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Problem : Sample from a target distribution = over RY, whose
density w.r.t. Lebesgue is known up to a constant Z :

where Z is the (untractable) normalization constant.
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Problem : Sample from a target distribution = over RY, whose
density w.r.t. Lebesgue is known up to a constant Z :

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.
» Let D = (w;, Yi)i=1,.. n Observed data.

> Assume an underlying model parametrized by 6
(e.g. p(y|w, 6) gaussian)

— Likelihood: p(D|6) = [T, p(yil6, w;).
» Assume also 6 ~ p (prior distribution).

Bayes’ rule : w(0) := p(0|D) = (D|0 / p(D|0)p



Sampling as optimization over distributions

Assume that 7 € P»(RY) = {1 € P(RY), [ ||Ix|[Pdu(x) < oo}.
The sampling task can be recast as an optimization problem:

7w = argmin D(u|r) := F(u),
pEP(RY)

where D is a dissimilarity functional.

Starting from an initial distribution g € P2(R?), one can then
consider the Wasserstein gradient flow of F over P,(RY) to
transport 1o to 7.



Choice of the loss function

Many possibilities for the choice of D among Wasserstein
distances, f-divergences, Integral Probability Metrics...

For instance,
» D is the KL (Kullback-Leibler divergence):

KL(M!W)Z{ {R;Jog( #00) ) gtﬁefN;;e.

» D is the MMD (Maximum Mean Discrepancy):

MMD? (s, = / K(x, y)diu(x)dp(y)

[ koenantasein =2 [ ke nantoss

where k : RY x RY — R is a p.s.d. kernel.



Contributions of the paper

Here we choose D as the Kernel Stein Discrepancy (KSD).
We propose an algorithm that is:
> score-based (only requires V log )

» using a set of particles whose empirical distribution
minimizes the KSD

» easy to implement and to use (e.g. leverages L-BFGS) !
We study:

» its convergence properties (numerically and theoretically)

» its empirical performance compared to Stein Variational
Gradient Descent
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Kernel Stein Discrepancy
For i, m € P2(RY), the KSD of 1 relative to = is

KSD(u|r) = \/ / / ke (X, y)du(x)du(y),

where k; : RY x RY — R is the Stein kernel, defined through
» the score function s(x) = V log (x),
> ap.s.d. kernel k : RY x RY — R, k € C?(RY)?

For x,y € RY,
ke(X,y) = s(x)Ts(y)k(x,y) + s(x)TV2k(x, y)
+ Vik(x,y) s(y) + V +1 Vak(x,y)

e R.

'e.g.  k(x,y) = exp(—[Ix — y|?/h)



Stein identity and link with MMD

Under mild assumptions on k and =, the Stein kernel k; is p.s.d. and
satisfies a Stein identity

/ k-(x,.)dr(x) = 0.
Rd

Consequently, KSD is a MMD with kernel k;, since:
MMD(sir) = [ ki (x,Y)lu(x)ln(y) + [ Ka(x.)dm(x)dn(y)
-2 [ ku(x.y)du(x)dn(y)

— / ke (X, y)du(x)du(y)
= KSD?(pu|n)

Rk : It is also as a kernelized Fisher divergence (||V log (£ )||L2

KSD?(u|m) = HSM,kV log(%)’ ik

where S, : f /f(x)k(x, Jdu(x)



KSD benefits

KSD can be computed when
» one has access to the score of 7
» . is a discrete measure, e.9. yu = %Z,’L dyi, then :

KSD?(u|7) = N2 Zk (x', x)).
7] 1



KSD benefits

KSD can be computed when
» one has access to the score of 7
» . is a discrete measure, e.9. yu = %Z,’L dyi, then :

KSD?(u|7) = N2 Z ko (x', xI).
7] 1

KSD is known to metrize weak convergence
when:
» 7 is strongly log-concave at infinity ("distantly dissipative",
e.g. true for gaussian mixtures)
» k has a slow decay rate, e.g. true when k is the IMQ kernel
defined by k(x,y) = (¢ + ||x — y||3)” for ¢ > 0 and
B e (-1,0).



