel{def}{=} \widetilde{\sigma}^*_{\widehat{P}(x)}.$$

 \Rightarrow We recover the classical bound $\mathcal{R}(s_{k,N}) - \mathcal{R}^* = \mathcal{O}(\frac{1}{\sqrt{k}} + \frac{k}{N})$

Decision Tree

- Split recursively the feature space $\ensuremath{\mathcal{X}}$ to minimize some impurity criterion.
- Analog to Gini criterion in multiclassification: m classes, f_i proportion of class $i \to I_G(\mathcal{C}) = \sum_{i=1}^m f_i(\mathcal{C})(1 - f_i(\mathcal{C}))$

Decision Tree

Split recursively the feature space $\ensuremath{\mathcal{X}}$ to minimize some impurity criterion.

Analog to Gini criterion in multiclassification: m classes, f_i proportion of class $i \to I_G(\mathcal{C}) = \sum_{i=1}^m f_i(\mathcal{C})(1 - f_i(\mathcal{C}))$

Here, for a cell $C \in P_N$:

Impurity [Alvo and Philip, 2014]:

$$\gamma_{\widehat{P}_{\mathcal{C}}} = \frac{1}{2} \sum_{1 \le i < j \le n} \widehat{p}_{i,j}(\mathcal{C}) \left(1 - \widehat{p}_{i,j}(\mathcal{C})\right)$$

(ordering n elements can be seen as $\binom{n}{2}$ classification tasks) which is tractable and satisfies the double inequality

$$\widehat{\gamma}_{\widehat{P}_{\mathcal{C}}} \leq \min_{\sigma \in \mathfrak{S}_n} L_{\widehat{P}_{\mathcal{C}}}(\sigma) \leq 2\widehat{\gamma}_{\widehat{P}_{\mathcal{C}}}.$$

Terminal value : Compute the pseudo-empirical median of a cell C:

$$s_{\mathcal{C}}(x) \stackrel{def}{=} \widetilde{\sigma}^*_{\widehat{P}_{\mathcal{C}}}.$$

Simulated Data

- ► We generate two explanatory variables, varying their nature (numerical, categorical) ⇒ Setting 1/2/3
- We generate a partition of the feature space
- ► On each cell of the partition, a dataset of full rankings is generated, varying the distribution (constant, Mallows with ≠ dispersion): D₀/D₁/D₂

D_i	Setting 1			Setting 2			Setting 3		
	n=3	n=5	n=8	n=3	n=5	n=8	n=3	n=5	n=8
D_0	0.0698*	0.1290*	0.2670*	0.0173*	0.0405*	0.110*	0.0112*	0.0372*	0.0862*
	0.0473**	0.136**	0.324**	0.0568**	0.145**	0.2695**	0.099**	0.1331**	0.2188**
	(0.578)	(1.147)	(2.347)	(0.596)	(1.475)	(3.223)	(0.5012)	(1.104)	(2.332)
D_1	0.3475 *	0.569*	0.9405 *	0.306*	0.494*	0.784*	0.289*	0.457*	0.668*
	0.307**	0.529**	0.921**	0.308**	0.536**	0.862**	0.3374**	0.5714**	0.8544**
	(0.719)	(1.349)	(2.606)	(0.727)	(1.634)	(3.424)	(0.5254)	(1.138)	(2.287)
D_2	0.8656*	1.522*	2.503*	0.8305 *	1.447 *	2.359*	0.8105*	1.437*	2.189*
	0.7228**	1.322**	2.226**	0.723**	1.3305**	2.163**	0.7312**	1.3237**	2.252**
	(0.981)	(1.865)	(3.443)	(1.014)	(2.0945)	(4.086)	(0.8504)	(1.709)	(3.005)

Table: Empirical risk averaged on 50 trials on simulated data.

