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What is ranking data?
Consider a set of items JKK := {1, . . . ,K}.

A ranking is an ordered list (of any size) of items of JKK

Example:J4K := {1, 2, 3, 4}= , , , .

Ask an actor to rank/order them by preference (≻):

: ≻ ≻ ≻

: ≻

: ≻ ≻
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Many applications involve rankings/comparisons
▶ Modelling human preferences (elections, surveys, online

implicit feedback)

=⇒ easier for an individual to rank than to rate
▶ Computer systems (search engines, recommendation systems)

▶ Other (competitions, biological data...)
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Analysis of full rankings

Set of items JKK := {1, . . . ,K}. Ex: {1, 2, 3, 4}

▶ An individual expresses her preferences as a full ranking, i.e a
strict order≻ over the whole set JKK:

a1 ≻ a2 ≻ · · · ≻ aK

Other kind of rankings: Top-k rankings: a1, . . . , ak ≻ the rest, Pairwise comparisons:

a1 ≻ a2

A full ranking can be seen as the permutation σ that maps an item
to its rank:
a1 ≻ · · · ≻ aK ⇔ σ ∈ SK such that σ(ai) = i

2 ≻ 1 ≻ 3 ≻ 4 ⇔ σ = 2134 (σ(2) = 1, σ(1) = 2, . . . )

LetSK be set of permutations of JKK, the symmetric group.
Ex: S4 = 1234, 1324, 1423, . . . , 4321

6/ 32



Analysis of full rankings

Set of items JKK := {1, . . . ,K}. Ex: {1, 2, 3, 4}

▶ An individual expresses her preferences as a full ranking, i.e a
strict order≻ over the whole set JKK:

a1 ≻ a2 ≻ · · · ≻ aK

Other kind of rankings: Top-k rankings: a1, . . . , ak ≻ the rest, Pairwise comparisons:

a1 ≻ a2

A full ranking can be seen as the permutation σ that maps an item
to its rank:
a1 ≻ · · · ≻ aK ⇔ σ ∈ SK such that σ(ai) = i

2 ≻ 1 ≻ 3 ≻ 4 ⇔ σ = 2134 (σ(2) = 1, σ(1) = 2, . . . )

LetSK be set of permutations of JKK, the symmetric group.
Ex: S4 = 1234, 1324, 1423, . . . , 4321

6/ 32



Analysis of full rankings

Set of items JKK := {1, . . . ,K}. Ex: {1, 2, 3, 4}

▶ An individual expresses her preferences as a full ranking, i.e a
strict order≻ over the whole set JKK:

a1 ≻ a2 ≻ · · · ≻ aK

Other kind of rankings: Top-k rankings: a1, . . . , ak ≻ the rest, Pairwise comparisons:

a1 ≻ a2

A full ranking can be seen as the permutation σ that maps an item
to its rank:
a1 ≻ · · · ≻ aK ⇔ σ ∈ SK such that σ(ai) = i

2 ≻ 1 ≻ 3 ≻ 4 ⇔ σ = 2134 (σ(2) = 1, σ(1) = 2, . . . )

LetSK be set of permutations of JKK, the symmetric group.
Ex: S4 = 1234, 1324, 1423, . . . , 4321

6/ 32



Analysis of ranking data: main challenges
ConsiderN individuals expressing their preferences on JKK:
=⇒ results in a dataset ofN rankings/permutations

DN = (σ1, σ2, . . . , σN ) ∈ SN
K

How to analyze it?

▶ A random permutationΣ ∈ SK can be seen as a random
vector (Σ(1), . . . ,Σ(K)) ∈ RK ...
but the random variablesΣ(1), . . . ,Σ(K) are highly
dependent and the sumΣ+ Σ′ is not a random permutation!
⇒ No natural notion of mean or variance forΣ

▶ The set of permutationsSK is finite...
but it has exploding cardinality: |SK | = K!

⇒ Little statistical relevance
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Main approaches 1 - Parametric
▶ Choose a predefined generativemodel on the data and analyze

the data through that model
([Lu and Boutilier, 2014, Zhao et al., 2016, Szörényi et al., 2015])

▶ Mallows [Mallows, 1957]
Parameterized by a central ranking σ0 ∈ SK and a dispersion
parameter γ ∈ R+

P (σ) = Ce−γd(σ0,σ) with d a distance onSK .

