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About this part

We view the Sampling problem as an Optimization problem
over the space of probability distributions.

Objective

• Leverage the powerful geometry of optimal transport on the
space of probability distributions and in particular Wasserstein
gradient flows

• Exploit the analogy between Euclidean gradient flows and
Wasserstein gradient flows to design and analyze sampling
algorithms
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Structure of this tutorial

1. Motivation for Sampling, Sampling as Optimization and
high-level presentation of the ideas

2. Review of Euclidean Gradient Flows (GF) on Rd and their
properties, rates of convergence for discretized GF
(=optimization algorithms)

3. Introduction of Wasserstein Gradient Flows and analogies with
Rd

4. Illustrations with sampling algorithms as discretizations of
Wasserstein GF: rates on Langevin Monte Carlo and Stein
Variational Gradient Descent, quick tour of closely related
algorithms.
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(Some, Non parametric) Sampling methods

(1) Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain in Rd whose law converges to π ∝ exp(−V )

Example: Langevin Monte Carlo (LMC)
[Roberts and Tweedie, 1996]

xm+1 = xm − γ∇V (xm) +
√
2γηm, ηm ∼ N (0, Id).

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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(2) Interacting particle systems, whose empirical measure at
stationarity approximates π ∝ exp(−V )

Example: Stein Variational Gradient Descent (SVGD)
[Liu and Wang, 2016]

x im+1 = x im−
γ

N

N∑
j=1

∇V (x jm)k(x
i
m, x

j
m)−∇2k(x

i
m, x

j
m), i = 1, . . . ,N.

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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Sampling as minimization of the KL
The Kullback-Leibler (KL) divergence between µ, π ∈ P(Rd) is:

KL(µ|π) =
{ ∫

Rd log
(µ
π (x)

)
dµ(x) if µ ≪ π

+∞ else.

Note that
π = argmin

µ∈P(Rd )

KL(µ|π).

The KL as an objective is convenient since it does not depend on
the normalization constant Z !

Recall that writing π(x) = e−V (x)/Z we have:

KL(µ|π) =
∫
Rd

log
( µ

e−V
(x)

)
dµ(x) + log(Z ).
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Sampling as optimization over P2(Rd)

Assume π ∈ P2(Rd) = {µ ∈ P(Rd),
∫
Rd ∥x∥2dµ(x) < ∞}.

Sampling can be recast as optimization over P2(Rd):

min
µ∈P2(Rd )

F(µ), F(µ) := KL(µ|π).

Equipped with the Wasserstein-2 (W2) distance from optimal
transport1, the metric space (P2(Rd),W2) has a convenient
Riemannian structure [Otto and Villani, 2000].

1W 2
2 (µ, ν) = infs coupling of µ,ν

∫
Rd×Rd ∥x − y∥2 ds(x , y) .
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Starting from some µ0, one can then consider the Wasserstein
gradient flow of F = KL(·|π) over P2(Rd), i.e. path of
distributions (µt)t≥0 decreasing F , to transport µ0 to π.

We will see that these paths (µt)t≥0 obey PDE (Partial
Differential Equations)

µ0

µt

”µ̇t = −∇W2F(µt)”

which themselves rule the dynamics of particles (xt)t≥0 in Rd

dxt = v(xt , µt)dt+σ(xt , µt)dbt , xt ∼ µt , (bt)t≥0 Brownian motion.

Discretizing these dynamics (xt)t≥0 yields sampling
algorithms.
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Recall that π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss of the model g(·,x)

+
∥x∥2

2
.

We will see that in the Wasserstein geometry, the KL(·|π)
objective inherits convexity properties of V , i.e.:

• if V is convex (e.g. g(w , x) = ⟨w , x⟩ linear), π is
”log-concave” and ”sampling is easy”

0
t

KL( | )
2( d)

When π is log-concave, KL(·|π) : P2(Rd ) → R̄+ is (geodesically) convex as represented here.
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Recall that π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss of the model g(·,x)

+
∥x∥2

2
.