(): Clustering +PL, *: K-NN, **: Decision Tree

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion

Structured prediction approach

Goal: Learn a predictive ranking rule : $s : \mathcal{X} \to \mathfrak{S}_n$ The ranking regression/label ranking problem is then defined as:

 $\min_{s:\mathcal{X}\to\mathfrak{S}_n}\mathcal{R}(s), \text{ with } \mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X}\left[\Delta\left(s(X), \Sigma\right)\right]$

Structured prediction approach

Goal: Learn a predictive ranking rule : $s : \mathcal{X} \to \mathfrak{S}_n$ The ranking regression/label ranking problem is then defined as:

 $\mathsf{min}_{s:\mathcal{X}\to\mathfrak{S}_n}\mathcal{R}(s), \text{ with } \mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X}\left[\Delta\left(s(X), \Sigma\right)\right]$

Consider a family of loss functions based on some ranking embedding $\phi : \mathfrak{S}_n \to \mathcal{F}$ that maps the permutations $\sigma \in \mathfrak{S}_n$ into a Hilbert space \mathcal{F} :

$$\Delta(\sigma, \sigma') = \|\phi(\sigma) - \phi(\sigma')\|_{\mathcal{F}}^2.$$

Motivation:

 Kendall's tau and Hamming distances can be written with Kemeny and Permutation matrices embeddings respectively

Structured prediction approach

$$\begin{split} \min_{s \,:\, \mathcal{X} \,\to\, \mathfrak{S}_n} \mathcal{R}(s), \ \text{with} \ \mathcal{R}(s) &= \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[\Delta\left(s(X), \Sigma \right) \right] \end{split} \tag{2} \end{split}$$
 and

$$\Delta(\sigma, \sigma') = \|\phi(\sigma) - \phi(\sigma')\|_{\mathcal{F}}^2.$$

We can approach structured prediction (see [Ciliberto et al., 2016, Brouard et al., 2016]) in two steps:

Step 1 - Surrogate problem: Solve an empirical version of (2) by replacing ∆ with:

$$L(g(x),\phi(\sigma)) = \|g(x) - \phi(\sigma)\|_{\mathcal{F}}^2.$$

 $\Longrightarrow \widehat{g} : \mathcal{X} \to \mathcal{F}$

Step 2 - Pre-image problem: solve, for any x in X, the pre-image problem that provides a prediction in the original space 𝔅_n:

$$\widehat{s}(x) = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \|\phi(\sigma) - \widehat{g}(x)\|_{\mathcal{F}}^2$$

Ranking Embeddings

[Ciliberto et al., 2016] have proven consistency results under some assumptions on the loss Δ /the mapping ϕ , which apply to:

Kendall's τ distance:

$$\Delta_{\tau}(\sigma, \sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0\}$$

$$\rightarrow \phi(\sigma) = \left(\begin{array}{c} \vdots \\ sign(\sigma(i) - \sigma(j)) \\ \vdots \end{array}\right)_{1 \le i < j \le n} \in \mathbb{R}^{n(n-1)/2}$$

Hamming distance:

$$\Delta_H(\sigma, \sigma') = \sum_{i=1}^n \mathbb{I}[\sigma(i) \neq \sigma'(i)].$$
$$\to \phi(\sigma) = (\mathbb{I}\{\sigma(i) = j\})_{i,j=1,\dots,n} \in \mathbb{R}^{n \times n}$$

consistency holds, but still the pre-image problem is hard

Structured prediction results

Table 2: Mean Kendall's tau coefficient on benchmark datasets

	authorship	glass	iris	vehicle	vowel	wine
kNN Kemeny kNN Lehmer ridge Hamming ridge Lehmer ridge Kemeny	0.94 ±0.02 0.93±0.02 -0.00±0.02 0.92±0.02 0.94 ±0.02	$\begin{array}{c} 0.85{\pm}0.06\\ 0.85{\pm}0.05\\ 0.08{\pm}0.05\\ 0.83{\pm}0.05\\ 0.86{\pm}0.06\end{array}$	0.95±0.05 0.95±0.04 -0.10±0.13 0.97 ±0.03 0.97 ±0.05	$\begin{array}{c} 0.85{\pm}0.03\\ 0.84{\pm}0.03\\ {-}0.21{\pm}0.03\\ 0.85{\pm}0.02\\ \textbf{0.89}{\pm}0.03\end{array}$	$\begin{array}{c} 0.85{\pm}0.02\\ 0.78{\pm}0.03\\ 0.26{\pm}0.04\\ 0.86{\pm}0.01\\ \textbf{0.92}{\pm}0.01 \end{array}$	$\begin{array}{c} 0.94{\pm}0.05\\ 0.94{\pm}0.06\\ -0.36{\pm}0.03\\ 0.84{\pm}0.08\\ 0.94{\pm}0.05\end{array}$
Cheng PL Cheng LWD Zhou RF	0.94 ±0.02 0.93±0.02 0.91	0.84±0.07 0.84±0.08 0.89	0.96±0.04 0.96±0.04 0.97	$0.86 {\pm} 0.03$ $0.85 {\pm} 0.03$ 0.86	$0.85 {\pm} 0.02$ $0.88 {\pm} 0.02$ 0.87	0.95 ±0.05 0.94±0.05 0.95

