KSD and MMD gradient descent

Anna Korba
ENSAE/CREST

OT Seminar - Orsay

Joint work with Adil Salim (Simons Institute), Giulia Luise (UCL), Michael Arbel (INRIA Grenoble), Arthur Gretton (UCL), Pierre-Cyril Aubin-Frankowski (INRIA Paris), Szymon Majewski (Polytechnique), Pierre Ablin (CNRS), Lantian Xu (CMU), Dejan Slepčev (CMU).

Outline

Problem and Motivation

Background on MMD/KSD Descent

Theoretical study

MMD and KSD Quantization

Experiments

Quantization problem

Problem : approximate a target distribution $\pi \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ by a finite set of n points x_{1}, \ldots, x_{n}, e.g. to compute functionals $\int_{\mathbb{R}^{d}} f(x) d \pi(x)$.

The quality of the set can be measured by the integral approximation error:

$$
\operatorname{err}\left(x_{1}, \ldots, x_{n}\right)=\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\int_{\mathbb{R}^{d}} f(x) d \pi(x)\right| .
$$

Several approaches, among which :

- MCMC methods : generate a Markov chain whose law converges to $\pi, \operatorname{err}\left(x_{1}, \ldots, x_{n}\right)=\mathcal{O}\left(n^{-1 / 2}\right)$
[Łatuszyński et al., 2013]
- deterministic particle systems, $\operatorname{err}\left(x_{1}, \ldots, x_{n}\right)$?

Example 1 : Bayesian statistics

- Let $\mathcal{D}=\left(x_{i}, y_{i}\right)_{i=1, \ldots, m}$ a labelled dataset.
- Assume an underlying model parametrized by $z \in \mathbb{R}^{d}$, e.g. $y \sim f(x, z)+\epsilon \quad(p(y \mid x, z)$ gaussian $)$
\Longrightarrow Compute the likelihood: $p(\mathcal{D} \mid z)=\prod_{i=1}^{m} p\left(y_{i} \mid x_{i}, z\right)$.
- Assume a prior distribution on the parameter $z \sim p$.

Example 1 : Bayesian statistics

- Let $\mathcal{D}=\left(x_{i}, y_{i}\right)_{i=1, \ldots, m}$ a labelled dataset.
- Assume an underlying model parametrized by $z \in \mathbb{R}^{d}$, e.g. $y \sim f(x, z)+\epsilon \quad(p(y \mid x, z)$ gaussian $)$
\Longrightarrow Compute the likelihood: $p(\mathcal{D} \mid z)=\prod_{i=1}^{m} p\left(y_{i} \mid x_{i}, z\right)$.
- Assume a prior distribution on the parameter $z \sim p$.

$$
\text { Bayes' rule : } \pi(z):=p(z \mid \mathcal{D})=\frac{p(\mathcal{D} \mid z) p(z)}{C}, C=\int_{\mathbb{R}^{d}} p(\mathcal{D} \mid z) p(z) d z
$$

π is known up to a constant since C is intractable.
How to sample from π then? e.g. to compute:

$$
p(y \mid x, \mathcal{D})=\int_{\mathbb{R}^{d}} p(y \mid x, z) d \pi(z)
$$

Example 2 : Regression with infinite width NN

Illustration : Student-Teacher network

The output of the Teacher network is deterministic and given by $y=\int \phi_{Z}(x) d \pi(Z)$ where $\pi=\frac{1}{M} \sum_{m=1}^{M} \delta_{U^{m}}$.
Student network by $\mu_{0}=\frac{1}{N} \sum_{j=1}^{N} \delta_{Z_{0}^{j}}$ tries to learn the mapping $x \mapsto \int \phi_{Z}(x) d \pi(Z)$.

Can be written as minimizing an $\operatorname{MMD}(\mu, \pi)$.

Outline

Problem and Motivation

Background on MMD/KSD Descent

Theoretical study

MMD and KSD Quantization

Experiments

Sampling as optimization over distributions

2 algorithms/particle systems at study:

- Maximum Mean Discrepancy Descent [Arbel et al., 2019]
- Kernel Stein Discrepancy Descent [Korba et al., 2021]

These particle systems are designed to minimize a loss.

