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Problem : Sample from a target distribution π over Rd , whose
density w.r.t. Lebesgue is known up to a constant Z :

π(x) =
π̃(x)

Z

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.
I Let D = (wi , yi)i=1,...,N observed data.

I Assume an underlying model parametrized by θ
(e.g. p(y |w , θ) gaussian)

=⇒ Likelihood: p(D|θ) =
∏N

i=1 p(yi |θ,wi).

I Assume also θ ∼ p (prior distribution).

Bayes’ rule : π(θ) := p(θ|D) =
p(D|θ)p(θ)

Z
, Z =

∫
Rd

p(D|θ)p(θ)dθ.

3/ 34



Problem : Sample from a target distribution π over Rd , whose
density w.r.t. Lebesgue is known up to a constant Z :

π(x) =
π̃(x)

Z

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.
I Let D = (wi , yi)i=1,...,N observed data.

I Assume an underlying model parametrized by θ
(e.g. p(y |w , θ) gaussian)

=⇒ Likelihood: p(D|θ) =
∏N

i=1 p(yi |θ,wi).

I Assume also θ ∼ p (prior distribution).

Bayes’ rule : π(θ) := p(θ|D) =
p(D|θ)p(θ)

Z
, Z =

∫
Rd

p(D|θ)p(θ)dθ.

3/ 34



Sampling as optimization over distributions

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional.

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Choice of the loss function
Many possibilities for the choice of D among Wasserstein
distances, f -divergences, Integral Probability Metrics...

For instance,
I D is the KL (Kullback-Leibler divergence):

KL(µ|π) =

{ ∫
Rd log

(µ
π (x)

)
dµ(x) if µ� π

+∞ otherwise.

I D is the MMD (Maximum Mean Discrepancy):

MMD2(µ, π) =

∫∫
Rd

k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dπ(x)dπ(y)− 2
∫∫

Rd
k(x , y)dµ(x)dπ(y).

where k : Rd × Rd → R is a p.s.d. kernel.
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Contributions of the paper

Here we choose D as the Kernel Stein Discrepancy (KSD).

We propose an algorithm that is:
I score-based (only requires ∇ log π)
I using a set of particles whose empirical distribution

minimizes the KSD
I easy to implement and to use (e.g. leverages L-BFGS) !

We study:
I its convergence properties (numerically and theoretically)
I its empirical performance compared to Stein Variational

Gradient Descent
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

For µ, π ∈ P2(Rd ), the KSD of µ relative to π is

KSD(µ|π) =

√∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )1

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

1e.g. : k(x , y) = exp
(
−‖x − y‖2/h

)
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Stein identity and link with MMD
Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity [Oates et al., 2017]∫

Rd
kπ(x , .)dπ(x) = 0.

Consequently, KSD is a MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)

Rk : It is also as a kernelized Fisher divergence (
∥∥∇ log

(
µ
π

)∥∥2
L2(µ)

):

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

where Sµ,k : f 7→
∫

f (x)k(x , .)dµ(x)
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KSD benefits

KSD can be computed when
I one has access to the score of π
I µ is a discrete measure, e.g. µ = 1

N
∑N

i=1 δx i , then :

KSD2(µ|π) =
1

N2

N∑
i,j=1

kπ(x i , x j).

KSD is known to metrize weak convergence
[Gorham and Mackey, 2017] when:
I π is strongly log-concave at infinity ("distantly dissipative",

e.g. true for gaussian mixtures)
I k has a slow decay rate, e.g. true when k is the IMQ kernel

defined by k(x , y) = (c2 + ‖x − y‖22)β for c > 0 and
β ∈ (−1,0).
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KSD in the literature

The KSD has been used for
I nonparametric statistical tests for goodness-of-fit

[Xu and Matsuda, 2020, Kanagawa et al., 2020]

I sampling tasks:
I (greedy algorithms) to select a suitable set of static points

to approximate π, adding a new one at each iteration
[Chen et al., 2018, Chen et al., 2019]

I to compress [Riabiz et al., 2020] or reweight
[Hodgkinson et al., 2020] Markov Chain Monte Carlo (MCMC)
outputs

I to learn a static transport map from µ0 to π [Fisher et al., 2020].