We will see that in the Wasserstein geometry, the KL(·|π)
objective inherits convexity properties of V , i.e.:

• if V is nonconvex (e.g. g(w , x) is a neural network), π is
”non log-concave” and ”sampling is hard”

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Sampling as optimization: how it started

Since the seminal paper of [Jordan et al., 1998], it is known that
the distributions (µt)t≥0 of Langevin dynamics in Rd

dxt = −∇V (xt)dt +
√
2dbt ,

where (bt)t≥0 is the Brownian motion in Rd , follow a Wasserstein
gradient flow of the Kullback-Leibler divergence.

Recently, this optimization point of view has been used to derive
rates of convergence for variants of the Langevin Monte Carlo
algorithm [Wibisono, 2018][Durmus et al., 2019][Bernton, 2018]
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Gradient

Let V : Rd → R differentiable. What is the gradient of V ?

Definition: If a Taylor expansion of V yields:

V (x + εh) = V (x) + ε⟨gx , h⟩+ o(ε),

where ⟨·, ·⟩ is some inner product, then gx is the gradient of V at
x under the inner product ⟨·, ·⟩.

• If ⟨·, ·⟩Rd is the Euclidean inner product then gx = ∇V (x).

• If ⟨·, ·⟩P is the inner product induced by a positive definite
matrix P (i.e. ⟨x , y⟩P = ⟨Px , y⟩Rd ) then gx = P−1∇V (x).
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Euclidean Gradient Flow

Problem:
min
x∈Rd

V (x),

where V : Rd → R s.t. ∇V is L-Lipschitz (V is L-smooth).

Using Cauchy-Lipschitz, consider

ẋt = −∇V (xt), t ≥ 0,

where we denote xt = x(t), ẋt =
dxt
dt .

Gradient flow of V = the solution of this Ordinary
Differential Equation (ODE) for any initial data x(0).
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Descent property of gradient flows

Using (1) the chain rule and (2) ẋt = −∇V (xt),

dV (xt)

dt

(1)
= ⟨ẋt ,∇V (xt)⟩

(2)
= −∥∇V (xt)∥2 ≤ 0.

The gradient flow decreases the objective function.

This is a fundamental property of the gradient
flow [De Giorgi et al., 1980, De Giorgi, 1993].
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Particular case: V convex

Let λ ≥ 0. V is λ-strongly convex if
∀x , y ∈ Rd , t ∈ [0, 1],

V ((1− t)x + ty) ≤ (1− t)V (x) + tV (y)− λt(1− t)

2
∥x − y∥2.

0-strong convexity is simply convexity.

Since V smooth, this is equivalent to

∀y ∈ Rd ,V (x) + ⟨∇V (x), y − x⟩+ λ

2
∥y − x∥2 ≤ V (y).
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Time discretizations of the gradient flow
Let γ > 0 a step-size.

• Gradient descent algorithm:

xm+1 = xm − γ∇V (xm),

i.e. Forward Euler (explicit):

xm+1 − xm
γ

= −∇V (xm).

• Proximal point algorithm (V convex):

xm+1 = proxγV (xm) := argmin
y∈Rd

γV (y) +
1

2
∥xm − y∥2

i.e. Backward Euler (implicit):

xm+1 − xm
γ

= −∇V (xm+1).
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Other time discretizations: splitting schemes

• Proximal gradient algorithm (V = F + G , G convex):

xm+ 1
2
= xm − γ∇F (xm)

xm+1 = proxγG (xm+ 1
2
)

i.e. Forward Backward Euler (explicit implicit):

xm+1 − xm
γ

= −∇F (xm)−∇G (xm+1).

These time discretizations are unbiased (i.e. they preserve
x⋆ ∈ argminV as a fixed point).

Time discretization of a flow ⇒ Optimization algorithm
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Descent lemma
The time discretizations of the gradient flow decrease the objective
function:

V (xm+1)− V (xm)

γ
≤ −1

2
∥∇V (x̂m)∥2.

• For Forward Euler (i.e. gradient descent), x̂m = xm and
γ ≤ 1/L (we need smoothness of V ),

• For Backward Euler x̂m = xm+1 (we don’t need smoothness of
V )

It is known that gradient descent converges at 1/M rate when V is
convex, and faster if V is λ-strongly convex. But we can actually
ask a bit less than convexity (see next slide).

24 / 75



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

Gradient dominance is more general than convexity

∀x ∈ Rd , V (x)− V⋆ ≤
1

2λ
∥∇V (x)∥2.

