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Problem: Given a vector X (e.g, the characteristics of an
individual), the goal is to predict (her preferences) as a random
permutation > in G,,.
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» Has been referred to as label ranking in the literature
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Related Work

» Has been referred to as label ranking in the literature

» Related to multiclass and multilabel classification
> Alot of applications, e.g : document categorization,

meta-learning

> rank a set of topics relevant for a given document
» rank a set of algorithms according to their suitability for a new
dataset, based on the characteristics of the dataset

> Alot of approaches rely on parametric modelling

> >

= We develop an approach free of any parametric assumptions
(local learning) relying on results and framework developped in
for ranking aggregation.



Our Problem

Suppose we observe (X, %), ..., (Xn, X ) i.i.d. copies of the
pair (X, ), where
» X ~ u,where pis adistribution on some feature space X
> > ~ Py,where Px is the conditional probability distribution
(on &,): Px(0) = P[X = 0| X]
Ex: Users i with characteristics X; order items by preference resulting
in El

Goal: Learn a predictive ranking rule:
s X — 6,
xr — s(x)
which given a random vector X, predicts the permutation > on the
n items.
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Obijective

Performance: Measured by the risk:
R(s) =Ex ~ 5 ~ Py dr (s(X), X)]

where d is the Kendall’s tau distance, i.e. for 0,0’ € G,,:

dr(o,0") = Y H(o(i) —o(4))(o'() —o'(j)) < 0},

1<i<j<n

Ex: 0=1234, 0'=2413 = d.(0,0’) = 3 (disagree on (12),(14),(34)).
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Our approach: build piecewise constant ranking rules, i.e:
Ranking rules that are constant on each cell of a partition of X" built
from the training data (X1, %), ..., (Xy, 2n).
Two methods are investigated:
» k-nearest neighbor (Voronoi partitioning)

» decision tree (Recursive partitioning)
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Compute Local Labels/Medians
For classification, the label of a cell (ex: a leaf) is the majority label
among the training data which fall in this cell.

Ex: 4 classes; green, red, blue, yellow — green will be the label for

the right cell.
Problem: Our labels are permutations o
ForacellC,ifoq,...,0on € C,how do we aggregate them into a

final label o*?

= Ranking aggregation problem.
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Ranking Aggregation - Methods

Suppose we have a dataset of rankings/permutations
(01,...,0n5) € &Y. We want to find a global order

("consensus”) o* on the n items that best represents the dataset.

Kemeny’s rule (1959) - Optimization pb
.

Solve ¢* = argmin Z d(o, o)
0€6n .

Problem: NP-hard.

Copeland method - Scoring method
Sort the items ¢ according to thelr Copeland score s¢:

C’ ]\'ZZHOI‘ <(TA )]

k=1j=1
. . j¢.l . . .
which counts the number of pairwise victories of item 7 over the

otheritems j #i = O(n?N) complexity.
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Statistical Ranking Aggregation
Probabilistic Modeling
Dy =(Z1,...,8y) with X;~P
where P distribution on G,,.

Definition
A Kemeny median of P is solution of:

op = argmin Lp(o), m
UEGn

where Lp(o) = Exp[d(c, X)] is the risk of 0.

Question: Can we exhibit some conditions on P so that solving (1)
is tractable?
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Exact Solutions [Korba et al., 2017]
Letp; ; = P[X(i) < X(j)] prob. thatitem i > j (is preferred to).

Strict Stochastic Transitivity (SST): (p; ; # 1/2 Vi, j)

Low-Noise/NA(h) for h > 0 ([Audibert and Tsybakov, 2007]):
Our result

Suppose P satisfies SST and NA(h) for a given h > 0. Then with
overwhelming probability 1 — %e_ah]":

P also verifies SST...and the Kemeny median of P is given by the
empirical Copeland ranking:

1
op(i) =14+ Hpi, < 5b fori<i<n
i

13



Graph of pairwise probabilities

1 .
op(i) =14+> Hpi, < 5} forl<i<n
i

= sort the ¢’s by increasing input degree
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Our Problem - Ranking Regression
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Our Problem - Ranking Regression

Goal: Learn a predictive ranking rule :
s X — 6,
x — s(x)
which given a random vector X, predicts the permutation > on the
n items.