Sampling as optimization over distributions

2 algorithms/particle systems at study:

- Maximum Mean Discrepancy Descent [Arbel et al., 2019]
- Kernel Stein Discrepancy Descent [Korba et al., 2021]

These particle systems are designed to minimize a loss.
Assume that $\pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int\|x\|^{2} d \mu(x)<\infty\right\}$.
The sampling task can be recast as an optimization problem:

$$
\pi=\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\operatorname{argmin}} \mathrm{D}(\mu \mid \pi):=\mathcal{F}(\mu),
$$

where D is a dissimilarity functional and \mathcal{F} "a loss".
Starting from an initial distribution $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, one can then consider the Wasserstein gradient flow of \mathcal{F} over $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ to transport μ_{0} to π.

Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variationl of $\mu \mapsto \mathcal{F}(\mu)$ evaluated at $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is the unique function $\frac{\partial \mathcal{F}(\mu)}{\partial \mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s. t. for any $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$, $\nu-\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$:

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(\mathcal{F}(\mu+\epsilon(\nu-\mu))-\mathcal{F}(\mu))=\int_{\mathbb{R}^{d}} \frac{\partial \mathcal{F}(\mu)}{\partial \mu}(x)(d \nu-d \mu)(x) .
$$

Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variationl of $\mu \mapsto \mathcal{F}(\mu)$ evaluated at $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is the unique function $\frac{\partial \mathcal{F}(\mu)}{\partial \mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s. t. for any $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$, $\nu-\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$:

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(\mathcal{F}(\mu+\epsilon(\nu-\mu))-\mathcal{F}(\mu))=\int_{\mathbb{R}^{d}} \frac{\partial \mathcal{F}(\mu)}{\partial \mu}(x)(d \nu-d \mu)(x) .
$$

The family $\mu:[0, \infty] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), t \mapsto \mu_{t}$ satisfies a Wasserstein gradient flow of \mathcal{F} if distributionnally:

$$
\frac{\partial \mu_{t}}{\partial t}=\nabla \cdot\left(\mu_{t} \nabla w_{2} \mathcal{F}\left(\mu_{t}\right)\right),
$$

where $\nabla_{W_{2}} \mathcal{F}(\mu):=\nabla \frac{\partial \mathcal{F}(\mu)}{\partial \mu} \in L^{2}(\mu)$ denotes the Wasserstein gradient of \mathcal{F}.

Particle system approximating the WGF

Euler time-discretization : Starting from μ_{0},

$$
\mu_{I+1}=\left(I-\gamma \nabla W_{2} \mathcal{F}\left(\mu_{I}\right)\right)_{\#} \mu_{I}
$$

which corresponds in \mathbb{R}^{d} to:

$$
X_{I+1}=X_{I}-\gamma \nabla_{W_{2}} \mathcal{F}\left(\mu_{I}\right)\left(X_{I}\right) \sim \mu_{I+1}, \quad X_{0} \sim \mu_{0}
$$

Space discretization/particle system : Since $\mu_{\text {I }}$ is unknown, introduce a particle system X^{1}, \ldots, X^{n} where μ_{l} is replaced by $\hat{\mu}_{I}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X i}:$

$$
\begin{aligned}
& X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla w_{2} \mathcal{F}\left(\hat{\mu}_{l}\right)\left(X_{l}^{i}\right) \quad \text { for } i=1, \ldots, n \\
& X_{0}^{1}, \ldots, X_{0}^{n} \sim \mu_{0}
\end{aligned}
$$

Background on kernels and RKHS [Steinwart and Christmann, 2008]

- Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel $\left(\left(k\left(x_{i}, x_{j}\right)_{i=1}^{n}\right)\right.$ is a p.s.d. matrix for all $\left.x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}\right)$
- examples:
- the Gaussian kernel $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{h}\right)$
- the Laplace kernel $k(x, y)=\exp \left(-\frac{\|x-y\|}{h}\right)$
- the inverse multiquadratic kernel

$$
\left.k(x, y)=(c+\|x-y\|)^{-\beta} \text { with } \beta \in\right] 0,1[
$$

- \mathcal{H}_{k} its corresponding RKHS (Reproducing Kernel Hilbert Space):

$$
\mathcal{H}_{k}=\overline{\left\{\sum_{i=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right) ; m \in \mathbb{N} ; \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R} ; x_{1}, \ldots, x_{m} \in \mathbb{R}^{d}\right\}}
$$