• λ-Strong convexity ⇒ gradient dominance with the same
constant λ > 0

• Gradient dominance ⇒ invexity1

• Gradient dominance ⇏ convexity

4 3 2 1 0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 f(x) = x2 + 3sin2(x)

1any local minimum of V is a global minimum.
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Definition of the Wasserstein space

Let P2(Rd) the space of probability measures on Rd with finite
second moments, i.e.

P2(Rd) = {µ ∈ P(Rd),

∫
∥x∥2dµ(x) < ∞}

P2(Rd) is endowed with the Wasserstein-2 distance from Optimal
transport: ∀µ, ν ∈ P2(Rd),

W 2
2 (µ, ν) = inf

s∈Γ(µ,ν)

∫
Rd×Rd

∥x − y∥2 ds(x , y),

where Γ(µ, ν) is the set of possible couplings between µ and ν.

The metric space (P2(Rd),W2) is called the Wasserstein space.
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Riemannian structure of (P2(Rd),W2) and L2 spaces

Denote by

L2(µ) = {f : Rd → Rd ,

∫
Rd

∥f (x)∥2dµ(x) < ∞}

the space of vector-valued, square-integrable functions w.r.t µ.

It is a Hilbert space of functions equipped with the inner product

⟨f , g⟩µ =

∫
Rd

⟨f (x), g(x)⟩Rddµ(x).
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Pushforward measure

Let µ ∈ P2(Rd), T : Rd → Rd a measurable map.

The pushforward measure T#µ is characterized by:

X ∼ µ =⇒ T (X ) ∼ T#µ.

Remark: Id# µ = µ where Id denotes the identity map.
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Moving on P2(Rd) through L2 maps

Note that if T ∈ L2(µ) and µ ∈ P2(Rd), then T#µ ∈ P2(Rd):∫
∥y∥2d(T#µ)(y) =

∫
∥T (x)∥2dµ(x) < ∞,

since T ∈ L2(µ).

Brenier’s theorem [Brenier, 1991] : Let µ, ν ∈ P2(Rd) s.t.
µ ≪ Leb. Then, there exists a unique T ν

µ : Rd → Rd such that

1. T ν
µ#µ = ν

2. W 2
2 (µ, ν) = ∥ Id−T ν

µ∥2
µ

def.
=

∫
∥x − T ν

µ (x)∥2dµ(x).

and T ν
µ is called the Optimal Transport map between µ and ν.
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Wasserstein geodesics between µ, ν?
The path

ρt = ((1− t) Id+tT ν
µ )#µ, t ∈ [0, 1]

is the Wasserstein geodesic between ρ0 = µ and ρ1 = ν.

µ ν

ρt = ((1− t) Id+tT ν
µ )#µ

It differs completely from the (mixture) path

ρ̃t = (1− t)µ+ tν

which also interpolates between ρ̃0 = ρ0 = µ, ρ̃1 = ρ1 = ν.
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Source and Target distribution

Wasserstein interpolation ( t)t [0, 1]

Source and Target distribution

Mixture interpolation ( t)t [0, 1]

If µ is supported on a set of particles x1, . . . , xN ,

these particles would be pushed continuously through ρt ,

while they would be teleported to other locations through ρ̃t .

Figure made with https://pythonot.github.io/.
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Convexity along Wasserstein geodesics

Let F : P2(Rd) → (−∞,+∞].

F λ-strongly geo. convex with λ ≥ 0, if for any µ, ν ∈ P2(Rd):

F(ρt) ≤ (1− t)F(µ) + tF(ν)− λt(1− t)

2
W 2

2 (µ, ν),

where (ρt)t∈[0,1] is a Wasserstein-2 geodesic between µ and ν.
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Examples of geo. convex functionals

1. Potential energy F(µ) =
∫
V (x)dµ(x) with V : Rd → R

convex.

Proof: write F(ρt) along a geodesic ρt = ((1− t) Id+tT ν
µ )#µ

and use V convex.

