Ranking Median Regression: Learning to Order through Local Consensus

Anna Korba* Stephan Clémençon* Eric Sibony[†]

* Telecom ParisTech, † Shift Technology

CAp 2018

Outline

- 1. Ranking Regression
- 2. Background on Ranking Aggregation/Medians
- 3. Risk Minimization for Ranking (Median) Regression
- 4. Algorithms Local Median Methods

Outline

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Consider:

• A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)

Consider:

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A individual expresses her preferences as (full) ranking, i.e a strict order ≻ over n :

 $a_1 \succ a_2 \succ \cdots \succ a_n \quad (\mathsf{Ex:} \ 2 \succ 1 \succ 3 \succ 4)$

Consider:

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A individual expresses her preferences as (full) ranking, i.e a strict order ≻ over n :

$$a_1 \succ a_2 \succ \cdots \succ a_n$$
 (Ex: $2 \succ 1 \succ 3 \succ 4$)

• Also seen as the permutation σ that maps an item to its rank:

 $a_1 \succ \cdots \succ a_n \quad \Leftrightarrow \quad \sigma \in \mathfrak{S}_n \text{ such that } \sigma(a_i) = i$

Ex: $\sigma(2) = 1, \sigma(1) = 2, \dots \Rightarrow \sigma = 2134$

Consider:

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A individual expresses her preferences as (full) ranking, i.e a strict order ≻ over n :

$$a_1 \succ a_2 \succ \cdots \succ a_n$$
 (Ex: $2 \succ 1 \succ 3 \succ 4$)

• Also seen as the permutation σ that maps an item to its rank:

 $a_1 \succ \cdots \succ a_n \quad \Leftrightarrow \quad \sigma \in \mathfrak{S}_n \text{ such that } \sigma(a_i) = i$

Ex: $\sigma(2) = 1, \sigma(1) = 2, \dots \Rightarrow \sigma = 2134$

• \mathfrak{S}_n : set of permutations of [n], the symmetric group.

Consider:

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A individual expresses her preferences as (full) ranking, i.e a strict order ≻ over n :

$$a_1 \succ a_2 \succ \cdots \succ a_n$$
 (Ex: $2 \succ 1 \succ 3 \succ 4$)

• Also seen as the permutation σ that maps an item to its rank:

 $a_1 \succ \cdots \succ a_n \quad \Leftrightarrow \quad \sigma \in \mathfrak{S}_n \text{ such that } \sigma(a_i) = i$

Ex: $\sigma(2) = 1, \sigma(1) = 2, \dots \Rightarrow \sigma = 2134$

• \mathfrak{S}_n : set of permutations of [n], the symmetric group.

Problem: Given a vector X (e.g, the characteristics of an individual), the goal is to predict (her preferences) as a random permutation Σ in \mathfrak{S}_n .

Consider:

- A set of *n* items: $[n] = \{1, ..., n\}$ (Ex: $\{1, 2, 3, 4\}$)
- A individual expresses her preferences as (full) ranking, i.e a strict order ≻ over n :

$$a_1 \succ a_2 \succ \cdots \succ a_n$$
 (Ex: $2 \succ 1 \succ 3 \succ 4$)

• Also seen as the permutation σ that maps an item to its rank:

 $a_1 \succ \cdots \succ a_n \quad \Leftrightarrow \quad \sigma \in \mathfrak{S}_n$ such that $\sigma(a_i) = i$

Ex: $\sigma(2) = 1, \sigma(1) = 2, \dots \Rightarrow \sigma = 2134$

• \mathfrak{S}_n : set of permutations of [n], the symmetric group.

Problem: Given a vector X (e.g, the characteristics of an individual), the goal is to predict (her preferences) as a random permutation Σ in \mathfrak{S}_n .

Related Work

- ► Has been referred to as **label ranking** in the literature [Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]
- Related to multiclass and multilabel classification
- A lot of applications, e.g : document categorization, meta-learning
 - rank a set of topics relevant for a given document
 - rank a set of algorithms according to their suitability for a new dataset, based on the characteristics of the dataset
- A lot of approaches rely on parametric modelling [Cheng and Hüllermeier, 2009], [Cheng et al., 2009], [Cheng et al., 2010]

Related Work

- ► Has been referred to as **label ranking** in the literature [Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]
- Related to multiclass and multilabel classification
- A lot of applications, e.g : document categorization, meta-learning
 - rank a set of topics relevant for a given document
 - rank a set of algorithms according to their suitability for a new dataset, based on the characteristics of the dataset
- A lot of approaches rely on parametric modelling [Cheng and Hüllermeier, 2009], [Cheng et al., 2009], [Cheng et al., 2010]

⇒ We develop an approach free of any parametric assumptions (**local learning**) relying on results and framework developped in [Korba et al., 2017] for **ranking aggregation**.