- \mathcal{H}_{k} is a Hilbert space with inner product $\langle., .\rangle_{\mathcal{H}_{k}}$ and norm $\|.\|_{\mathcal{H}_{k}}$.
- It satisfies the reproducing property:

$$
\forall \quad f \in \mathcal{H}_{k}, x \in \mathbb{R}^{d}, \quad f(x)=\langle f, k(x, .)\rangle_{\mathcal{H}_{k}} .
$$

Maximum Mean Discrepancy [Gretton et al., 2012]

Assume $\mu \mapsto \int k(x,). d \mu(x)$ injective.

Maximum Mean Discrepancy defines a distance on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mu, \pi) & =\sup _{f \in \mathcal{H}_{k},\|f\|_{\mathcal{H}_{k}} \leq 1}\left|\int f d \mu-\int f d \pi\right|^{2} \\
& =\left\|m_{\mu}-m_{\pi}\right\|_{\mathcal{H}_{k}}^{2} \\
& =\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y)+\iint_{\mathbb{R}^{d}} k(x, y) d \pi(x) d \pi(y) \\
& -2 \iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \pi(y),
\end{aligned}
$$

by the reproducing property $\langle f, k(x, .)\rangle_{\mathcal{H}_{k}}=f(x)$ for $f \in \mathcal{H}_{k}$.

Maximum Mean Discrepancy [Gretton et al., 2012]

Assume $\mu \mapsto \int k(x,). d \mu(x)$ injective.
Maximum Mean Discrepancy defines a distance on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mu, \pi) & =\sup _{f \in \mathcal{H}_{k},\|f\|_{\mathcal{H}_{k}} \leq 1}\left|\int f d \mu-\int f d \pi\right|^{2} \\
& =\left\|m_{\mu}-m_{\pi}\right\|_{\mathcal{H}_{k}}^{2} \\
& =\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y)+\iint_{\mathbb{R}^{d}} k(x, y) d \pi(x) d \pi(y) \\
& -2 \iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \pi(y),
\end{aligned}
$$

by the reproducing property $\langle f, k(x, .)\rangle_{\mathcal{H}_{k}}=f(x)$ for $f \in \mathcal{H}_{k}$.
The differential of $\mu \mapsto \frac{1}{2} \operatorname{MMD}^{2}(., \pi)$ evaluated at $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is:

$$
\int k(x, .) d \mu(x)-\int k(x, .) d \pi(x): \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

Hence, for k regular enough, $\nabla w_{2} \frac{1}{2} \mathrm{MMD}^{2}(\mu, \pi)$ is:

$$
\int \nabla_{2} k(x, .) d \mu(x)-\int \nabla_{2} k(x, .) d \pi(x): \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

Kernel Stein Discrepancy [Chwiakowski etal, 2016, Liu etal., 2016]

If one does not have access to samples of π but only to its score, it is still possible to compute the KSD:

$$
\operatorname{KSD}^{2}(\mu \mid \pi)=\iint k_{\pi}(x, y) d \mu(x) d \mu(y),
$$

where $k_{\pi}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the Stein kernel, defined through

- the score function $s(x)=\nabla \log \pi(x)$,
- a p.s.d. kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}, k \in C^{2}\left(\mathbb{R}^{d}\right)^{1}$

For $x, y \in \mathbb{R}^{d}$,

$$
\begin{aligned}
k_{\pi}(x, y)= & s(x)^{\top} s(y) k(x, y)+s(x)^{T} \nabla_{2} k(x, y) \\
& +\nabla_{1} k(x, y)^{T} s(y)+\nabla \cdot{ }_{1} \nabla_{2} k(x, y) \\
= & \sum_{i=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{i}} \cdot \frac{\partial \log \pi(y)}{\partial y_{i}} \cdot k(x, y)+\frac{\partial \log \pi(x)}{\partial x_{i}} \cdot \frac{\partial k(x, y)}{\partial y_{i}} \\
& +\frac{\partial \log \pi(y)}{\partial y_{i}} \cdot \frac{\partial k(x, y)}{\partial x_{i}}+\frac{\partial^{2} k(x, y)}{\partial x_{i} \partial y_{i}} \in \mathbb{R} .
\end{aligned}
$$