2. Negative entropy (non trivial) F(µ) =
∫
log(µ(x))dµ(x).

3. KL w.r.t. log concave distribution F(µ) = KL(µ|π), where
π ∝ exp(−V ), V convex.

Proof:

KL(µ|π) =
∫

log
(µ
π
(x)

)
dµ(x)

=

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg.) Entropy

+C .
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Gradient flows on probability distributions?
Recall that we want to approximate a distribution π by solving

min
µ∈P2(Rd )

F(µ), F(µ) = KL(µ|π).

We have reviewed Euclidean GF of V : Rd → R:

ẋt = −∇V (xt), xt ∈ Rd .

In an analog manner, what is the gradient flow of
F : P2(Rd) → (−∞,+∞]? i.e. something of the form

”µ̇t = −∇W2F(µt)”, µt ∈ P2(Rd).

We need to define both sides of the equality.
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LHS: Velocity field

Let (µt)t≥0 ∈ (P2(Rd))R
+
. What is the time derivative of (µt)t≥0?

Definition: If there exists (vt)t≥0 ∈ (L2(µt))t≥0 such that,

d

dt

∫
φdµt = ⟨∇φ, vt⟩µt

for every test function φ : Rd → R (e.g., C∞(Rd) with compact
support), then (vt)t≥0 is a velocity field of (µt)t≥0.

The velocity field rules the dynamics of (µt)t≥0.
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Continuity Equation

Equivalently, a velocity field (vt)t≥0 of (µt)t≥0 satisfies the PDE:

∂µt

∂t
+∇ · (µtvt) = 0, t ≥ 0.

where ∇·A(x) =
d∑

i=1

∂Ai (x)
∂xi

for A(x) = (A1(x), . . . ,Ad(x)), A : Rd → Rd .

Proof: If µt(·) density of µt , for every test function φ : Rd → R,

(1) :
d

dt

∫
φ(x)µt(x)dx =

∫
φ(x)

∂µt

∂t
(x)dx

(2) :
d

dt

∫
φ(x)µt(x)dx

def.
=

∫
⟨∇φ(x), vt(x)⟩Rdµt(x)dx

i.b.p.
= −

∫
φ(x)∇ · (vt(x)µt(x))dx .

This equation describes the dynamics of (µt)t≥0.
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RHS: Wasserstein gradient

Let F : P2(Rd) → (−∞,+∞]. What is the ”gradient” of F at µ?

Definition: Let µ ∈ P2(Rd). Consider a perturbation on the
Wasserstein space (Id+εh)#µ for h ∈ L2(µ).

If a Taylor expansion of F yields:

F((Id+εh)#µ) = F(µ) + ε⟨∇W2F(µ), h⟩µ + o(ε),

then ∇W2F(µ) ∈ L2(µ) is the Wasserstein gradient of F at µ.
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First Variation

In comparison, what is the First Variation of F at µ?

Definition: Let µ ∈ P2(Rd). Consider a linear perturbation
µ+ εξ ∈ P2(Rd) for a perturbation ξ.

If a Taylor expansion of F yields:

F(µ+ εξ) = F(µ) + ε

∫
F ′(µ)(x)dξ(x) + o(ε),

then F ′(µ) : Rd → R is the First Variation of F at µ.
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Wasserstein gradient = Gradient of First Variation

Typically1,

∇W2F(µ) = ∇F ′(µ).

∇W2F(µ) : Rd → Rd , F ′(µ) : Rd → R.

Proof: Let µt = (Id+th)#µ.
First, expand µε around µ using the continuity equation of (µt)t≥0:

µε = µ+ ε(−∇ · (µh)︸ ︷︷ ︸
=ξ

) + o(ε).

Then, expand F(µ+ εξ) using the definition of First Variation,
and use an i.b.p. to identify the Wasserstein gradient.

1see [Ambrosio et al., 2008, Th. 10.4.13] for precise statement.
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Examples of Wasserstein gradients

Below: F(µ) −→ F ′(µ) −→ ∇F ′(µ)

1. Potential energy (linear function of µ)

F(µ) =

∫
V (x)dµ(x) −→ V −→ ∇V

2. Negative entropy

F(µ) =

∫
log(µ(x))dµ(x)1 −→ log(µ) + 12 −→ ∇ logµ.

1The Negative entropy F(µ) = +∞ if µ does not have a density.
2(y log y)′ = log y + 1
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Wasserstein gradient of KL

More generally, let

F(µ) =

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg.) Entropy

.