▶ Plackett-Luce [Luce, 1959]
Each item i is parameterized bywi withwi ∈ R+:

P (σ) =

K∏
i=1

wσ−1(i)∑n
j=i wσ−1(j)

Ex: 2 ≻ 1 ≻ 3 = w2

w1+w2+w3

w1

w1+w3

▶ may fail to hold on real data (see for instance
[Davidson and Marschak, 1959, Tversky, 1972] on decision
making)
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Main approaches 2 -“Non Parametric”

▶ Choose a structure onSK and analyze the data with respect to
that structure
▶ Harmonic analysis ([Kondor and Barbosa, 2010,

Clémençon et al., 2011, Sibony et al., 2015]

▶ Kernel density smoothing [Sun et al., 2012]

▶ Modeling of pairwise comparisons ([Jiang et al., 2011,
Rajkumar and Agarwal, 2014, Shah and Wainwright, 2017])

▶ Kernel methods [Jiao and Vert, 2015]...
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Label Ranking - A supervised learning problem
NowDN = (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of (X, Σ)

Ex: Users iwith characteristicsXi and their produced
rankings/preferencesΣi.

Goal: Learn a predictive ranking rule :
s : X → SK

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
K items.

≻ ≻ ≻

Example: targeted advertising domain
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Risk minimization for label ranking

Goal: Learn a predictive ranking rule s : X → SK as:

mins : X → SK
R(s), with R(s) = E [∆ (s(X),Σ)]

with∆ some loss function for rankings, e.g.:
▶ Kendall’s τ :

∆τ (σ, σ
′) =

∑
1≤i<j≤K I[(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0]

→ Intuitive when rankings represent preferences

▶ Hamming: ∆H(σ, σ′) =
∑K

i=1 I[σ(i) ̸= σ′(i)].
→ Popular when rankings represent matchings/assignments
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Related Work
▶ Can be seen as an extension of multiclass andmultilabel

classification
▶ Many applications, e.g : document categorization,

meta-learning
▶ rank a set of topics relevant for a given document
▶ rank a set of algorithms according to their suitability for a new

dataset, based on the characteristics of the dataset

▶ A lot of approaches rely on parametric modelling
[Cheng and Hüllermeier, 2009], [Cheng et al., 2010]

We develop an approach free of any parametric assumptions:
=⇒ relying on results and framework developped for structured
prediction
=⇒ exploiting the geometry of well-chosen featuremaps for
rankings
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Structured prediction for label ranking

Goal: Learn a predictive ranking rule s : X → SK as:

mins : X → SK
R(s), with R(s) = E [∆ (s(X),Σ)]

Main idea [Korba et al., 2018] : Consider a family of∆ loss
functions:

∆(σ, σ′) = ∥ϕ(σ)− ϕ(σ′)∥2F .

with ϕ : SK → F some ranking embedding, i.e. that maps the
permutations σ ∈ SK into a Hilbert spaceF (e.g. Rd for d ∈ N).

Motivation: There exist ϕτ , ϕH such that∆τ and∆H write as (??).

15/ 32



Structured prediction - surrogate problem

mins : X → SK
R(s), with R(s) = E

[
∥ϕ(s(X))− ϕ(Σ)∥2F

]
(1)

⇒Hard to optimize.

Idea: Introduce a surrogate problem:

ming : X → FL(g), with L(g) = E
[
∥g(X)− ϕ(Σ)∥2F

]
(2)

⇒ easier to optimize since g has values inF

Let s∗ be aminimizer of (1) and g∗ aminimizer of (2).

16/ 32



Structured Prediction Approach
We can thus approach structured prediction in two steps:
(see [Ciliberto et al., 2016, Brouard et al., 2016])

X SK

F

ĝ

ŝ

d

▶ Step 1 (Regression): with any regression method (kNN, RF, Ridge
regression...) =⇒ Output ĝ : X → F

▶ Step 2 (Pre-image): for any x ∈ X :

ŝ(x) = d ◦ ĝ(x) = argmin
σ ∈ SK

∥ϕ(σ)− ĝ(x)∥2F

Consistency: R(d ◦ g∗) = R(s∗)
=⇒ Choice of ϕ and regression methodmatter
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Detailed method

Firstly pick a loss∆ (⇔ embedding ϕ)

▶ Step 1 (Regression): Learn ĝ : X → F
▶ Step 1 (a): mapDN = (X1,Σ1), . . . , (XN ,ΣN ) to

D′
N = (X1, ϕ(Σ1)), . . . , (XN , ϕ(ΣN ))where ϕ(Σi) ∈ Rm

▶ Step 1 (b): Learn ĝ with any regressor

▶ Step 2 (Pre-image): ∀x ∈ X :
▶ Step 2 (a): Compute ĝ(x)
▶ Step 2 (b): Solve ŝ(x) = argminσ ∈ SK