$$
{ }^{1} \text { e.g. : } k(x, y)=\exp \left(-\|x-y\|^{2} / h\right)
$$

KSD vs MMD

Under mild assumptions on k and π, the Stein kernel k_{π} is p.s.d. and satisfies a Stein identity [Oates et al., 2017]

$$
\int_{\mathbb{R}^{d}} k_{\pi}(x, .) d \pi(x)=0
$$

Consequently, KSD is an MMD with kernel k_{π}, since:

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mu \mid \pi)= & \int k_{\pi}(x, y) d \mu(x) d \mu(y)+\int k_{\pi}(x, y) d \pi(x) d \pi(y) \\
& -2 \int k_{\pi}(x, y) d \mu(x) d \pi(y) \\
= & \int k_{\pi}(x, y) d \mu(x) d \mu(y) \\
= & \operatorname{KSD}^{2}(\mu \mid \pi)
\end{aligned}
$$

KSD as kernelized Fisher Divergence

Fisher Divergence:

$$
\mathrm{FD}^{2}(\mu \mid \pi)=\left\|\nabla \log \left(\frac{\mu}{\pi}\right)\right\|_{L^{2}(\mu)}^{2}=\int\left\|\nabla \log \left(\frac{\mu}{\pi}(x)\right)\right\|^{2} d \mu(x)
$$

"Kernelized" with k :

$$
\begin{aligned}
& \operatorname{KSD}^{2}(\mu \mid \pi)=\left\|S_{\mu, k} \nabla \log \left(\frac{\mu}{\pi}\right)\right\|_{\mathcal{H}_{k}}^{2} \\
&=\int \nabla \log \left(\frac{\mu}{\pi}\right)(x) k(x, y) \nabla \log \left(\frac{\mu}{\pi}\right)(y) d \mu(x) d \mu(y) \\
& \text { where } S_{\mu, k}: L^{2}(\mu) \rightarrow \mathcal{H}_{k} \\
& f \mapsto \int k(x, .) f(x) d \mu(x)
\end{aligned}
$$

\Longrightarrow minimizing the KSD is close in spirit to score-matching

MMD and KSD Descent

Recall that we want to study particle systems

$$
X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla_{W_{2}} \mathcal{F}\left(\hat{\mu}_{l}\right)\left(X_{l}^{i}\right) \quad \text { for } i=1, \ldots, n,
$$

where $\hat{\mu}_{I}=1 / n \sum_{i=1}^{n} \delta_{X_{i}}$ and $\mathcal{F}(\mu)=\mathrm{D}(\mu \mid \pi)$.

MMD and KSD Descent

Recall that we want to study particle systems

$$
X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla_{W_{2}} \mathcal{F}\left(\hat{\mu}_{l}\right)\left(X_{l}^{i}\right) \quad \text { for } i=1, \ldots, n,
$$

where $\hat{\mu}_{I}=1 / n \sum_{i=1}^{n} \delta_{X_{i}}$ and $\mathcal{F}(\mu)=\mathrm{D}(\mu \mid \pi)$.
For discrete measures $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{X^{i}}$, the MMD/KSD are well defined, hence we let $F\left(X^{1}, \ldots, X^{n}\right):=\mathcal{F}(\mu)$.

MMD and KSD Descent

Recall that we want to study particle systems

$$
X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla_{W_{2}} \mathcal{F}\left(\hat{\mu}_{l}\right)\left(X_{l}^{i}\right) \quad \text { for } i=1, \ldots, n
$$

where $\hat{\mu}_{I}=1 / n \sum_{i=1}^{n} \delta_{X_{i}}$ and $\mathcal{F}(\mu)=\mathrm{D}(\mu \mid \pi)$.
For discrete measures $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{X^{i}}$, the MMD/KSD are well defined, hence we let $F\left(X^{1}, \ldots, X^{n}\right):=\mathcal{F}(\mu)$.