Then, for π ∝ exp(−V ),

KL(µ|π) = F(µ)− F(π)︸ ︷︷ ︸
Constant

.

By additivity, the Wasserstein gradient of KL is given by1

∇W2F(µ) = ∇F ′(µ) = ∇V +∇ log(µ) = ∇ log
(µ
π

)
.

1See [Ambrosio et al., 2008, Th. 10.4.13] for precise statement.
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Velocity field = negative Wasserstein gradient

Recall that we wanted to define the equation

”µ̇t = −∇W2F(µt)”.

We consider the direction vt = −∇W2F(µt) at each time to
decrease F :

µ0

µt

vt = −∇W2F(µt)

since for this choice of velocity field,

dF(µt)

dt
= −∥∇W2F(µt)∥2

µt
≤ 0.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The Wasserstein GF of F is ruled by:

vt = −∇W2F(µt) (1)

Equivalently:

∂µt

∂t
= ∇ ·

(
µt∇W2F(µt)

)
, (2)

Problem: How to construct such a flow on P2(Rd)?

In the following, we will see some examples of dynamics
(xt)t≥0 ∈ Rd whose law (µt)t≥0 obeys (2). We will call such
dynamics over Rd realizations of the WGF of F .
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Example I - Constant vector field

Let x0 ∼ µ0 and V : Rd → R. Consider the dynamics:

ẋt = −∇V (xt), xt ∈ Rd . (3)

Let µt be the law of xt at each time t ≥ 0. Then, vt = −∇V is a
velocity field of (µt)t≥0.

Proof: Let t ≥ 0. Using the chain rule and (3),

d

dt
φ(xt) = ⟨∇φ(xt), ẋt⟩Rd = ⟨∇φ(xt),−∇V (xt)⟩Rd .

d

dt

∫
φdµt =

d

dt
E [φ(xt)] = E

[
d

dt
φ(xt)

]
= E [⟨∇φ(xt),−∇V (xt)⟩Rd ] = ⟨∇φ,−∇V ⟩µt .

Therefore we can identify vt = −∇V .
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Example I : WGF of Potential energy

• We have just seen that:

ẋt = −∇V (xt), xt ∈ Rd , xt ∼ µt , (4)w�
∂µt

∂t
= ∇ ·

(
µt∇V

)
. (5)

• In other words, vt = −∇V = −∇W2F(µt) where
F(µ) =

∫
Vdµ is a Potential energy.

Hence (4) realizes the WGF of the Potential energy F (5).
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Example II : WGF of generic F

More generally, let x0 ∼ µ0 and consider the dynamics:

ẋt = vt(xt).

Let µt be the law of xt at each time t ≥ 0. Then, (vt)t≥0 is a
velocity field of (µt)t≥0.

In particular, let F : P2(Rd) → (−∞,+∞]. The dynamics

ẋt = −∇W2F(µt)(xt), xt ∈ Rd , xt ∼ µt , (6)

realizes the Wasserstein GF of F .

Note that (xt)t≥0 follows a deterministic dynamics1. There may be
other realizations of the Wasserstein GF!

1The randomness only comes from x0 ∼ µ0.
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Example III : Brownian motion

Let x0 ∼ µ0 independent of bt ∼ N (0, t Id) the Brownian motion,
and consider the dynamics

xt = x0 +
√
2bt .

Let µt be the law of xt at each time t ≥ 0. Then,
vt = −∇ log(µt) is a velocity field of (µt)t≥0.

Proof: Differentiate φ(xt) using Itô formula, take the expectation
and identify the velocity field from its definition.

In this case, the Continuity Equation is the Heat equation1

∂µt

∂t
= ∇ ·

µt∇ log(µt)︸ ︷︷ ︸
=µt .∇µt/µt

 = ∆µt .

1Using ∆ = ∇ ·∇ (Divergence of Gradient = Laplacian).
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Example III =⇒ WGF of (Neg.) Entropy

• We have just seen that:

xt = x0 +
√
2bt , bt ∼ N (0, t Id), xt ∈ Rd , xt ∼ µt , (7)w�

∂µt

∂t
= ∇ · (µt∇ log(µt)) = ∆µt . (8)

• In other words, vt = −∇ log(µt) = −∇W2F(µt) where
F(µ) =

∫
log(µ(x))dµ(x) is the Negative entropy.

