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Why sampling?

Suppose you are interested in some target probability distribution on Rd ,
denoted µ∗, and you have access only to partial information, e.g.:

1 its unnormalized density (as in Bayesian inference)

2 a discrete approximation 1
m

∑m
k=1 δxi ≈ µ∗ (e.g. i.i.d. samples, iterates of

MCMC algorithms...)

Problem: approximate µ∗ ∈ P(Rd) by a finite set of n points x1, . . . , xn, e.g.
to compute functionals

∫
Rd f (x)dµ∗(x).

The quality of the set can be measured by the integral error:∣∣∣∣∣1

n

n∑
i=1

f (xi ) −
∫
Rd

f (x)dµ∗(x)

∣∣∣∣∣ .

a Gaussian density I.i.d. samples. Particle scheme
(SVGD).

1 / 28



Introduction Sampling as Optimization Choice of the Divergence Optimization and Quantization errors Quantization Further connections with Optimization and Conclusion

Example 1: Bayesian inference

We want to sample from

µ∗(x) ∝ exp (−V (x)) , V (θ) =
m∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss on labeled data (wi , yi )

m
i=1

+
∥x∥2

2
.

Ensemble prediction for a new
input w :

ŷ =

∫
Rd

g(w , x)dµ∗(x)︸ ︷︷ ︸
”Bayesian model averaging”

Predictions of models
parametrized by x ∈ Rd

are reweighted by µ∗(x).
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Difficult cases (in practice and in theory)

Recall that

µ∗(x) ∝ exp (−V (x)) , V (θ) =
m∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss

+
∥x∥2

2
.

if V is convex (e.g. g(w , x) = ⟨w , x⟩) many sampling methods (e.g.
Langevin Monte Carlo) are known to work quite well
[Durmus and Moulines, 2016, Vempala and Wibisono, 2019]

but if its not (e.g. g(w , x) is a neural network), the situation is much
more delicate

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Example 2 : Regression with infinite width NN

min
(xi )n

i=1
∈Rd

E(w,y)∼Pdata

[∥∥∥∥y −
1

n

n∑
i=1

ϕxi
(w)︸ ︷︷ ︸

ŷ

∥∥∥∥2
]

−−−−→
n→∞

min
µ∈P(Rd )

E(w,y)∼Pdata

[∥∥∥∥y −
∫
Rd

ϕx (w)dµ(x)

∥∥∥∥2]
︸ ︷︷ ︸

F(µ)

Define the target distribution µ∗ ∈ arg minF(µ). Optimising the neural
network ⇐⇒ approximating µ∗ [Chizat and Bach, 2018, Mei et al., 2018].

If y(w) = 1
m

∑m
i=1 ϕxi (w) is generated by a neural network (as in the

student-teacher network setting), then µ∗ = 1
m

∑m
i=1 δxm and F can be

identified to an MMD [Arbel et al., 2019].
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Sampling as optimization over probability distributions

Assume that µ∗ ∈ P2(Rd) =
{
µ ∈ P(Rd),

∫
∥x∥2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

µ∗ = arg min
µ∈P2(Rd )

D(µ|µ∗) := F(µ),

where D is a dissimilarity functional, for instance:

a f-divergence:
∫
f
(

µ
µ∗

)
dµ∗, f convex, f (1) = 0

an integral probability metric: supf∈G
∣∣∫ fdµ−

∫
fdµ∗∣∣

an optimal transport distance...

Starting from an initial distribution µ0 ∈ P2(Rd), one can then consider the
Wasserstein-2∗ gradient flow of F over P2(Rd) to transport µ0 to µ∗.

∗W 2
2 (ν, µ) = infs∈Γ(ν,µ)

∫
Rd×Rd ∥x − y∥2 ds(x, y), where Γ(ν, µ)= couplings between ν, µ.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variation of µ 7→ F(µ) evaluated at µ ∈ P(Rd) is the unique function
∂F(µ)
∂µ

: Rd → R s. t. for any µ, ν ∈ P(Rd), ν − µ ∈ P(Rd):

lim
ϵ→0

1

ϵ
(F(µ+ ϵ(ν − µ)) −F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dν − dµ)(x).

The family µ : [0,∞] → P2(Rd), t 7→ µt is a Wasserstein gradient flow of F if:

∂µt

∂t
= ∇ · (µt∇W2F(µt)) ,

where ∇W2F(µ) := ∇ ∂F(µ)
∂µ

denotes the Wasserstein gradient of F .