- If D is the MMD, the gradient of F is readily obtained as

$$
\nabla_{x^{i}} F\left(X^{1}, \ldots, X^{n}\right)=\frac{1}{n} \sum_{j=1}^{n} \nabla_{2} k\left(X^{i}, X^{j}\right)-\int \nabla_{2} k\left(X^{i}, x\right) d \pi(x)
$$

- In contrast, if D is the KSD,

$$
\nabla_{x^{i}} F\left(X^{1}, \ldots, X^{n}\right)=\frac{1}{n} \sum_{j=1}^{n} \nabla_{2} k_{\pi}\left(X^{i}, X^{j}\right)
$$

MMD and KSD Descent

Recall that we want to study particle systems

$$
X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla_{W_{2}} \mathcal{F}\left(\hat{\mu}_{l}\right)\left(X_{l}^{i}\right) \quad \text { for } i=1, \ldots, n,
$$

where $\hat{\mu}_{I}=1 / n \sum_{i=1}^{n} \delta_{X_{i}^{i}}$ and $\mathcal{F}(\mu)=\mathrm{D}(\mu \mid \pi)$.
For discrete measures $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{X^{i}}$, the MMD/KSD are well defined, hence we let $F\left(X^{1}, \ldots, X^{n}\right):=\mathcal{F}(\mu)$.

- If D is the MMD, the gradient of F is readily obtained as

$$
\nabla_{x^{i}} F\left(X^{1}, \ldots, X^{n}\right)=\frac{1}{n} \sum_{j=1}^{n} \nabla_{2} k\left(X^{i}, X^{j}\right)-\int \nabla_{2} k\left(X^{i}, x\right) d \pi(x)
$$

- In contrast, if D is the KSD,

$$
\nabla_{x^{i}} F\left(X^{1}, \ldots, X^{n}\right)=\frac{1}{n} \sum_{j=1}^{n} \nabla_{2} k_{\pi}\left(X^{i}, X^{j}\right)
$$

MMD/KSD Descent: at each time $I \geq 0$, for any $i=1, \ldots, n$:

$$
X_{l+1}^{i}=X_{l}^{i}-\gamma \nabla_{x^{i}} F\left(X_{l}^{1}, \ldots, X_{l}^{n}\right)
$$

Remarks

- The MMD/KSD/their W_{2} gradient write as sums of integrals of μ and π

Remarks

- The MMD/KSD/their W_{2} gradient write as sums of integrals of μ and π
- Hence they can be evaluated in closed form for discrete μ and $\pi \Longrightarrow$ use L-BFGS to automatically select the best step-size

Remarks

- The MMD/KSD/their W_{2} gradient write as sums of integrals of μ and π
- Hence they can be evaluated in closed form for discrete μ and $\pi \Longrightarrow$ use L-BFGS to automatically select the best step-size
- depending on the information on π, choose the KSD (unnormalized density) or MMD (samples)

Remarks

- The MMD/KSD/their W_{2} gradient write as sums of integrals of μ and π
- Hence they can be evaluated in closed form for discrete μ and $\pi \Longrightarrow$ use L-BFGS to automatically select the best step-size
- depending on the information on π, choose the KSD (unnormalized density) or MMD (samples)
- The MMD upper bounds the integral approximation error for functions in the RKHS, since by the reproducing property and Cauchy-Schwartz:

$$
\left|\int_{\mathbb{R}^{d}} f(x) d \pi(x)-\int_{\mathbb{R}^{d}} f(x) d \mu(x)\right| \leq\|f\|_{\mathcal{H}_{k}} \operatorname{MMD}(\mu, \pi) .
$$

Similarly for the KSD with $\mathcal{H}_{k_{\pi}}$.