Hence (7) realizes the WGF of the Negative entropy F (8).
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Other realizations of WGF of (Neg.) Entropy

Remark: While we have just seen that

xt = x0 +
√
2bt , bt ∼ N (0, t Id)

realizes the WGF of the Negative entropy, it is also the case of

xt = x0 +
√
2tη, η ∼ N (0, Id). (9)

Indeed, the latter satisfies

ẋt = −∇ log(µt)(xt),

which has the same velocity field vt = −∇ log(µt).

All these processes have the same distribution µt realizing
the WGF of the Negative entropy.
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Example IV - Langevin diffusion

More generally, let x0 ∼ µ0, and consider the dynamics (Langevin
diffusion)

dxt = −∇V (xt)dt +
√
2dbt ,

where (bt)t≥0 is the Brownian motion. Let µt be the law of xt at
each time t ≥ 0. Then, vt = −∇V +∇ log(µt) = −∇ log

(µt

π

)
where π ∝ exp(−V ), is a velocity field of µt .

Proof: Combine Example I and III.

In this case, the Continuity Equation is the Fokker-Planck
equation.

∂µt

∂t
= ∇ ·

(
µt∇ log

(µt

π

))
= ∆µt +∇ · (µt∇V ).
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Example IV =⇒ WGF of the KL
• We have just seen that:

xt = −∇V (xt) +
√
2dbt , xt ∈ Rd , xt ∼ µt , (10)w�

∂µt

∂t
= ∇ ·

(
µt∇ log

(µt

π

))
= ∆µt +∇ · (µt∇V ). (11)

• In other words, vt = −∇ log
(µt

π

)
= −∇W2F(µt) where

F(µ) = KL(µ|π) and π ∝ exp(−V ).

Hence (10) realizes the WGF of the KL divergence F (11).

Remark: Another realization is given by

ẋt = −∇ log
(µt

π

)
(xt), xt ∼ µt .
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Design of (Some) Sampling algorithms

A take home message.

As in Optimization, time discretizations of the Wasserstein
GF can be seen as Sampling algorithms (= optimization
algorithms in P2(Rd)).

This point of view allows to design Sampling algorithms by
discretizing Wasserstein GF.
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Sampling as Optimization

π(x) ∝ exp(−V (x)),

π = argmin
µ∈P2(Rd )

KL(µ|π) = argmin
µ∈P2(Rd )

F(µ),

where

F(µ) :=

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg .)Entropy

satisfies
F(µ)− F(π)︸ ︷︷ ︸

Constant

= KL(µ|π).
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Time discretizations of the Wasserstein GF
Let γ > 0 a step-size.

• Wasserstein gradient descent or Forward Euler (explicit):

µm+1 = (Id−γ ∇W2F(µm))# µm

Problem: If F(µ) = KL(µ|π), ∇W2F(µm) = ∇ log
(µm

π

)
requires

the knowledge of the density µm.
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• JKO scheme [Jordan et al., 1998] (F geo. convex):

µm+1 ∈ JKOγF (µm) := argmin
µ∈P2(Rd )

{
γF(µ) +

1

2
W 2

2 (µ, µm)

}
.

i.e. Backward Euler (implicit) [SKL20].

• Splitting scheme [SKL20] (F = F1 + F2, F2 geo. convex):

µm+ 1
2
= (Id−γ ∇W2F1(µm))#µm

µm+1 = JKOγ F2

(
µm+ 1

2

)
Problem: these (unbiased) schemes are also hard to implement
(global optimization subroutine).
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) to sample from π ∝ exp(−V ):

xm+1 = xm − γ∇V (xm) +
√
2γηm,

where γ > 0 and (ηm)m≥0 i.i.d. standard Gaussian.

Intuition: Discretization of Langevin diffusion

dxt = −∇V (xt)dt +
√
2dbt .

Can be used for analysis of Langevin
[Durmus and Moulines, 2017, Dalalyan, 2017].
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Gradient dominance

Log Sobolev inequality is a gradient dominance condition for KL.
[Otto and Villani, 2000, Blanchet and Bolte, 2018].