It can be implemented by the deterministic process:

dxt
dt

= −∇W2F(µt)(xt), where xt ∼ µt
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Particle system/Gradient descent approximating the WGF

Space/time discretization : Introduce a particle system x1
0 , . . . , x

n
0 ∼ µ0, a

step-size γ, and at each step:

x i
l+1 = x i

l − γ∇W2F(µ̂l)(x i
l ) for i = 1, . . . , n, where µ̂l =

1

n

n∑
i=1

δx i
l

In particular, the algorithm above simply corresponds to gradient descent.

We consider several questions:

what can we say as time goes to infinity ? (optimization error)
=⇒ heavily linked with the geometry (convexity, smoothness in the
Wasserstein sense) of the loss

(for minimizers) what can we say as the number of particles grow ?
(”quantization” error)
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Loss function for the unnormalized densities - the KL

Many possibilities for the choice of D(·|µ∗) among Wasserstein distances,
f -divergences, Integral Probability Metrics...

For instance, D could be the Kullback-Leibler divergence:

KL(µ|µ∗) =

{ ∫
Rd log

(
µ
µ∗ (x)

)
dµ(x) if µ≪ µ∗

+∞ otherwise.

The KL as an objective is convenient when the unnormalized density of µ∗ is
known since it does not depend on the normalization constant!

Indeed writing µ∗(x) = e−V (x)/Z we have:

KL(µ|µ∗) =

∫
Rd

log
( µ

e−V
(x)

)
dµ(x) + log(Z).

But, it is not convenient when we have a discrete approximation of µ∗.
Also, we cannot evaluate it for discrete µ.
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KL Gradient flow in practice

The gradient flow of the KL can be implemented via the Probability Flow
(ODE):

dx̃t = −∇ log

(
µt

µ∗

)
(x̃t)dt (1)

or the Langevin diffusion (SDE):

dxt = ∇ logµ∗(xt)dt +
√

2dBt (2)

(they share the same marginals (µt)t≥0)

(2) can be discretized in time as Langevin Monte Carlo (LMC)
[Roberts and Tweedie, 1996]

xm+1 = xm + γ∇ logµ∗(xm) +
√

2γϵm, ϵm ∼ N (0, IdRd ).

(1) can be approximated by a particle system (e.g. SVGD
[Liu, 2017, He et al., 2022])

however MCMC methods suffer an integral approximation error of order
O(n−1/2) if we use µn = 1

n

∑n
i=1 δxi (xi iterates of MCMC)

[ Latuszyński et al., 2013]
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Another f-divergence?

The chi-square divergence:

χ2(µ ∥ µ∗) :=

{ ∫ (
dµ
dµ∗ − 1

)2

dµ∗ µ≪ µ∗

+∞ otherwise.

not convenient neither when µ∗’s unnormalized density is known, or
if we have a discrete approximation.

χ2-gradient requires the normalizing constant of µ∗: ∇ µ
µ∗

However, the GF of χ2 has interesting properties (see
[Chewi et al., 2020, Craig et al., 2022] for a discussion, results from
[Matthes et al., 2009, Dolbeault et al., 2007])
=⇒ distinguishing whether KL or χ2 GF is more favorable is an
active area of research
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Losses for the discrete case

D could be the MMD (Maximum Mean Discrepancy):

MMD2(µ, µ∗) = sup
f∈Hk ,∥f ∥Hk

≤1

∣∣∣∣∫ fdµ−
∫

fdµ∗
∣∣∣∣

= ∥mµ −mµ∗∥2
Hk
, where mµ =

∫
k(x , ·)dµ(x)

=

∫∫
Rd

k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dµ∗(x)dµ∗(y) − 2

∫∫
Rd

k(x , y)dµ(x)dµ∗(y).

where k : Rd × Rd → R is a p.s.d. kernel (e.g. k(x , y) = e−∥x−y∥2

) and Hk is
the RKHS associated to k.

It is convenient when we have a discrete approximation of µ∗ (to
approximate integrals).
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Why we care about the loss

SVGD

MMD

Figure: Toy example with 2D standard Gaussian. The green points represent
the initial positions of the particles. The light grey curves correspond to their
trajectories under the different vµt .

