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Ranking Regression
Consider:
▶ A set of n items: JnK = {1, . . . , n} (Ex: {1, 2, 3, 4})
▶ A individual expresses her preferences as (full) ranking, i.e a

strict order≻ over n :

a1 ≻ a2 ≻ · · · ≻ an (Ex: 2 ≻ 1 ≻ 3 ≻ 4)

▶ Also seen as the permutation σ that maps an item to its rank:

a1 ≻ · · · ≻ an ⇔ σ ∈ Sn such that σ(ai) = i

Ex: σ(2) = 1, σ(1) = 2, . . . Sn: set of permutations of JnK, the
symmetric group.

Problem: Given a vectorX (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutationΣ inSn.

=⇒ ≻ ≻ ≻
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Related Work

▶ Has been referred to as label ranking in the literature
[Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]

▶ Related to multiclass andmultilabel classification
▶ A lot of applications, e.g : document categorization,

meta-learning
▶ rank a set of topics relevant for a given document
▶ rank a set of algorithms according to their suitability for a new

dataset, based on the characteristics of the dataset

▶ A lot of approaches rely on parametric modelling
[Cheng and Hüllermeier, 2009], [Cheng et al., 2009],
[Cheng et al., 2010]

⇒We develop an approach free of any parametric assumptions
(local learning) relying on results and framework developped in
[Korba et al., 2017] for ranking aggregation.
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Our Problem
Suppose we observe (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of the
pair (X, Σ), where
▶ X ∼ µ, where µ is a distribution on some feature spaceX
▶ Σ ∼ PX , where PX is the conditional probability distribution

(onSn): PX(σ) = P[Σ = σ|X]

Ex: Users iwith characteristicsXi order items by preference resulting
inΣi.

Goal: Learn a predictive ranking rule :
s : X → Sn

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
n items.

Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition ofX built
from the training data (X1,Σ1), . . . , (XN ,ΣN ).
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Piecewise Constant Ranking Rules
LetP = {C1, . . . , CK} be a partition of the feature spaceX .
Any s ∈SP (ranking rules that are constant on each cell ofP) can be
written as:

sP,σ̄(x) =

K∑
k=1

σk · I{x ∈ Ck}where σ̄ = (σ1, . . . , σK)

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)

7



Piecewise Constant Ranking Rules
LetP = {C1, . . . , CK} be a partition of the feature spaceX .
Any s ∈SP (ranking rules that are constant on each cell ofP) can be
written as:

sP,σ̄(x) =

K∑
k=1

σk · I{x ∈ Ck}where σ̄ = (σ1, . . . , σK)

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)

7



Compute Local Labels/Medians
For classification, the label of a cell (ex: a leaf) is themajority label
among the training data which fall in this cell.

Problem: Our labels are permutations σ:
For a cell Ck, if σ1, . . . , σN ∈ Ck, how do we aggregate them into a
final label σ∗?
=⇒ Ranking aggregation problem.
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Ranking Aggregation
Suppose we have a dataset of rankings/permutations
DN = (σ1, . . . , σN )∈ SN

n . We want to find a global order
(”consensus”) σ∗ on the n items that best represents the dataset.

Kemeny’s rule (1959)
Find the solution of :

σ∗ = argmin
σ∈Sn

N∑
k = 1

d(σ, σk)

where d is the Kendall’s tau distance:

dτ (σ, σ
′) =

∑
i<j

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

Ex: σ= 1234, σ′= 2413⇒ dτ (σ, σ
′) = 3 (disagree on (12),(14),(34)).

Problem: Solving (1) is NP-hard.
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Other methods
Idea: Compute a score for each object i ∈ {1, . . . , n}, and sort the
objets according to these scores.
▶ Borda score of i (average rank):

sB(i) =
1
N

∑N
t=1(n+ 1− σt(i))

▶ Copeland score of i (nb or pairwise victories):
sC(i) =

1
N

∑N
t=1

∑
j ̸=i I[σt(i) < σt(j)]

Borda Copeland

Problem: Do not verify as many properties as Kemeny’s rule.
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Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

DN = (Σ1, . . . ,ΣN ) with Σk ∼ P

where P∼ Sn.

Definition
A Kemenymedian of P is solution of:

σ∗
P = argmin

σ∈Sn

LP (σ), (1)

whereLP (σ) = EΣ∼P [d(σ,Σ)] is the risk of σ.

Question: Can we exhibit some conditions on P so that solving (1)
is tractable?
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Exact Solutions [Korba et al., 2017]
Let pi,j = P[Σ(i) < Σ(j)] (probability that item i ≻ j).

Strict Stochastic Transitivity (SST):
pi,j > 1/2 and pj,k > 1/2 ⇒ pi,k > 1/2.

Low-Noise conditionNA(h) for some h > 0:
min
i<j

|pi,j − 1/2| ≥ h.

Our result
Suppose P satisfies SST and NA(h) for a given h > 0. Then with
overwhelming probability 1− n(n−1)

4 e−αhN :

P̂ also verifies SST...and the Kemenymedian of P is given by the
empirical Copeland ranking:

σ∗
P (i) = 1 +

∑
j ̸=i

I{p̂i,j <
1

2
} for 1 ≤ i ≤ n
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Graph of pairwise probabilities

i

j

k

l

p̂ i,
j
>
1/
2

p̂i,k > 1/2

p̂
i,l >

1/2
p̂
k
,j
>
1/2

p̂ l
,k
>
1/
2

σ∗
P (i) = 1 +

∑
j ̸=i

I{p̂i,j <
1

2
}

⇒ sort the i’s by increasing input degree
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In practice: Pseudo-empirical Kemeny Medians
▶ If P̂ is SST, compute σ∗

P̂
with Copelandmethod based on p̂i,j

▶ Else, compute σ̃∗
P̂
with empirical Borda count ([Jiang et al., 2011])

σ̃∗
P̂
(i) =

1

N

N∑
k=1

Σk(i) for 1 ≤ i ≤ n
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Our Problem
Suppose we observe (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of the
pair (X, Σ), where
▶ X ∼ µ, where µ is a distribution on some feature spaceX
▶ Σ ∼ PX , where PX is the conditional probability distribution

(onSn): PX(σ) = P[Σ = σ|X]

Ex: Users iwith characteristicsXi order items by preference resulting
inΣi.