Our Problem

Suppose we observe $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$ i.i.d. copies of the pair (X, Σ) , where

- $X \sim \mu$, where μ is a distribution on some feature space \mathcal{X}
- $\Sigma \sim P_X$, where P_X is the conditional probability distribution (on \mathfrak{S}_n): $P_X(\sigma) = \mathbb{P}[\Sigma = \sigma | X]$

Ex: Users *i* with characteristics X_i order items by preference resulting in Σ_i .

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Objective

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$

Objective

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_{\tau} \left(s(X), \Sigma \right) \right]$$

where d is the Kendall's tau distance, i.e. for $\sigma, \sigma' \in \mathfrak{S}_n$:

$$d_{\tau}(\sigma, \sigma') = \sum_{1 \le i < j \le n} \mathbb{I}\{(\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0\},\$$

Ex: σ = 1234, σ' = 2413 $\Rightarrow d_{\tau}(\sigma, \sigma') = 3$ (disagree on (12),(14),(34)).

Piecewise Constant Ranking Rules

Our approach: build *piecewise constant* ranking rules, i.e: Ranking rules that are constant on each cell of a partition of \mathcal{X} built from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Piecewise Constant Ranking Rules

Our approach: build *piecewise constant* ranking rules, i.e: Ranking rules that are constant on each cell of a partition of \mathcal{X} built from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

Two methods are investigated:

k-nearest neighbor (Voronoi partitioning)

decision tree (Recursive partitioning)

Compute Local Labels/Medians

For classification, the label of a cell (ex: a leaf) is the **majority** label among the training data which fall in this cell.

Ex: 4 classes; green, red, blue, yellow \rightarrow green will be the label for the right cell.

Compute Local Labels/Medians

For classification, the label of a cell (ex: a leaf) is the **majority** label among the training data which fall in this cell.

Ex: 4 classes; green, red, blue, yellow \rightarrow green will be the label for the right cell.

Problem: Our labels are *permutations* σ :

For a cell C, if $\sigma_1, \ldots, \sigma_N \in C$, how do we aggregate them into a final label σ^* ?

 \implies Ranking aggregation problem.

Outline

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \sum_{k=1}^{N} d(\sigma, \sigma_k)$$

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \underset{\sigma \in \mathfrak{S}_n}{\operatorname{argmin}} \sum_{k=1}^{N} d(\sigma, \sigma_k)$$

Problem: NP-hard.

Suppose we have a dataset of rankings/permutations $\mathcal{D}_N = (\sigma_1, \dots, \sigma_N) \in \mathfrak{S}_n^N$. We want to find a global order ("consensus") σ^* on the *n* items that best represents the dataset.

Kemeny's rule (1959) - Optimization pb

Solve
$$\sigma^* = \operatorname*{argmin}_{\sigma \in \mathfrak{S}_n} \sum_{k=1}^N d(\sigma, \sigma_k)$$

Problem: NP-hard.

Copeland method - Scoring method

Sort the items i according to their Copeland score s_C :

$$s_C(i) = \frac{1}{N} \sum_{\substack{k=1 \ j \neq i}}^N \sum_{\substack{j=1 \ j \neq i}}^n \mathbb{I}[\sigma_k(i) < \sigma_k(j)]$$

which counts the number of pairwise victories of item *i* over the other items $j \neq i \Rightarrow O(n^2 N)$ complexity.

Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

 $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$ with $\Sigma_k \sim P$

where P distribution on \mathfrak{S}_n .

Statistical Ranking Aggregation [Korba et al., 2017]

Probabilistic Modeling

 $\mathcal{D}_N = (\Sigma_1, \dots, \Sigma_N)$ with $\Sigma_k \sim P$

where P distribution on \mathfrak{S}_n .