Performance: Measured by the risk:

R(S) = EXNM,ENPX [dT (S(X)7 Z)]
=Ex~u Espy [dr (s(X), 2]
= EXN” [LPX (S(X)>]

= Ranking regression is an extension of ranking aggregation.
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Optimal Elements and Relaxation

Assumption
For X € X, Px isSST: = op = argmin,cg, Lpy (o) is unique.

Optimal elements

The predictors s* minimizing R (s) are the ones that maps any point
X € X to the conditional Kemeny median of Py:

s* =argminR(s) & s°(X)=o0p,
seS

To minimize the risk R (s) approximately:
op, forany X = op, forany X € C

where Pe(0) = P[X = 0| X € C].
=- We develop Local consensus methods.
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training data (X, >, )’s:
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Statistical Framework- ERM

Optimize a statistical version of the theoretical risk based on the
training data (X, >, )’s:

N
LS 1
minRw(s) = + ;dr(s(Xk), k)

where S is the set of measurable mappings.

= We consider a subset Sp C S:
» rich enough so thatinfs,cs, R(s) — infses R(s) is "small”
» ideally appropriate for greedy optimization.

= Sp= space of piecewise constant ranking rules (’local consensus
methods”)



Our results

Rates of convergence

> classical rates O(1/+/N) for ERM.
» fastrates O(1/N) under a "uniform” NA(h).

Approximation Error
Suppose that:
There exists M < oo such that:

V(z,2') € X2, 3, Ipij(a) — pij(a)] < M- |lz — 2]

Then:
R(sp) —R(s*) < M.ép

where dp is the max. diameter of P’s cells.
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Algorithms - Local Median Methods
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Partitioning Methods
Goal: Generate partitions Py from the training data
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ForC € Py, consider its empirical distribution:
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Cc
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Partitioning Methods
Goal: Generate partitions Py from the training data
(X1,%1),. .-, (XN, ZnN).

ForC € Py, consider its empirical distribution:

and compute locally its Empirical Kemeny median 5;3 .
Cc

Two methods are investigated:
» k-nearest neighbor (Voronoi partitioning)

» decision tree (Recursive partitioning)

Re
B R
R
%
R
v
R
©

R
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K-Nearest Neigbors Algorithm

1. Fixk € {1, ..., N}andaquerypointzx € X

2. Sort (X1,%1),..., (XN, XnN) by increasing order of the
distancetox: || Xz —zl| < ... < || X(v,3) — 2]

3. Consider next the empirical distribution calculated using the k
training points closest to x

k

~ 1

P(z) = % Z‘SEU,N)
=1

and compute the pseudo-empirical Kemeny median, yielding
the k-NN prediction at z:

def
Sk,N(:L') = 0-13(1’)

= We recover the classical bound R (s n) — R* = O(ﬁ + %)

22



Decision Tree
Split recursively the feature space X’ to minimize some impurity

criterion.
Analog to Gini criterion in multiclassification: m classes, f;

proportion of classi — I (f) = > fi(l — fi)
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Decision Tree

Split recursively the feature space X’ to minimize some impurity
criterion.

Analog to Gini criterion in multiclassification: m classes, f;
proportion of classi — I (f) = > fi(l — fi)

Here, foracellC € Py:
» Impurity [Alvo and Philip, 2014]:

1 - .
TP =5 > i) (1-1i(0))
i<j
which is tractable and satisfies the double inequality

V8, < Jmin L, (o) < 293,

» Terminalvalue : Compute the pseudo-empirical median of a
cellC:

23



Conclusion

Interesting challenges:
» Most of the maths from euclidean spaces cannot be applied,
but our insights still hold

» Based on our results on ranking aggregation, we develop a
novel approach to ranking regression/label ranking

» Theoretical guarantees
» We propose two practical algorithms

Openings: How to extend to incomplete rankings (+with ties)?

24
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In practice: Pseudo-empirical Kemeny Medians

> IfPis SST, compute 0;“3 with Copeland method based on p; ;
» Else, compute 5;% with empirical Borda count (

N
- 1 . .
o5(8) = N ,;_1 (i) forl1<i<n

Incensistent (divergence-free)

ker{div}

im(grad) ex( 1) m{eurl’)

Gradient flows Harmonic flows Curl flows

(globally acyclic) (locally acyclic)

(loecally cyclic)

T kerfeur) <7

Locally consistent (curl-free)

FIGURE 2. Hodge/Helmholtz decomposition of pairwise rankings
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Experimental Results
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