∥ϕ(σ)− ĝ(x)∥2F

Choice of the embedding ϕ =⇒ complexities of Step 1 (a) and 2 (b)
Choice of the regressor =⇒ complexities of Step 1 (b) and 2 (a)
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∥ϕ(σ)− ĝ(x)∥2F

Choice of the embedding ϕ =⇒ complexities of Step 1 (a) and 2 (b)
Choice of the regressor =⇒ complexities of Step 1 (b) and 2 (a)

18/ 32



Detailed method

Firstly pick a loss∆ (⇔ embedding ϕ)

▶ Step 1 (Regression): Learn ĝ : X → F
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Ranking embeddings proposed - 1
▶ Kemeny embedding ([Jiao and Vert, 2015, Jiao et al., 2016])

ϕτ : SK → RK(K−1)/2

σ 7→ (sign(σ(j)− σ(i)))1≤i<j≤K .

Ex: σ = 132 =⇒ ϕτ (σ) = (1, 1,−1)

20/ 32



Ranking embeddings proposed - 2
▶ Hamming embedding ([Plis et al., 2011])

ϕH : SK → RK×K

σ 7→ (I{σ(i) = j})1≤i,j≤K ,

Ex: σ = 132 =⇒ ϕH(σ) =
(

1 0 0
0 0 1
0 1 0

)

▶ Lehmer embedding ([Li et al., 2017])

ϕL : SK → RK

σ 7→ (#{i : i < j, σ(i) > σ(j)})j=1,...,K ,

”number of elements iwith index smaller than j that are ranked
higher than j in the permutation σ”

Ex: σ = 132 =⇒ ϕL(σ) = (0, 0, 1)
σ = 321 =⇒ ϕL(σ) = (0, 1, 2)
Im(ϕL) = CK = {0} × J0, 1K × J0, 2K × · · · × J0,K − 1K
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Computational analysis of the pre-image step - 2 (b)

Now suppose ĝ(x) is known (after the learning step).

argmin
σ ∈ SK

∥ϕ(σ)− ĝ(x)∥2F

For embeddings with constant norm (∥ϕ(σ)∥ = C for any σ, e.g.
Kemeny and Hamming), it can be rewritten:

argmax
σ ∈ SK

⟨ϕ(σ), ĝ(x)⟩F

The solution comes in two steps:
1. Find the embedded object ϕσ in Im(ϕ) ⊂ F which maximizes

the linear program.
2. Invert the embedding to get σ

23/ 32



Pre-image for the Kemeny embedding

To encode the transitivity constraint we introduce
ϕ′
σ = (ϕ′

σ)i,j ∈ RK(K−1) defined by
(ϕ′

σ)i,j = (ϕσ)i,j if 1 ≤ i < j ≤ K and (ϕ′
σ)i,j = −(ϕσ)i,j else

then the problem becomes.

ϕ̂σ = argmin
ϕσ

′

∑
1≤i,j≤K

ĝ(x)i,j(ϕ
′
σ)i,j ,

s.c.


(ϕ′

σ)i,j ∈ {−1, 1} ∀ i, j

(ϕ′
σ)i,j + (ϕ′

σ)j,i = 0 ∀ i, j

−1 ≤ (ϕ′
σ)i,j + (ϕ′

σ)j,k + (ϕ′
σ)k,i ≤ 1 ∀ i, j, k s.t. i ̸= j ̸= k.

Minimal feedback Arc Set problem→ NP-Hard
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Pre-image for the Hamming embedding

Enforce the constraints of Hamming representations

ϕ̂σ = argmax
ϕσ

∑
1≤i,j≤K

ĝ(x)i,j(ϕσ)i,j ,

s.c

{
(ϕσ)i,j ∈ {0, 1} ∀ i, j∑

i(ϕσ)i,j =
∑

j(ϕσ)i,j = 1 ∀ i, j ,

=⇒ Bipartite graphmatching problem.

Solved inO(K3)with the Hungarian Algorithm.
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Pre-image for the Lehmer Embedding

Recall: ϕL(σ) ∈ CK = {0} × J0, 1K × J0, 2K × · · · × J0,K − 1K,
where for j = 1, . . . ,K:

ϕL(σ)(j) = #{i : i < j, σ(i) > σ(j)}

number of elements iwith index smaller than j that are ranked higher
than j in the permutation σ.