Definition A **Kemeny median** of *P* is solution of:

 $\sigma_{P}^{*} = \operatorname*{argmin}_{\sigma \in \mathfrak{S}_{n}} L_{P}(\sigma), \tag{1}$

where $L_{\mathbf{P}}(\sigma) = \mathbb{E}_{\Sigma \sim \mathbf{P}}[d(\sigma, \Sigma)]$ is **the risk** of σ .

Question: Can we exhibit some conditions on P so that solving (1) is tractable?

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

 $p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$$

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2$$
 and $p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2$.

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result Suppose P satisfies **SST and NA**(h) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$:

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2$$
 and $p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2$.

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result Suppose *P* satisfies **SST and NA**(*h*) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$: \hat{P} also verifies **SST**...

Let $p_{i,j} = \mathbb{P}[\Sigma(i) < \Sigma(j)]$ prob. that item $i \succ j$ (is preferred to).

Strict Stochastic Transitivity (**SST**): $(p_{i,j} \neq 1/2 \ \forall i, j)$

$$p_{i,j} > 1/2 \text{ and } p_{j,k} > 1/2 \Rightarrow p_{i,k} > 1/2.$$

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):

 $\min_{i< j} |p_{i,j} - 1/2| \ge h.$

Our result

Suppose P satisfies **SST and NA**(h) for a given h > 0. Then with overwhelming probability $1 - \frac{n(n-1)}{4}e^{-\alpha_h N}$:

 \widehat{P} also verifies **SST**...and the Kemeny median of P is given by the empirical Copeland ranking:

$$\sigma_{\pmb{P}}^*(i) = 1 + \sum_{j \neq i} \mathbb{I}\{\widehat{p_{i,j}} < \frac{1}{2}\} \quad \text{ for } 1 \le i \le n$$

Graph of pairwise probabilities

$$\sigma_P^*(i) = 1 + \sum_{i \neq i} \mathbb{I}\{\widehat{p}_{i,j} < \frac{1}{2}\} \quad \text{for } 1 \leq i \leq n$$

 \Rightarrow sort the *i*'s by increasing input degree

Outline

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[\mathbb{E}_{\Sigma \sim \mathbf{P}_X} \left[d_\tau \left(s(X), \Sigma \right) \right] \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[L_{\mathbf{P}_X} \left(s(X) \right) \right]$$

Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :

 $s : \mathcal{X} \to \mathfrak{S}_n$ $x \mapsto s(x)$ which given a random vector X, predicts the permutation Σ on the n items.

Performance: Measured by the risk:

$$\mathcal{R}(s) = \mathbb{E}_{X \sim \mu, \Sigma \sim P_X} \left[d_\tau \left(s(X), \Sigma \right) \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[\mathbb{E}_{\Sigma \sim \mathbf{P}_X} \left[d_\tau \left(s(X), \Sigma \right) \right] \right]$$
$$= \mathbb{E}_{X \sim \mu} \left[L_{\mathbf{P}_X} \left(s(X) \right) \right]$$

 \Rightarrow Ranking regression is an extension of ranking aggregation.

Optimal Elements and Relaxation

Assumption

For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal Elements and Relaxation

Assumption For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal elements

The predictors s^* minimizing $\mathcal{R}(s)$ are the ones that maps any point $X \in \mathcal{X}$ to the **conditional** Kemeny median of P_X :

$$s^* = \operatorname*{argmin}_{s \in \mathcal{S}} \mathcal{R}(s) \ \Leftrightarrow \ s^*(X) = \sigma^*_{\underset{P_X}{P_X}}$$

Optimal Elements and Relaxation

Assumption

For $X \in \mathcal{X}$, P_X is **SST**: $\Rightarrow \sigma^*_{P_X} = \operatorname{argmin}_{\sigma \in \mathfrak{S}_n} L_{P_X}(\sigma)$ is **unique**.

Optimal elements

The predictors s^* minimizing $\mathcal{R}(s)$ are the ones that maps any point $X \in \mathcal{X}$ to the **conditional** Kemeny median of P_X :

$$s^* = \operatorname*{argmin}_{s \in \mathcal{S}} \mathcal{R}(s) \ \Leftrightarrow \ s^*(X) = \sigma^*_{P_X}$$

To minimize the risk $\mathcal{R}(s)$ approximately:

$$\sigma^*_{P_X}$$
 for any $X \Longrightarrow \sigma^*_{P_C}$ for any $X \in \mathcal{C}$

where $P_{\mathcal{C}}(\sigma) = \mathbb{P}[\Sigma = \sigma | X \in \mathcal{C}].$

 \Rightarrow We develop Local consensus methods.

Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the training data (X_k, Σ_k) 's:

$$\min_{s \in \mathcal{S}} \widehat{\mathcal{R}}_{N}(s) = \frac{1}{N} \sum_{k=1}^{N} d_{\tau}(s(\boldsymbol{X}_{k}), \boldsymbol{\Sigma}_{k})$$

where $\ensuremath{\mathcal{S}}$ is the set of measurable mappings.

Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the training data (X_k, Σ_k) 's:

$$\min_{s \in \mathcal{S}} \widehat{\mathcal{R}}_{N}(s) = \frac{1}{N} \sum_{k=1}^{N} d_{\tau}(s(\boldsymbol{X}_{k}), \boldsymbol{\Sigma}_{k})$$

where ${\cal S}$ is the set of measurable mappings.

- $\Rightarrow \mathsf{We \ consider \ a \ subset} \ \mathcal{S}_\mathcal{P} \subset \mathcal{S}:$
 - ▶ rich enough so that $\inf_{s \in S_P} \mathcal{R}(s) \inf_{s \in S} \mathcal{R}(s)$ is "small"
 - ideally appropriate for greedy optimization.

 \Rightarrow $\mathcal{S}_{\mathcal{P}}\text{=}$ space of piecewise constant ranking rules ("local consensus methods")

Our results

Rates of convergence

- classical rates $\mathcal{O}(1/\sqrt{N})$ for ERM.
- fast rates $\mathcal{O}(1/N)$ under a "uniform" **NA**(*h*).

Approximation Error

Suppose that:

There exists $M < \infty$ such that:

 $\forall (x,x') \in \mathcal{X}^2, \ \sum_{i < j} |p_{i,j}(x) - p_{i,j}(x')| \le M \cdot ||x - x'||.$ Then:

$$\mathcal{R}(s_{\mathcal{P}}^*) - \mathcal{R}(s^*) \le M.\delta_{\mathcal{P}}$$

where $\delta_{\mathcal{P}}$ is the max. diameter of \mathcal{P} 's cells.

Outline

Ranking Regression

Background on Ranking Aggregation/Medians

Risk Minimization for Ranking (Median) Regression

Algorithms - Local Median Methods

Partitioning Methods

Goal: Generate partitions \mathcal{P}_N from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

For $\mathcal{C} \in \mathcal{P}_N$, consider its empirical distribution:

$$\widehat{P}_{\mathcal{C}} = \frac{1}{N_{\mathcal{C}}} \sum_{k: X_k \in \mathcal{C}} \delta_{\Sigma_k}$$

and compute locally its Empirical Kemeny median $\widetilde{\sigma}^*_{\widehat{P}_{\mathcal{C}}}.$

Partitioning Methods

Goal: Generate partitions \mathcal{P}_N from the training data $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$.

For $\mathcal{C} \in \mathcal{P}_N$, consider its empirical distribution:

$$\widehat{P}_{\mathcal{C}} = \frac{1}{N_{\mathcal{C}}} \sum_{k: X_k \in \mathcal{C}} \delta_{\Sigma_k}$$

and compute locally its Empirical Kemeny median $\widetilde{\sigma}^*_{\widehat{P}^2}$.

Two methods are investigated:

k-nearest neighbor (Voronoi partitioning)

decision tree (Recursive partitioning)

K-Nearest Neigbors Algorithm

- 1. Fix $k \in \{1, \ldots, N\}$ and a query point $x \in \mathcal{X}$
- 2. Sort $(X_1, \Sigma_1), \ldots, (X_N, \Sigma_N)$ by increasing order of the distance to $x : ||X_{(1,N)} x|| \le \ldots \le ||X_{(N,N)} x||$
- 3. Consider next the empirical distribution calculated using the k training points closest to \boldsymbol{x}

$$\widehat{P}(x) = \frac{1}{k} \sum_{l=1}^{k} \delta_{\Sigma_{(l,N)}}$$

and compute the pseudo-empirical Kemeny median, yielding the *k*-NN prediction at *x*:

$$s_{k,N}(x) \stackrel{def}{=} \widetilde{\sigma}^*_{\widehat{P}(x)}.$$

 \Rightarrow We recover the classical bound $\mathcal{R}(s_{k,N}) - \mathcal{R}^* = \mathcal{O}(\frac{1}{\sqrt{k}} + \frac{k}{N})$

Decision Tree

- Split recursively the feature space $\ensuremath{\mathcal{X}}$ to minimize some impurity criterion.
- Analog to Gini criterion in multiclassification: m classes, f_i proportion of class $i \to I_G(f) = \sum_{i=1}^m f_i(1 - f_i)$

Decision Tree

Split recursively the feature space $\ensuremath{\mathcal{X}}$ to minimize some impurity criterion.