Gradient flow of the KL to a Gaussian µ∗(x) ∝ e−
∥x∥2

2 is
well-behaved, but not the MMD.
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A proposal†: Interpolate between MMD and χ2

”De-Regularized MMD” leverages the variational formulation of χ2:

DMMD(µ||µ∗) = (1 + λ)
{

max
h∈Hk

∫
hdµ−

∫
hdµ∗ − 1

4

∫
h2dµ∗ − 1

4
λ∥h∥2

Hk

}
(3)

It is a divergence for any λ, recovers χ2 for λ = 0 and MMD for λ = +∞.

DMMD and its gradient be written in closed-form, in particular if µ, µ∗ are
discrete (depends on λ and kernel matrices over samples of µ, µ∗):

DMMD(µ||µ∗) = (1 + λ)
∥∥∥(Σµ∗ + λ Id)−

1
2 (mµ −mµ∗)

∥∥∥2

Hk

,

∇DMMD(µ||µ∗) = ∇h∗
µ,µ∗

where Σµ∗ =
∫
k(·, x) ⊗ k(·, x)dµ∗(x), where (a⊗ b)c = ⟨b, c⟩Hk a; and h∗

µ,µ∗

solves (3).

A similar idea was proposed for the KL, yielding Kale divergence
[Glaser et al., 2021] but was not closed-form.

†with H. Chen, A. Gretton, P. Glaser (UCL), A. Mustafi, B. Sriperumbudur (CMU)
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Ring Experiment

MMD

T=0 T=2 T=30 T=99

KALE

DMMD

λ = 10−5

λ = 10−4

λ = 10−3

λ = 10−2

λ = 10−1

λ = 100

λ = 102

λ =∞

0 20000 40000 60000 80000 100000

Iteration

10−2

10−1

100

W
2
(·|
π

)
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Student-teacher networks experiment‡
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2

the teacher network w 7→ Ψµ∗(w) is given by M particles (ξ1, ..., ξM)
which are fixed during training =⇒ µ = 1

M

∑M
j=1 δξj

the student network w 7→ Ψµ(w) has n particles (x1, ..., xn) that are
initialized randomly =⇒ µ = 1

n

∑n
i=1 δxj

min
µ

Ew∼Pdata

[
(Ψµ∗(w) − Ψµ(w)2

]
⇐⇒ min

µ
MMD(µ, µ∗) with k(x , x ′) = Ew∼Pdata [ϕx′(w)ϕx(w)].

‡Same setting as [Arbel et al., 2019].
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Another idea - ”Mollified” discrepancies

Examples of mollifiers/kernels (Gaussian, Laplace, Riesz-s):

kg
ϵ (x) :=

exp
(
− ∥x∥2

2
2ϵ2

)
Z g (ϵ)

, kg
ϵ (x) :=

exp
(
− ∥x∥2

ϵ

)
Z l(ϵ)

, k s
ϵ(x) :=

1

(∥x∥2
2 + ϵ2)s/2Z r (s, ϵ)

Mollified chi-square [Li et al., 2022a, Craig et al., 2022]:

Eϵ(µ) =

∫ (
kϵ ∗ µ√

µ∗

)
(x)

µ√
µ∗ (x)dx −−−→

ε→0
χ2(µ|µ∗) + 1

Mollified KL§ [Craig and Bertozzi, 2016]:

KL(kϵ ⋆ µ|µ∗) −−−→
ε→0

KL(µ|µ∗)

§Also ongoing work with Tom Huix (CMAP).
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Background on convexity and smoothness in Rd

Recall that if f : Rd → R is twice differentiable,

f is λ-convex

∀x , y ∈ Rd , t ∈ [0, 1] :

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)− λ

2
t(1− t)∥x − y∥2

⇐⇒ vT∇f (x)v ≤ M∥v∥2
2 ∀x , v ∈ Rd .

f is M-smooth

∥∇f (x)−∇f (y)∥ ≤ M∥x − y∥ ∀x , y ∈ Rd

⇐⇒ vT∇f (x)v ≤ M∥v∥2
2 ∀x , v ∈ Rd .
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(Geodesically)-convex and smooth losses

F is said to be λ-displacement convex if along W2 geodesics (ρt)t∈[0,1]:

F(ρt) ≤ (1 − t)F(ρ0) + tF(ρ1) − λ

2
t(1 − t)W 2

2 (ρ0, ρ1) ∀ t ∈ [0, 1].