Outline

Introduction to Ranking Data

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Ongoing work - Structured prediction methods

Conclusion
Conclusion

Ranking data presents great and interesting challenges:

- Most of the maths from euclidean spaces cannot be applied
- But our intuitions still hold
- Based on our results on ranking aggregation, we develop a novel approach to ranking regression/label ranking
- Our contributions: theoretical results for this problem and new algorithms

Openings:

How to extend to incomplete rankings (+with ties)?

Alvo, M. and Philip, L. (2014).
 Decision tree models for ranking data.
 In *Statistical Methods for Ranking Data*, pages 199–222.
 Springer.

- Audibert, J.-Y. and Tsybakov, A. (2007). Fast learning rates for plug-in classifiers. Annals of statistics, 35(2):608–633.
- Brouard, C., Szafranski, M., and d?Alché Buc, F. (2016). Input output kernel regression: supervised and semi-supervised structured output prediction with operator-valued kernels.

Journal of Machine Learning Research, 17(176):1–48.

Cheng, W., Dembczyński, K., and Hüllermeier, E. (2010). Label ranking methods based on the Plackett-Luce model. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 215–222. Cheng, W., Hühn, J., and Hüllermeier, E. (2009). Decision tree and instance-based learning for label ranking. In Proceedings of the 26th International Conference on Machine Learning (ICML-09), pages 161–168.

Cheng, W. and Hüllermeier, E. (2009).
 A new instance-based label ranking approach using the mallows model.

Advances in Neural Networks-ISNN 2009, pages 707-716.

- Ciliberto, C., Rosasco, L., and Rudi, A. (2016).
 A consistent regularization approach for structured prediction.
 In Advances in Neural Information Processing Systems, pages 4412–4420.
- Clémençon, S., Gaudel, R., and Jakubowicz, J. (2011). On clustering rank data in the fourier domain. In *ECML*.
- - Jiang, X., Lim, L.-H., Yao, Y., and Ye, Y. (2011). Statistical ranking and combinatorial hodge theory.

Mathematical Programming, 127(1):203–244.

- Jiao, Y., Korba, A., and Sibony, E. (2016).
 Controlling the distance to a kemeny consensus without computing it.
 In *Proceeding of ICML 2016*.
- Kondor, R. and Barbosa, M. S. (2010). Ranking with kernels in Fourier space. In Proceedings of COLT'10, pages 451–463.
- Korba, A., Clémençon, S., and Sibony, E. (2017).
 A learning theory of ranking aggregation.
 In *Proceeding of AISTATS 2017.*
 - Luce, R. D. (1959). Individual Choice Behavior. Wiley.
- Mallows, C. L. (1957). Non-null ranking models.

Biometrika, 44(1-2):114–130.

- Plackett, R. L. (1975). The analysis of permutations. Applied Statistics, 2(24):193–202.
- Plis, S., McCracken, S., Lane, T., and Calhoun, V. (2011).
 Directional statistics on permutations.
 In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 600–608.
- Shah, N. B. and Wainwright, M. J. (2015). Simple, robust and optimal ranking from pairwise comparisons.

arXiv preprint arXiv:1512.08949.

Sibony, E., Clémençon, S., and Jakubowicz, J. (2015).
 MRA-based statistical learning from incomplete rankings.
 In *Proceeding of ICML*.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2009).

Mining multi-label data.

In *Data mining and knowledge discovery handbook*, pages 667–685. Springer.

Vembu, S. and Gärtner, T. (2010). Label ranking algorithms: A survey. In *Preference learning*, pages 45–64. Springer.

US General Social Survey

Participants were asked to rank 5 aspects about a job: "high income", "no danger of being fired", "short working hours", "chances for advancement", "work important and gives a feeling of accomplishment".

- ▶ 18544 samples collected between 1973 and 2014.
- 8 individual attributes are considered: sex, race, birth cohort, highest educational degree attained, family income, marital status, number of children, household size
- plus 3 attributes of work conditions: working status, employment status, and occupation.

Results:

Risk of decision tree: 2,763 \rightarrow Splitting variables:

1) occupation 2) race 3) degree