Outline

Problem and Motivation
 Background on MMD/KSD Descent

Theoretical study

MMD and KSD Quantization

Experiments

Functional inequalities

How fast $\mathcal{F}\left(\mu_{t}\right)$ decreases along its WGF ?

$$
\begin{aligned}
& \frac{\partial \mu_{t}}{\partial t}=\nabla \cdot\left(\mu_{t} V_{t}\right), \quad V_{t}=\nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right) \\
\frac{d \mathcal{F}\left(\mu_{t}\right)}{d t} & =\left\langle V_{t}, \nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right)\right\rangle_{L^{2}\left(\mu_{t}\right)} \\
= & -\left\|\nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right)\right\|_{L^{2}\left(\mu_{t}\right)}^{2} \\
= & -\left\|\mathbb{E}_{x \sim \mu_{t}}\left[\nabla_{2} k(x, y)\right]-\mathbb{E}_{x \sim \pi}\left[\nabla_{2} k(x, y)\right]\right\|_{L^{2}\left(\mu_{t}\right)}^{2} \\
= & -\underbrace{\| \|_{L_{2}}\left(\mu_{t}\right)}_{\left\|\nabla f_{\mu_{t}, \pi}, \pi\right\|_{\mathcal{H}^{-1}\left(\mu_{t}\right)}}
\end{aligned}
$$

where $f_{\mu, \pi}=\mathbb{E}_{\chi \sim \mu_{t}}[k(x,)]-.\mathbb{E}_{\chi \sim \pi}[k(x,)$.$] .$

Functional inequalities

How fast $\mathcal{F}\left(\mu_{t}\right)$ decreases along its WGF ?

$$
\begin{aligned}
& \frac{\partial \mu_{t}}{\partial t}=\nabla \cdot\left(\mu_{t} V_{t}\right), \quad V_{t}=\nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right) \\
\frac{d \mathcal{F}\left(\mu_{t}\right)}{d t} & =\left\langle V_{t}, \nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right)\right\rangle_{L^{2}\left(\mu_{t}\right)} \\
& =-\left\|\nabla_{W_{2}} \mathcal{F}\left(\mu_{t}\right)\right\|_{L^{2}\left(\mu_{t}\right)}^{2} \\
& =-\left\|\mathbb{E}_{x \sim \mu_{t}}\left[\nabla_{2} k(x, y)\right]-\mathbb{E}_{x \sim \pi}\left[\nabla_{2} k(x, y)\right]\right\|_{L^{2}\left(\mu_{t}\right)}^{2} \\
& =-\underbrace{2}_{\left\|\nabla \mu_{\mu_{t}, \pi, \pi}\right\|_{\mathcal{H}^{\prime}-1}\left(\mu_{t}\right)}
\end{aligned}
$$

where $f_{\mu_{t}, \pi}=\mathbb{E}_{\chi \sim \mu_{t}}[k(x,)]-.\mathbb{E}_{x \sim \pi}[k(x,)$.$] .$
It can be shown that:

$$
\left\|f_{\mu_{t}, \pi}\right\|_{\mathcal{H}_{k}}^{2} \leq\left\|f_{\mu_{t}, \pi}\right\|_{\dot{H}\left(\mu_{t}\right)} \underbrace{\| g d \mu_{t}-\int g d \pi \mid}_{\sup _{\|g\| \|_{\dot{H}\left(\mu_{t}\right)} \leq 1}\left\|\mu_{t}-\pi\right\|_{\dot{H}^{-1}\left(\mu_{t}\right)}}
$$

Hence, if $\left\|\mu_{t}-\pi\right\|_{\dot{H}^{-1}\left(\mu_{t}\right)} \leq C$ for all $t \geq 0$, we have

$$
\begin{aligned}
\frac{d \mathcal{F}\left(\nu_{t}\right)}{d t} & \leq-C \mathcal{F}\left(\nu_{t}\right)^{2}, \text { hence } \\
\mathcal{F}\left(\mu_{t}\right) & \leq \frac{1}{\mathcal{F}\left(\mu_{0}\right)+4 C^{-1} t}
\end{aligned}
$$

where $\mathcal{F}\left(\mu_{0}\right)=\frac{1}{2} \operatorname{MMD}^{2}\left(\mu_{t}, \pi\right)$.
Problems:

- depends on the whole sequence $\left(\mu_{t}\right)_{t \geq 0}$ (not only π)
- hard to verify in practice
- we observed convergence issues in practice (more for the MMD than the KSD)