The Wasserstein Hessian of a functional F : P2(Rd) → R at µ is defined for
any ψ ∈ C∞

c (Rd) as:

Hessµ F(ψ,ψ) :=
d2

dt2

∣∣∣∣
t=0

F(µt)

where (µt , vt)t∈[0,1] is a Wasserstein geodesic with µ0 = 0, v0 = ∇ψ.

F is λ-displacement convex ⇐⇒ Hessµ F(ψ,ψ) ≥ λ∥∇ψ∥2
L2(µ)

(See [Villani, 2009, Proposition 16.2]). In an analog manner we can define
smooth functionals as functionals with upper bounded Hessians.
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Guarantees for Wasserstein gradient descent

Consider Wasserstein gradient descent (Euler discretization of Wasserstein
gradient flow)

µl+1 = (Id−γ∇F ′(µl))#µl

Assume F is M-smooth. Then, we have a descent lemma:

F(µl+1) −F(µl) ≤ −γ
(

1 − γ

2
M
)
∥∇F ′(µl)∥2

L2(µl )
.

Moreover, if F is λ-convex, we have the global rate

F(µL) ≤ W 2
2 (µ0, µ

∗)

2γL
− λ

L

L∑
l=0

W 2
2 (µl , µ

∗).

(so the barrier term degrades with λ).

19 / 28



Introduction Sampling as Optimization Choice of the Divergence Optimization and Quantization errors Quantization Further connections with Optimization and Conclusion

Some examples

Let µ∗ ∝ e−V , we have [Wibisono, 2018]

Hessµ KL(ψ,ψ) =

∫ [
⟨HV (x)∇ψ(x),∇ψ(x)⟩ + ∥Hψ(x)∥2

HS

]
q(x)dx .

If V is m-strongly convex, then the KL is m-geo. convex; however it is not
smooth (Hessian is unbounded). Similar story for χ2-square
[Ohta and Takatsu, 2011].

For a M-smooth kernel k [Arbel et al., 2019]

Hessµ MMD2(ψ,ψ) =

∫
∇ψ(x)⊤∇1∇2k(x , y)∇ψ(y)dµ(x)dµ(y)+

2

∫
∇ψ(x)⊤

(∫
H1k (x , z) dµ(z) −

∫
H1k (x , z) dµ∗(z)

)
∇ψ(x)dµ(x)

It is M-smooth but not geodesically convex (Hessian lower bounded by a
big negative constant)
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Partial results for other discrepancies

For DMMD (interpolating between χ2 and MMD), for µ∗ ∝ e−V . If
V is m-strongly convex, for λ small enough, we can lower bound
Hessµ DMMD(µ||µ∗) ¶.

Hessµ χ
2(µ∥µ∗) =

∫
µ(x)2

µ∗(x)
(Lµ∗ψ(x))2dx

+

∫
ρ(x)2

µ∗(x)
⟨HV (x)∇ψ(x),∇ψ(x)⟩ dx +

∫
µ(x)2

µ∗(x)
∥Hψ(x)∥2

HS dx

where Lµ∗ is the standard Langevin diffusion
Lµ∗ψ = ⟨∇V (x),∇ψ(x)⟩ −∆ψ(x).

For mollified discrepancies

some asymptotic results for mollified χ2 [Li et al., 2022a] (only at
µ∗)
mollified KL(kϵ ⋆ µ||µ∗): we only get smoothness for discrete µ

¶under strong regularity assumptions on µ and µ∗
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What is known

What can we say on infx1,...,xn D(µn|µ∗) where µn =
∑n

i=1 δxi ?

Quantization rates for the Wasserstein distance
[Kloeckner, 2012, Mérigot et al., 2021]

W2(µn, µ
∗) ∼ O(n− 1

d )

Forward KL [Li and Barron, 1999]: for every gP =
∫
kϵ(· − w)dP(w),

arg min
µn

KL(µ∗|kϵ ⋆ µn) ≤ KL(µ∗|gP) +
C 2
µ∗,Pγ

n

where C 2
µ∗,P =

∫ ∫
kϵ(x−m)2dP(m)

(
∫
kϵ(x−w)dP(w))2 dµ

∗(x), and γ = 4 log
(
3
√
e + a

)
is a

constant depending on ϵ with a = supz,z′∈Rd log (kϵ(x − z)/kϵ(x − z ′)).
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Recent results

For smooth and bounded kernels in [Xu et al., 2022] and µ∗ with
exponential tails, we get using Koksma-Hlawka inequality

min
µn

MMD(µn, µ
∗) ≤ Cd

(log n)
5d+1

2

n
.