KSD in the literature

The KSD has been used for
» nonparametric statistical tests for goodness-of-fit

» sampling tasks:

> (greedy algorithms) to select a suitable set of static points
to approximate 7, adding a new one at each iteration

> to compress or reweight
Markov Chain Monte Carlo (MCMC)

outputs

> to learn a static transport map from o to 7

> learn Energy-Based models 7 « exp(— V) from samples of
7 (use reverse KSD)
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Time/Space discretization of the KSD gradient flow

Let F(u) = KSD?(pu|r).
> lts Wasserstein gradient flow on P,(R?) finds a continuous
path of distributions that decreases .

» Different algorithms to approximate = depend on the time
and space discretization of this flow.

Forward discretization: Wasserstein gradient descent

Discrete measures: For discrete measures /i = & Zf\; Oyis
we have an explicit loss function

N

L) = F(R) = 1 D Ke(x' ).
ij=1

Then, Wasserstein gradient descent of F for discrete measures

0

(Euclidean) gradient descent of L on the particles.



KSD Descent - algorithms

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles (z{)Y ; ~ jo, number of itera-
tions M, step-size y
forn =1to M do

[E:zi»l]é\;l = i\l Z[Vzk n) i=1»
end for

Return: [asM] il

Algorithm 2 KSD Descent L-BFGS

Input: initial particles (z)X¥.; ~ o, tolerance tol

Return: [zi]Y | = L-BFGS(L, VL, [z}] ¥ ,, tol).

L-BFGS is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!



L-BFGS

L-BFGS ( Limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm ) is a quasi-Newton method:

Xni1 = Xn — 1By 'V L(Xn) = X + Y0y (1)
where B; ' is a p.s.d. matrix approximating the inverse Hessian at x,,.

Step1. (requires VL) It computes a cheap version of d, based on
BFGS recursion:

B*‘] _ I— Axnyrz- B_1 I— ynAXrZ- AXnAXfT
G YIDx,) " N yTAx,

where
AXp = Xpnp1 — Xn
Yn = VL(Xp41) — VL(Xn)

Step2. (requires L and VL) A line-search is performed to find the best
step-size in (1) :
L(Xn 4+ yndh) < L(Xn) + c17nVL(Xn) " dp
VL(Xn + 'Yndn)Tdn > C2VL(Xn)Tdn

See



Related work
1. minimize the KL divergence (requires V log ), e.g. with
Stein Variational Gradient descent (SVGD, ).

Uses a set of N interacting particles and a p.s.d. kernel
k :RY x RY — R to approximate r:

XI

i
ni1 = Xn— 7

N
1 o , o
N D K, xh) ¥ log 7(Xh) + Vik(xh, x;,)] ,
j=1

Does not minimize a closed-form functional for discrete
measures! = cannot use L-BFGS.

2. minimize the MMD

i i
Xn+1 =Xp—

szz xh. xI) — Vak (), x )] .

(requires samples ()", ~ 7 )
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Toy experiments - 2D standard gaussian

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size

== KSD ==SVGD, small step SVGD, good step ==SVGD, big step
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Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 patrticles.
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2D mixture of (isolated) Gaussians - failure cases
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The green crosses indicate the initial particle positions
the blue ones are the final positions
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More initializations

Van\Init

0.1

0.3

Gaussian i.i.d.

on the s.a. close to s.a.

Green crosses : initial particle positions
Blue crosses : final positions
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Stationary measures - some explanations

In the paper, we explain how particles can get stuck in planes
of symmetry of the target .

» we show that if a stationary measure u, is full support,
then F(uo) = 0.

» but we also show that if supp(ug) € M, where M is a
plane of symmetry of 7, then for any time ¢ it remains true
for ps: supp(ut) € M.



Isolated Gaussian mixture - annealing

Add an inverse temperature variable 3 : 7°(x) o exp(—3V(x)) ,
with 0 < 8 < 1 (i.e. multiply the score by 3.)
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This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed.