Geodesic convexity

Let $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and ρ_{t} a W_{2} geodesic between μ and ν.
A functional \mathcal{F} is (λ)-geodesically convex if it is convex along W_{2} geodesics, i.e. if for any $t \in[0,1]$:

$$
\mathcal{F}\left(\rho_{t}\right) \leq(1-t) \mathcal{F}(\mu)+t \mathcal{F}(\nu)-t(1-t) \frac{\lambda}{2} W_{2}^{2}(\mu, \nu)^{2}
$$

where $\rho_{t}=\left((1-t) I+t T_{\mu}^{\nu}\right)_{\#} \mu$.
If \mathcal{G} is λ-convex with $\lambda>0$:

$$
W_{2}\left(\mu_{t}, \pi\right) \leq e^{-\lambda t} W_{2}\left(\mu_{0}, \pi\right)
$$

Geodesic convexity

Let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and :

$$
\operatorname{Hess}_{\mu} \mathcal{F}(\psi, \psi)=\left\langle H_{\mathcal{F}, \mu} \nabla \psi, \nabla \psi\right\rangle_{L^{2}\left(\mu_{t}\right)}=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \mathcal{F}\left(\rho_{t}\right)
$$

if $\rho_{t}=(I+t \nabla \psi)_{\# \mu}$ is a geodesic starting at μ.
For $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{aligned}
& \operatorname{Hess} \mu_{\mu} \mathcal{F}(\psi, \psi)=\underbrace{\mathbb{E}_{x, y \sim \mu}\left[\nabla \psi(x)^{T} \nabla_{1} \nabla_{2} k(x, y) \nabla \psi(y)\right]}_{\left\|\mathbb{E}_{x \sim \mu}\left[\nabla \psi(x)^{T} \nabla k(x,,)\right)\right\|_{\mathcal{H}_{k}}^{2}} \\
& +\mathbb{E}_{x \sim \mu}\left[\nabla \psi(x)^{T}\left(\mathbb{E}_{x \sim \mu}\left[H_{1} k(x, y)\right]-\mathbb{E}_{x \sim \pi}\left[H_{1} k(x, y)\right]\right) \nabla \psi(x)\right] .
\end{aligned}
$$

- the first term is always positive but not the second one
- i.e. we don't have generally $\operatorname{Hess}_{\mu} \mathcal{F}(\psi, \psi) \geq 0$
- i.e. neither the MMD nor the KSD are convex w.r.t. W_{2} geodesics

Third strategy : curvature near equilibrium?

What happens near equilibrium π ? the second term vanishes due to the Stein property of k_{π} and :

$$
\operatorname{Hess}_{\pi} \mathcal{F}(\psi, \psi)=\left\|S_{\pi, k_{\pi}} \mathcal{L}_{\pi} \psi\right\|_{\mathcal{H}_{k_{\pi}}}^{2} \geq 0
$$

where

$$
\begin{aligned}
\mathcal{L}_{\pi} & : f \mapsto-\Delta f-\langle\nabla \log \pi, \nabla f\rangle_{\mathbb{R}^{d}} \\
S_{\mu, k_{\pi}} & : f \mapsto \int k_{\pi}(x, .) f(x) d \mu(x) \in \mathcal{H}_{k_{\pi}}
\end{aligned}
$$

Third strategy : curvature near equilibrium?

What happens near equilibrium π ? the second term vanishes due to the Stein property of k_{π} and :

$$
\operatorname{Hess}_{\pi} \mathcal{F}(\psi, \psi)=\left\|S_{\pi, k_{\pi}} \mathcal{L}_{\pi} \psi\right\|_{\mathcal{H}_{k_{\pi}}}^{2} \geq 0
$$

where

$$
\begin{aligned}
\mathcal{L}_{\pi} & : f \mapsto-\Delta f-\langle\nabla \log \pi, \nabla f\rangle_{\mathbb{R}^{d}} \\
S_{\mu, k_{\pi}} & : f \mapsto \int k_{\pi}(x, .) f(x) d \mu(x) \in \mathcal{H}_{k_{\pi}}
\end{aligned}
$$

Question: can we bound from below the Hessian at π by a quadratic form on the tangent space of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ at $\pi\left(\subset L^{2}(\pi)\right)$?

$$
\operatorname{Hess}_{\pi} \mathcal{F}(\psi, \psi) \geq \lambda\|\nabla \psi\|_{L^{2}(\pi)}^{2} ?
$$

That would imply exponential decay of \mathcal{F} near π.