I learn Energy-Based models π ∝ exp(−V ) from samples of
π (use reverse KSD) [Domingo-Enrich et al., 2021]

11/ 34



Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Conclusion

12/ 34



Time/Space discretization of the KSD gradient flow
Let F(µ) = KSD2(µ|π).
I Its Wasserstein gradient flow on P2(Rd ) finds a continuous

path of distributions that decreases F .
I Different algorithms to approximate π depend on the time

and space discretization of this flow.

Forward discretization: Wasserstein gradient descent
Discrete measures: For discrete measures µ̂ = 1

N
∑N

i=1 δx i ,
we have an explicit loss function

L([x i ]Ni=1) := F(µ̂) =
1

N2

N∑
i,j=1

kπ(x i , x j).

Then, Wasserstein gradient descent of F for discrete measures

m

(Euclidean) gradient descent of L on the particles.
13/ 34



KSD Descent - algorithms
We propose two ways to implement KSD Descent:

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!

14/ 34



L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xn+1 = xn − γnB−1
n ∇L(xn) := xn + γndn (1)

where B−1
n is a p.s.d. matrix approximating the inverse Hessian at xn.

Step1. (requires ∇L) It computes a cheap version of dn based on
BFGS recursion:

B−1
n+1 =

(
I − ∆xnyT

n

yT
n ∆xn

)
B−1

n

(
I − yn∆xT

n

yT
n ∆xn

)
+

∆xn∆xT
n

yT
n ∆xn

where

∆xn = xn+1 − xn

yn = ∇L(xn+1)−∇L(xn)

Step2. (requires L and ∇L) A line-search is performed to find the best
step-size in (1) :

L(xn + γndn) ≤ L(xn) + c1γn∇L(xn)T dn

∇L(xn + γndn)T dn ≥ c2∇L(xn)T dn

See [Nocedal and Wright, 2006]. 15/ 34



Related work
1. minimize the KL divergence (requires ∇ log π), e.g. with
Stein Variational Gradient descent (SVGD, [Liu and Wang, 2016]).
Uses a set of N interacting particles and a p.s.d. kernel
k : Rd × Rd → R to approximate π:

x i
n+1 = x i

n − γ

 1
N

N∑
j=1

k(x i
n, x

j
n)∇ log π(x j

n) +∇1k(x j
n, x

i
n)

 ,
Does not minimize a closed-form functional for discrete
measures! =⇒ cannot use L-BFGS.

2. minimize the MMD [Arbel et al., 2019]

x i
n+1 = x i

n − γ

 1
N

N∑
j=1

∇2k(x j
n, x

i
n)−∇2k(y j , x i

n)

 .
(requires samples (yj)

N
j=1 ∼ π )
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Toy experiments - 2D standard gaussian

SVGD

MMD

KSD Grad KSD L-BFGS

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size

0.0 0.1 0.2

Time (s.)

10−1

K
L

(µ
,π

)

0.0 0.1 0.2

Time (s.)

101

K
S

D
(µ
,π

)

KSD SVGD, small step SVGD, good step SVGD, big step

Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 particles.
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2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions
the blue ones are the final positions
The light red arrows correspond to the score directions.
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More initializations

Var\Init on the s.a. close to s.a.
Gaussian i.i.d.

init

0.1

0.3

2

Green crosses : initial particle positions
Blue crosses : final positions
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Stationary measures - some explanations

In the paper, we explain how particles can get stuck in planes
of symmetry of the target π.
I we show that if a stationary measure µ∞ is full support,

then F(µ∞) = 0.

I but we also show that if supp(µ0) ⊂M, whereM is a
plane of symmetry of π, then for any time t it remains true
for µt : supp(µt ) ⊂M.
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable β : πβ(x) ∝ exp(−βV (x)) ,
with 0 < β ≤ 1 (i.e. multiply the score by β.)

β = 1 β = 0.1 β = 0.1→ 1

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed.

Beyond Log-concavity: Provable Guarantees for Sampling
Multi-modal Distributions using Simulated Tempering Langevin
Monte Carlo. Rong Ge, Holden Lee, Andrej Risteski. 2017.
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Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ∼ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.

Random KSD SVGD

10−1

100

A
m

ar
i

d
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n

ce

Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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First strategy : functional inequality?
F(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y).