The decoupled coordinates enable a trivial solving of the pre-image
problem:

ŝ(x) = ϕ−1
L ◦ dL︸ ︷︷ ︸

d

◦ĝ(x) with
dL : RK → CK

(hi)i=1,...,K 7→ (argmin
j∈J0,i−1K(hi − j))i=1,...,K

where d is the global decoding function.

26/ 32
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where for j = 1, . . . ,K:

ϕL(σ)(j) = #{i : i < j, σ(i) > σ(j)}

number of elements iwith index smaller than j that are ranked higher
than j in the permutation σ.

The decoupled coordinates enable a trivial solving of the pre-image
problem:

ŝ(x) = ϕ−1
L ◦ dL︸ ︷︷ ︸

d
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Theoretical guarantees
For Kemeny and Hamming embedding:
▶ consistency holds: R(d ◦ g∗) = R(s∗) and:

R(d ◦ ĝ)−R(s∗) ≤ cϕ
√

L(ĝ)− L(g∗)

with cϕτ =

√
K(K−1)

2 and cϕH
=

√
K (constants withK)

▶ but the pre-image step is hard : NP-hard for Kemeny,O(K3)
for Hamming (K=number of labels)

In contrast, for the Lehmer embedding:
▶ we lose consistency:

R(d ◦ ĝ)−R(s∗) ≤
√

K(K − 1)

2

√
L(ĝ)− L(g∗)

+R(d ◦ g∗)−R(s∗)

▶ but the pre-image step is simple: O(K)
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R(d ◦ ĝ)−R(s∗) ≤
√

K(K − 1)

2

√
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Total complexity

Algorithmic analysis (forK objects to rank,N examples andm
dimension of ϕ(σ))

ϕ Step 1 (a) Step 2 (b)
ϕτ O(K2N) NP-hard
ϕH O(KN) O(K3N)
ϕL O(KN) O(KN)

Regressor Step 1 (b) Step 2 (a)
kNN O(1) O(Nm)
Ridge O(N3) O(Nm)

Embeddings and regressors complexities.

The Lehmer embedding with kNN regressor thus provides the
fastest (linear) theoretical complexity ofO(KN) at the cost of
weaker theoretical guarantees.
And now in practice?
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Structured prediction - Numerical results

Table: Mean Kendall’s τ coefficient on benchmark datasets

authorship glass iris vehicle vowel wine

kNN Hamming 0.01±0.02 0.08±0.04 -0.15±0.13 -0.21±0.04 0.24±0.04 -0.36±0.04
kNN Kemeny 0.94±0.02 0.85±0.06 0.95±0.05 0.85±0.03 0.85±0.02 0.94±0.05
kNN Lehmer 0.93±0.02 0.85±0.05 0.95±0.04 0.84±0.03 0.78±0.03 0.94±0.06
ridge Hamming -0.00±0.02 0.08±0.05 -0.10±0.13 -0.21±0.03 0.26±0.04 -0.36±0.03
ridge Lehmer 0.92±0.02 0.83±0.05 0.97±0.03 0.85±0.02 0.86±0.01 0.84±0.08
ridge Kemeny 0.94±0.02 0.86±0.06 0.97±0.05 0.89±0.03 0.92±0.01 0.94±0.05

Cheng PL 0.94±0.02 0.84±0.07 0.96±0.04 0.86±0.03 0.85±0.02 0.95±0.05
Cheng LWD 0.93±0.02 0.84±0.08 0.96±0.04 0.85±0.03 0.88±0.02 0.94±0.05
Zhou RF 0.91 0.89 0.97 0.86 0.87 0.95

Kendall’s τ coefficient corresponds to a rescaling of Kendall’s tau
distance dτ between [-1,1] (so the closer from 1 is the better)
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Extension to partial and incomplete rankings

Different types of rankings:
▶ Full: a1 ≻ a2 ≻ · · · ≻ aK
▶ Partial: a1, .., ak1 ≻ · · · ≻ akr−1+1, .., akr with

∑r
i=1 ki = K

▶ Incomplete: a1 ≻ · · · ≻ ak with k < K

Can we extend our approach to take as input these types of
rankings?

▶ Hamming: absolute information−→ No
▶ Kemeny: relative information−→ Yes
▶ Lehmer: both−→ Yes for partial, no for incomplete

Extending our approach to predict other types of rankings is
mathematically more challenging.
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Conclusion

▶ Flexible framework to optimize various ranking losses

▶ Statistical and Algorithmic analysis: Optimizing ’good’ losses
has a price.

▶ Possible extensions to predict partial / incomplete ranking and
improve scalability

▶ Code available: https://github.com/akorba/Structured_
Approach_Label_Ranking
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