Real world experiments (10 particles)

KSD Descent

Amari distance

%
L

>
f

0.6 0.8 1.0
SVGD

10° 4

1071 4

i

Random KSD SVGD

Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ~ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Bayesian ICA.

Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d < 8).

KSD is not better than random.



So.. when does it work?

. KSDD Stein points /
AN\ ~ z ya /

Comparison of KSD Descent and Stein poinis on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.



Outline

Theoretical properties of the KSD flow

26/34



First strategy : functional inequality?
Fulm) = [[ k(x, y)du(x)du(y).

We have

) [ ko)) = Bl (. )
and under approprlate growth assumptions on k;:

WoF (1) = Exe[Vaka(X, ).
Hence
dF
V) (g F (), Vw020
= — By | B [V2hn (6, V)] 2

—Difficult to identify a functional inequality to relate
dF(ut)/dt to F(ut), and establish convergence in continuous
time (similar to )




Second strategy : geodesic convexity of the KSD?

Let i) € C3°(RY) and the path p; = (I + tvw)#ﬂ for t € [0,1].
.7 (Po);

Define the quadratic form Hess,, F (v, 1) := dt2
t=
which is related to the W, Hessian of 7 at L.

For ) € C(RY), we have
Hess, (1, 1) = Exymy | V(X)T V1 Vake (X, ) V0(y)]
+ By [V0(0)T Hike (X, y)VO()]

The first term is always positive but not the second one.
— the KSD is not convex w.r.t. W, geodesics.



Third strategy : curvature near equilibrium?
What happens near equilibrium 7? the second term vanishes
due to the Stein property of k. and :

Hess, F (v, ¢) = st,kﬁﬁﬂbng-tkﬂ >0
where

Lr:f— —Af—(Vlogm,Vf)gd

S,k f%/k Vf(X)du(x) € Hi, = {ke(X,.),x € R9}

Question: can we bound from below the Hessian at = by a
quadratic form on the tangent space of P»(RY) at 7 (C L3())?

1S ke LrtPl13,. = Hessz F(1,4) = MV T2y ?

That would imply exponential decay of F near =



Curvature near equilibrium - negative result

The previous inequality

1Sm ke L0113y, = MVIZ2 ()

» can be seen as a kernelized version of the Poincaré
inequality for 7 :

I£x1Z, () = AxlI VI, -
» can be written:
(W, Tt ) Ly(r) = M, L710) 1)
where T,y : L2(7) — L3(7), f / ke (x, ) f(x)dm(x).
Theorem : Let 7 o« V. Assume that V € C?(R9), VV is

Lipschitz and £, has discrete spectrum. Then exponential
decay near equilibium does not hold.
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Conclusion

Pros:
» KSD Descent is a very simple algorithm, and can be used
with L-BFGS (fast, and does not require

the choice of a step-size as in SVGD)

» works well on log-concave targets (unimodal gaussian,
Bayesian logistic regression with gaussian priors) or "nice
distributions (banana)

Cons:

» KSD is not convex w.r.t. W5, and no exponential decay
near equilibrium holds

» does not work well on non log-concave targets (mixture of
isolated gaussians, Bayesian ICA)



Open questions

» explain the convergence of KSD Descent when 7 is
log-concave?

» quantify propagation of chaos ? (KSD for a finite number of
particles vs infinite)

» how good is KSD quantisation?



Code

>>>
>>>
>>>
>>>
>>>
>>>

Python package to try KSD descent yourself:
pip install ksddescent

website: pierreablin.github.io/ksddescent/
It also features pytorch/numpy code for SVGD.

import torch

from ksddescent import ksdd_lbfgs

n, p=250 2

x0 = torch.rand(n, p) # start from uniform distribution
score = lambda x: x # simple score function

x = ksdd_lbfgs(x0, score) # run the algorithm

Thank you for listening!


pierreablin.github.io/ksddescent/
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W2 GF of KSD

Let F(u) = 3 KSD?(u|r). The KSD gradient flow is defined as
the flow induced by the continuity equation:

0 .
% + div(pevy,) =0, vy, = =V, F(ut).