We have

∂F(µ)

∂µ
=

∫
kπ(x , .)dµ(x) = Ex∼µ[kπ(x , .)]

and under appropriate growth assumptions on kπ:

∇W2F(µ) = Ex∼µ[∇2kπ(x , ·)],

Hence

dF(µt )

dt
= 〈∇W2F(µt ),−∇W2F(µt )〉L2(µt )

= −Ey∼µt

[
‖Ex∼µt [∇2kπ(x , y)]‖2

]
≤ 0.

=⇒Difficult to identify a functional inequality to relate
dF(µt )/dt to F(µt ), and establish convergence in continuous
time (similar to [Arbel et al., 2019]).
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Second strategy : geodesic convexity of the KSD?

Let ψ ∈ C∞c (Rd ) and the path ρt = (I + t∇ψ)#µ for t ∈ [0,1].

Define the quadratic form HessµF(ψ,ψ) := d2

dt2

∣∣∣
t=0
F(ρt ),

which is related to the W2 Hessian of F at µ.

For ψ ∈ C∞c (Rd ), we have

HessµF(ψ,ψ) = Ex ,y∼µ

[
∇ψ(x)T∇1∇2kπ(x , y)∇ψ(y)

]
+ Ex ,y∼µ

[
∇ψ(x)T H1kπ(x , y)∇ψ(x)

]
.

The first term is always positive but not the second one.

=⇒ the KSD is not convex w.r.t. W2 geodesics.
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Third strategy : curvature near equilibrium?
What happens near equilibrium π? the second term vanishes
due to the Stein property of kπ and :

Hessπ F(ψ,ψ) = ‖Sπ,kπLπψ‖2Hkπ
≥ 0

where

Lπ : f 7→ −∆f − 〈∇ log π,∇f 〉Rd

Sµ,kπ : f 7→
∫

kπ(x , .)f (x)dµ(x) ∈ Hkπ =
{

kπ(x , .), x ∈ Rd
}

Question: can we bound from below the Hessian at π by a
quadratic form on the tangent space of P2(Rd ) at π (⊂ L2(π))?

‖Sπ,kπLπψ‖2Hkπ
= Hessπ F(ψ,ψ) ≥ λ‖∇ψ‖2L2(π) ?

That would imply exponential decay of F near π.
29/ 34



Curvature near equilibrium - negative result
The previous inequality

‖Sπ,kπLπψ‖2Hkπ
≥ λ‖∇ψ‖2L2(π)

I can be seen as a kernelized version of the Poincaré
inequality for π :

‖Lπψ‖2L2(π)
≥ λπ‖∇ψ‖2L2(π)

.

I can be written:

〈ψ,Tπ,kπψ〉L2(π) ≥ λ〈ψ,L
−1
π ψ〉L2(π),

where Tπ,kπ : L2(π)→ L2(π), f 7→
∫

kπ(x , .)f (x)dπ(x).

Theorem : Let π ∝ e−V . Assume that V ∈ C2(Rd ), ∇V is
Lipschitz and Lπ has discrete spectrum. Then exponential
decay near equilibium does not hold.
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Conclusion

Pros:
I KSD Descent is a very simple algorithm, and can be used

with L-BFGS [Liu and Nocedal, 1989] (fast, and does not require
the choice of a step-size as in SVGD)

I works well on log-concave targets (unimodal gaussian,
Bayesian logistic regression with gaussian priors) or "nice"
distributions (banana)

Cons:
I KSD is not convex w.r.t. W2, and no exponential decay

near equilibrium holds

I does not work well on non log-concave targets (mixture of
isolated gaussians, Bayesian ICA)
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Open questions

I explain the convergence of KSD Descent when π is
log-concave?

I quantify propagation of chaos ? (KSD for a finite number of
particles vs infinite)

I how good is KSD quantisation?
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Code

I Python package to try KSD descent yourself:
pip install ksddescent

I website: pierreablin.github.io/ksddescent/
I It also features pytorch/numpy code for SVGD.

Thank you for listening!
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W2 GF of KSD
Let F(µ) = 1

2 KSD2(µ|π). The KSD gradient flow is defined as
the flow induced by the continuity equation:

∂µt

∂t
+ div(µtvµt ) = 0, vµt := −∇W2F(µt ).