∀µ ∈ P2(Rd), KL(µ|π) ≤ 1

2λ
∥∇ log (µ|π) ∥2

L2(µ).

• V is λ-strongly convex ⇒ π ∝ exp(−V ) satisfies Log Sobolev
with λ (Bakry–Emery theorem)

• Log Sobolev ⇏ V convex.

63 / 75



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

Non log concave π satisfying Log Sobolev

Example: Consider a standard Gaussian distribution

π(x) ∝ exp

(
−∥x∥2

2

)
,

i.e. π ∝ exp(−V ) with V 1-strongly convex, i.e. π is (1-)strongly
log-concave.

A small (bounded) perturbation of π is not necessarily log-concave,
but still verifies a Log Sobolev inequality (Holley–Stroock
perturbation theorem).

Figure from [?].
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Stein Variational Gradient Descent (SVGD)

SVGD [Liu and Wang, 2016] to sample from π ∝ exp(−V ).

SVGD updates the positions of a set of N particles x1, . . . , xN , i.e.
for any i = 1, . . . ,N, at each time m ≥ 0:

x im+1 = x im − γ

N

N∑
j=1

∇V (x jm)k(x
i
m, x

j
m)−∇2k(x

i
m, x

j
m),

where k is a kernel associated to a Reproducing Kernel Hilbert
Space Hk .
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Reproducing kernel Hilbert Space

• Hilbert space of functions Hk (here, Hk ⊂ L2(µ) for every µ)

• For every x , k(x , ·) ∈ Hk (k(x , ·) : Rd → R)
• Reproducing property: for every f ∈ Hk , f (x) = ⟨f , k(x , ·)⟩Hk

.

Example: k(x , y) = exp
(
−∥x − y∥2

)
.
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Two dimensional example

SVGD

Simulation from [KAFMA21]. Pytorch code available at
https://github.com/pierreablin/ksddescent.
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What’s happening over the Wasserstein space

Let µm = 1
N

N∑
j=1

δ
x jm
. Then,

µm+1 = (Id−γhµm)# µm,

where hµ :=
∫
∇V (x)k(x , ·)−∇1k(x , ·)dµ(x).

Actually,

hµ = Pµ∇ log
(µ
π

)
, where Pµ : L2(µ) → Hk , f 7→

∫
f (x)k(x , ·)dµ(x).
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Gradient descent interpretation
A Taylor expansion around µ for h ∈ Hk , if µ has a density
yields [Liu, 2017]:

KL((Id+εh)#µ|π) = KL(µ|π) + ε ⟨hµ, h⟩Hk
+ o(ε).

Therefore, hµ plays the role of the Wasserstein gradient in Hk .
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Extensions to other optimization techniques

• Accelerated methods: accelerated LMC [Ma et al., 2019,
Dalalyan and Riou-Durand, 2020, Shen and Lee, 2019],
accelerated particle methods [Liu et al., 2019]

• ”Mirror-descent” like sampling algorithms to sample from a
distribution with compact support: Mirror Langevin
[Hsieh et al., 2018, Zhang et al., 2020, Ahn and Chewi, 2021,
Li et al., 2022], Mirror SVGD [Shi et al., 2021]

• ”Proximal” algorithms for non-smooth potentials V (i.e. no
gradients of V) [Durmus et al., 2019, Wibisono, 2019],
[SKR19, SR20]

• Variance reduction for potentials V written as finite sums
[Ding and Li, 2021, Zou et al., 2018, Zou et al., 2019,
Dubey et al., 2016], [BCE+22].
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Conclusion

• Sampling can be seen as an optimization problem on a
”Wasserstein manifold”, and we can consider Wasserstein
gradient flows, that decrease a loss (e.g. here the KL)

• Their discretizations (space/time) lead to different algorithms:
LMC is a splitting (forward-flow) scheme, SVGD is a gradient
descent

• One can design Sampling algorithms by discretizing
Wasserstein GF
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Some limitations of the framework

• The presented framework does not cover all sampling
algorithms, e.g. involving dynamics such as accept/reject
steps, birth and death of particles...

• It does not cover neither the analysis for finite number of
particles (last iterates of Langevin Monte Carlo, SVGD
stationary particles...)

• We did not talk about practical considerations, e.g. improving
convergence (for π multimodal, high-dimensional)
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