For u; regular enough,

OF (1)

Vw, F(pue) =V B

2

‘”;—fj‘) : RY — R is the differential of u — F (1), evaluated at p.

It is the unique function such that for any p, ' € P, p’ — p € P:

tim L e = ) = F0) = [ T Gt - o))



Stationary measures of the KSD flow

Consider a stationary measure ., of the KSD flow, i.e the
dissipation is null:

dF (poo) _
a0
— [ kz(X,.)dpeo(X) is uso-a.e equal to a constant function c.

If 1o has full support, since we can prove H,_ does not
contain non-zero constant functions, then () = 0.

If 1 is a discrete measure (as in practice) the dissipation
can vanish even for ;; # 7 because 4 is not full-support.



Some results on stationary measures of the KSD flow

Lemma

Let xy such that s(xo) = 0 and J(s)(xo) is invertible, and
consider a translation-invariant kernel k(x,y) = ¢(x — y), for
¢ € C'(RY). Then 6y, is a stable fixed measure of the KSD flow.

Lemma

Let M be a plane of symmetry of = and consider a radial kernel
k(x,y) = o(|lx — y|?/2) with ¢ € C?, then, for all (x,y) € M?,
Vak=(x,y) € Tm(x) and M is flow-invariant for the KSD flow,
i.e. : forany ug s.t. supp(uo) C M, then supp(ut) C M for all
t>0.



Background on kernels and RKHS
> Let k : RY x RY — R a positive, semi-definite kernel
k(. X') = (6(x), 6(XN)m, ¢RI = H

> H, its corresponding RKHS (Reproducing Kernel Hilbert
Space):

Hk—{Za, LX) meN; ay,...,am € R; x1,...,xme]Rd}

> 7y is a Hilbert space with inner product (., .), and norm ||.||2,.
It satisfies the reproducing property:
YV feHk, xR f(x) = (f,k(X,.))n,

We assume [,q. pa K(X, X)dpu(x) < oo for any p € P.
— Hy C L2(p).



1 - Bayesian Logistic regression

Datapoints di,...,dy € RP, and labels y1,...,y; € {£1}.
Labels y; are modelled as p(y; = 1|d;, w) = (1 + exp(—w ' d;))~" for
some w € RP,

The parameters w follow the law p(w|a) = N'(0,a"lp), and « > 0 is
drawn from an exponential law p(«) = Exp(0.01).

The parameter vector is then x = [w, log(a)] € RP*, and we use
KSD-LBFGS to obtain samples from p(x| (d;, ;){_,) for 13 datasets,
with N = 10 particles for each.

1.0 1
2 Accuracy of the KSD descent and
§ 0.8 1 SVGD on bayesian logistic regression
= for 13 datasets.
< 06 Both methods yield similar results.
' KSD is better by 2% on one dataset.

0.6 0.8 1.0
SVGD



2 - Bayesian Independent Component Analysis

ICA: x = W~'s, where x is an observed sample in RP, W € RP*P is
the unknown square unmixing matrix, and s € RP are the
independent sources.

1)Assume that each component has the same density s; ~ ps.

2) The likelihood of the model is p(x|W) = log |W| + S"F_, ps([Wx];).
3)Prior: W has i.i.d. entries, of law N (0, 1).

The posterior is p(W|x) « p(x|W)p(W), and the score is given by
sS(W)=W=T —y(Wx)x" — W, where ¢ = —Z—é. In practice, we
choose ps such that ¢ (-) = tanh(-). We then use the presented
algorithms to draw 10 particles W ~ p(W/|x) on 50 experiments.

10° 4 [ -~ )
é‘ 10 \1?? ? 10° 4 {i?* 1“(,_@;? 4?

s
E 1074 4 E
< <
T T T T T T T T T
Random KSD SVGD Random KSD SVGD Random KSD SVGD

Left: p = 2. Middle: p = 4. Right: p = 8.

Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.

KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex.

Amari distance
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