For µt regular enough,

∇W2F(µt ) = ∇∂F(µt )

∂µ

∂F(µ)
∂µ : Rd → R is the differential of µ 7→ F(µ), evaluated at µ.

It is the unique function such that for any µ, µ′ ∈ P, µ′ − µ ∈ P:

lim
ε→0

1
ε

(F(µ+ ε(µ′ − µ))−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dµ′ − dµ)(x).

7/ 12



Stationary measures of the KSD flow

Consider a stationary measure µ∞ of the KSD flow, i.e the
dissipation is null:

dF(µ∞)

dt
= 0

=⇒
∫

kπ(x , .)dµ∞(x) is µ∞-a.e equal to a constant function c.

If µ∞ has full support, since we can prove Hkπ does not
contain non-zero constant functions, then F(µ∞) = 0.

If µ∞ is a discrete measure (as in practice) the dissipation
can vanish even for µ 6= π because µ is not full-support.
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Some results on stationary measures of the KSD flow

Lemma

Let x0 such that s(x0) = 0 and J(s)(x0) is invertible, and
consider a translation-invariant kernel k(x , y) = φ(x − y), for
ψ ∈ C1(Rd ). Then δx0 is a stable fixed measure of the KSD flow.

Lemma

LetM be a plane of symmetry of π and consider a radial kernel
k(x , y) = φ(‖x − y‖2/2) with φ ∈ C2, then, for all (x , y) ∈M2,
∇2kπ(x , y) ∈ TM(x) andM is flow-invariant for the KSD flow,
i.e. : for any µ0 s.t. supp(µ0) ⊂M, then supp(µt ) ⊂M for all
t ≥ 0.
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel

k(x , x ′) = 〈φ(x), φ(x ′)〉H, φ : Rd → H

I Hk its corresponding RKHS (Reproducing Kernel Hilbert
Space):

Hk =

{
m∑

i=1

αik(·, xi); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}

I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .
It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk

We assume
∫
Rd×Rd k(x , x)dµ(x) <∞ for any µ ∈ P.

=⇒ Hk ⊂ L2(µ).
10/ 12



1 - Bayesian Logistic regression
Datapoints d1, . . . ,dq ∈ Rp, and labels y1, . . . , yq ∈ {±1}.
Labels yi are modelled as p(yi = 1|di ,w) = (1 + exp

(
−w>di

)
)−1 for

some w ∈ Rp.

The parameters w follow the law p(w |α) = N (0, α−1Ip), and α > 0 is
drawn from an exponential law p(α) = Exp(0.01).

The parameter vector is then x = [w , log(α)] ∈ Rp+1, and we use
KSD-LBFGS to obtain samples from p(x |

(
di , yi )

q
i=1

)
for 13 datasets,

with N = 10 particles for each.

0.6 0.8 1.0

SVGD

0.6

0.8

1.0

K
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D
D

es
ce

n
t Accuracy of the KSD descent and

SVGD on bayesian logistic regression
for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one dataset.
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2 - Bayesian Independent Component Analysis
ICA: x = W−1s, where x is an observed sample in Rp, W ∈ Rp×p is
the unknown square unmixing matrix, and s ∈ Rp are the
independent sources.
1)Assume that each component has the same density si ∼ ps.
2) The likelihood of the model is p(x |W ) = log |W |+

∑p
i=1 ps([Wx ]i ).

3)Prior: W has i.i.d. entries, of law N (0,1).
The posterior is p(W |x) ∝ p(x |W )p(W ), and the score is given by
s(W ) = W−> − ψ(Wx)x> −W , where ψ = − p′

s
ps

. In practice, we
choose ps such that ψ(·) = tanh(·). We then use the presented
algorithms to draw 10 particles W ∼ p(W |x) on 50 experiments.

Random KSD SVGD
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Random KSD SVGD
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Left: p = 2. Middle: p = 4. Right: p = 8.
Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.
KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex. 12/ 12


	Introduction
	Preliminaries on Kernel Stein Discrepancy
	Sampling as optimization of the KSD
	Experiments
	Theoretical properties of the KSD flow
	Conclusion
	Appendix