Analog to Gini criterion in multiclassification: m classes, f_i proportion of class $i \to I_G(f) = \sum_{i=1}^m f_i(1-f_i)$

Here, for a cell $C \in \mathcal{P}_N$:

Impurity [Alvo and Philip, 2014]:

$$\gamma_{\widehat{P}_{\mathcal{C}}} = \frac{1}{2} \sum_{i < j} \widehat{p}_{i,j}(\mathcal{C}) \left(1 - \widehat{p}_{i,j}(\mathcal{C})\right)$$

which is tractable and satisfies the double inequality

$$\widehat{\gamma}_{\widehat{P}_{\mathcal{C}}} \leq \min_{\sigma \in \mathfrak{S}_n} L_{\widehat{P}_{\mathcal{C}}}(\sigma) \leq 2\widehat{\gamma}_{\widehat{P}_{\mathcal{C}}}.$$

Terminal value : Compute the pseudo-empirical median of a cell C:

$$s_{\mathcal{C}}(x) \stackrel{def}{=} \widetilde{\sigma}^*_{\widehat{P}_{\mathcal{C}}}.$$

Conclusion

Interesting challenges:

- Most of the maths from euclidean spaces cannot be applied, but our insights still hold
- Based on our results on ranking aggregation, we develop a novel approach to ranking regression/label ranking
- Theoretical guarantees
- We propose two practical algorithms

Openings: How to extend to incomplete rankings (+with ties)?

Alvo, M. and Philip, L. (2014).
 Decision tree models for ranking data.
 In *Statistical Methods for Ranking Data*, pages 199–222.
 Springer.

- Audibert, J.-Y. and Tsybakov, A. (2007). Fast learning rates for plug-in classifiers. Annals of statistics, 35(2):608–633.
- Cheng, W., Dembczyński, K., and Hüllermeier, E. (2010).
 Label ranking methods based on the Plackett-Luce model.
 In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 215–222.
- Cheng, W., Hühn, J., and Hüllermeier, E. (2009).
 Decision tree and instance-based learning for label ranking.
 In Proceedings of the 26th International Conference on Machine Learning (ICML-09), pages 161–168.
- 🔋 Cheng, W. and Hüllermeier, E. (2009).

A new instance-based label ranking approach using the mallows model.

Advances in Neural Networks-ISNN 2009, pages 707-716.

Jiang, X., Lim, L.-H., Yao, Y., and Ye, Y. (2011). Statistical ranking and combinatorial hodge theory. *Mathematical Programming*, 127(1):203–244.

- Korba, A., Clémençon, S., and Sibony, E. (2017).
 A learning theory of ranking aggregation.
 In *Proceeding of AISTATS 2017*.
- Tsoumakas, G., Katakis, I., and Vlahavas, I. (2009). Mining multi-label data. In Data mining and knowledge discovery handbook, pages 667–685. Springer.
- Vembu, S. and Gärtner, T. (2010). Label ranking algorithms: A survey. In *Preference learning*, pages 45–64. Springer.

In practice: Pseudo-empirical Kemeny Medians • If \hat{P} is SST, compute $\sigma_{\hat{P}}^*$ with Copeland method based on $\hat{p}_{i,j}$

In practice: Pseudo-empirical Kemeny Medians

- ▶ If \widehat{P} is SST, compute $\sigma_{\widehat{P}}^*$ with Copeland method based on $\widehat{p}_{i,j}$
- Else, compute $\tilde{\sigma}_{\hat{p}}^*$ with empirical Borda count ([Jiang et al., 2011])

$$\widetilde{\sigma}^*_{\widehat{P}}(i) = \frac{1}{N} \sum_{k=1}^N \Sigma_k(i) \quad \text{ for } 1 \leq i \leq n$$

Locally consistent (curl-free)

FIGURE 2. Hodge/Helmholtz decomposition of pairwise rankings

Experimental Results