This bounds the integral error for f ∈ Hk (by Cauchy-Schwartz):∣∣∣∣∫
Rd

f (x)dµ∗(x) −
∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ∥f ∥Hk MMD(µ, π).

For the reverse KL (joint work with Tom Huix) we get (in the
well-specified case) adapting the proof of [Li and Barron, 1999]:

min
µn

KL(kϵ ⋆ µ|µ∗) ≤ C 2
µ∗

log(n) + 1

n
.

This bounds the integral error for measurable f : Rd → [−1, 1] (by Pinsker
inequality): ∣∣∣∣∫ fd(kϵ ⋆ µn) −

∫
fdµ∗

∣∣∣∣ ≤
√

C 2
µ∗(log(n) + 1)

2n
.
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More ideas can be borrowed to optimization (but there are limitations)

Sampling with inequality constraints
[Liu et al., 2021, Li et al., 2022b]

min
µ∈P2(Rd )

KL(µ∥µ∗)

subject toEx∼µ

[
g(x)

]
≤ 0

Bilevel sampling ‖

min
θ∈Rp

ℓ(θ) := min
θ∈Rp

F(µ∗(θ))

where for instance

µ∗(θ) is a Gibbs distribution, minimizing the KL

µ∗(θ)[x ] = exp(−V (x , θ))/Zθ .

µ∗(θ) is the output of a Diffusion model parametrized by θ, this does
not minimize a divergence on P(Rd)

‖with P. Marion, Q. Berthet, P. Bartlett, M. Blondel, V. Bortoli, A. Doucet, F.
Llinares-Lopez, C. Paquette
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A numerical example from [Li et al., 2022a]

Figure: Sampling from the von Mises-Fisher distribution obtained by constraining a
3-dimensional Gaussian to the unit sphere. The unit-sphere constraint is enforced
using the dynamic barrier method and the shown results are obtained using MIED
with Riesz kernel and s = 3. The six plots are views from six evenly spaced angles.
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A numerical example from [Li et al., 2022a]
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Uniform sampling of the region
{(x , y) ∈ [−1, 1]2 : (cos(3πx) + cos(3πy))2 < 0.3} using MIED with a Riesz
mollifier (s = 3) where the constraint is enforced using the dynamic barrier
method.
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Open questions, directions

Finite-particle/quantization guarantees are still missing for many losses or
in the non-well specified case

D(µn||µ∗) ≤ f (n, µ∗)?

How to improve the performance of the algorithms for highly non-log
concave targets? e.g. through sequence of targets (µ∗)t∈[0,1] interpolating
between µ0 and µ∗?

Multimodal targets µ∗? choose a sequence of intermediate targets.

Shape of the trajectories? change the underlying metric
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Main references

(with code):

Maximum Mean Discrepancy Gradient Flow. Arbel, M., Korba, A.,
Salim, A., and Gretton, A. (Neurips 2019).

Accurate quantization of measures via interacting particle-based
optimization. Xu, L., Korba, A., and Slepcev, D. (ICML 2022).

Sampling with mollified interaction energy descent. Li, L., Liu, Q.,
Korba, A., Yurochkin, M., and Solomon, J. (ICLR 2023).
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Mixture of Gaussians

Langevin Monte Carlo on a mixture of Gaussians does not manage to
target all modes in reasonable time, even in low dimensions.

Picture from O. Chehab.
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Annealing

One possible fix : sequence of tempered targets as:

µ∗
β ∝ µβ

0 (µ
∗)1−β , β ∈ [0, 1]

It is discretized Fisher-Rao gradient flow [Chopin et al., 2023].
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Other tempered path

”Convolutional path” (β ∈ [0,+∞[) frequently used in Diffusion Models

µ∗
β =

1√
1− β

µ0

(
.√

1− β

)
∗ 1√

β
µ∗

(
.√
β

)
(vs ”geometric path” µ∗

β ∝ µβ
0 (µ

∗)1−β)
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