Goal: Learn a predictive ranking rule :
s : X → Sn

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
n items.

Performance: Measured by the risk:

R(s) = EX ∼ µ,Σ ∼ PX
[dτ (s(X),Σ)]
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Ranking Median Regression Approach

R(s) = EX∼µ [EΣ∼PX
[dτ (s(X),Σ)]] = EX∼µ [LPX

(s(X))] (2)

Assumption
ForX ∈ X , PX is SST:⇒ σ∗

PX
= argminσ∈Sn

LPX
(σ) is unique.

Optimal elements
The predictors s∗ minimizing (2) are the ones that maps any point
X ∈ X to the conditional Kemenymedian of PX :

s∗ = argmin
s∈S

R(s) ⇔ s∗(X) = σ∗
PX

Tominimize (2) approximately:

σ∗
PX

for anyX =⇒ σ∗
PC for anyX ∈ C

⇒We develop Local consensus methods.
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Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the
training data (Xk,Σk)’s:

min
s∈S

R̂N (s) =
1

N

N∑
k=1

dτ (s(Xk), Σk)

where S is the set of measurable mappings.

⇒We consider a subset SP ⊂ S :
▶ rich enough so that infs∈SP R(s)− infs∈S R(s) is ”small”
▶ ideally appropriate for greedy optimization.

⇒SP= space of piecewise constant ranking rules (”local consensus
methods”)
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Piecewise Constant Ranking Rules

LetP = {C1, . . . , CK} be a partition of the feature spaceX .
Any s ∈SP (ranking rules that are constant on each cell ofP) can be
written as:

sP,σ̄(x) =
K∑
k=1

σk · I{x ∈ Ck}where σ̄ = (σ1, . . . , σK)

Local Learning
Let PCk the cond. distr. ofΣ givenX ∈ Ck:
PCk(σ) = P[Σ = σ|X ∈ Ck]

Recall: PX is SST for anyX ∈ X .

Idea: PCk is still SST and σ∗
PC

= σ∗
PX

provided the Ck’s are small
enough.

21
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Theorem
Suppose that:
There existsM < ∞ such that:
∀(x, x′) ∈ X 2,

∑
i<j |pi,j(x)− pi,j(x

′)| ≤ M · ||x− x′||.
Then:

R(s∗P)−R(s∗) ≤ M.δP

where δP is the max. diameter ofP ’s cells.

Suppose in addition that:
For all x ∈ X , Px ∈ T andH = infx∈X mini<j |pi,j(x)− 1/2| > 0.
and that PC ∈ T for all C ∈ P .
Then,

E
[
dτ

(
σ∗
PX

, s∗P(X)
)]

≤ sup
x∈X

dτ
(
σ∗
Px
, s∗P(x)

)
≤ (M/H) · δP
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Partitioning Methods
Goal: Generate partitionsPN from the training data
(X1,Σ1), . . . , (XN ,ΣN ).

For C ∈ PN , consider its empirical distribution:

P̂C =
1

NC

∑
k:Xk∈C

δΣk

and compute locally its Pseudo-Empirical Kemenymedian σ̃∗
P̂C
.

Twomethods are investigated:
▶ k-nearest neighbor (Voronoi partitioning)

▶ decision tree (Recursive partitioning)
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K-Nearest Neigbors Algorithm
1. Fix k ∈ {1, . . . , N} and a query point x ∈ X
2. Sort (X1,Σ1), . . . , (XN ,ΣN ) by increasing order of the

distance to x : ∥X(1,N) − x∥ ≤ . . . ≤ ∥X(N,N) − x∥
3. Consider next the empirical distribution calculated using the k

training points closest to x

P̂ (x) =
1

k

k∑
l=1

δΣ(l,N)

and compute the pseudo-empirical Kemenymedian, yielding
the k-NN prediction at x:

sk,N (x)
def
= σ̃∗

P̂ (x)
.

⇒We recover the classical boundR(sk,N )−R∗ = O( 1√
k
+ k

N )
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Decision Tree
Split recursively the feature spaceX to minimize some impurity
criterion.
Analog to Gini criterion in classification: m classes, fi proportion of
class i→ IG(f) =

∑m
i=1 fi(1− fi)

Here, for a cell C ∈ PN :
▶ Impurity [Alvo and Philip, 2014]:

γ
P̂C

=
1

2

∑
i<j

p̂i,j(C) (1− p̂i,j(C))

which is tractable and satisfies the double inequality

γ̂
P̂C

≤ min
σ∈Sn

L
P̂C
(σ) ≤ 2γ̂

P̂C
.

▶ Terminal value : Compute the pseudo-empirical median of a
cell C:

sC(x)
def
= σ̃∗

P̂C
.
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Conclusion

Interesting challenges:
▶ Most of the maths from euclidean spaces cannot be applied
▶ But our insights still hold
▶ Based on our results on ranking aggregation, we develop a

novel approach to ranking regression/label ranking
▶ Theoretical guarantees (approximation error, rates of

convergence)
▶ We propose two practical algorithms

Openings: How to extend to incomplete rankings (+with ties)?
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