Curvature near equilibrium - negative result

Theorem : Let $\pi \propto e^{-V}$. Assume that $V \in C^{2}\left(\mathbb{R}^{d}\right), \nabla V$ is Lipschitz and \mathcal{L}_{π} has discrete spectrum. Then exponential decay near equilibium does not hold.

Curvature near equilibrium - negative result

Theorem : Let $\pi \propto e^{-V}$. Assume that $V \in C^{2}\left(\mathbb{R}^{d}\right), \nabla V$ is Lipschitz and \mathcal{L}_{π} has discrete spectrum. Then exponential decay near equilibium does not hold.

Proof: The previous inequality

$$
\left\|S_{\pi, k_{\pi}} \mathcal{L}_{\pi} \psi\right\|_{\mathcal{H}_{k_{\pi}}}^{2} \geq \lambda\|\nabla \psi\|_{L^{2}(\pi)}^{2}
$$

- can be seen as a kernelized version of the Poincaré inequality for π :

$$
\left\|\mathcal{L}_{\pi} \psi\right\|_{L_{2}(\pi)}^{2} \geq \lambda_{\pi}\|\nabla \psi\|_{L_{2}(\pi)}^{2} .
$$

- can be written:

$$
\begin{aligned}
\left\langle\psi, P_{\pi, k_{\pi}} \psi\right\rangle_{L_{2}(\pi)} & \geq \lambda\left\langle\psi, \mathcal{L}_{\pi}^{-1} \psi\right\rangle_{L_{2}(\pi)} \\
& \text { where } P_{\pi, k_{\pi}}: L^{2}(\pi) \rightarrow L^{2}(\pi), f \mapsto \int k_{\pi}(x, .) f(x) d \pi(x)
\end{aligned}
$$

- compare decay of eigenvalues

Outline

Problem and Motivation
Background on MMD/KSD Descent
Theoretical study

MMD and KSD Quantization

Experiments

Motivation - Final states for a Gaussian target

(a) i...d.

(b) MMD Gaussian kernel

(C) KSD Gaussian kernel

Figure: (a)-(c) Final states of the algorithms for 1024 particles, after 1 e 4 iterations. Ring structures tend to appear with the Gaussian kernel. The kernel bandwidth for all algorithm is set to 1 .

MMD gradient is available in closed form for $\pi=\mathcal{N}\left(0_{d}, \theta I_{d}\right)$

$$
\begin{aligned}
& \dot{x}_{i}=-\frac{1}{n h^{2}\left(\sqrt{2 \pi h^{2}}\right)^{d}} \sum_{j=1}^{n} e^{-\frac{\left|x_{j}-x_{i}\right|^{2}}{2 h^{2}}}\left(x_{j}-x_{i}\right) \\
&-\frac{1}{\left(h^{2}+\theta^{2}\right)\left(\sqrt{2 \pi\left(h^{2}+\theta^{2}\right)}\right)^{d}} e^{-\frac{\left|x_{i}\right|^{2}}{2\left(h^{2}+\theta^{2}\right)}} x_{i}
\end{aligned}
$$

We are interested in establishing bounds on the quantization error

$$
Q_{n}=\inf _{X_{n}=x_{1}, \ldots, x_{n}} \mathrm{D}\left(\pi, \mu_{n}\right), \quad \text { for } \mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}},
$$

where D is the MMD or KSD.
Remark: For $x_{1}, \ldots, x_{n} \sim \pi$ i.i.d., the rate is known to be $\mathcal{O}\left(n^{-1 / 2}\right)$ [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We are interested in establishing bounds on the quantization error

$$
Q_{n}=\inf _{X_{n}=x_{1}, \ldots, x_{n}} \mathrm{D}\left(\pi, \mu_{n}\right), \quad \text { for } \mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}},
$$

where D is the MMD or KSD.
Remark: For $x_{1}, \ldots, x_{n} \sim \pi$ i.i.d., the rate is known to be $\mathcal{O}\left(n^{-1 / 2}\right)$ [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We first consider the following assumption on the Fourier transform of kernel k.

Assumption A1: Let $k(x, y)=\eta(x-y)$ a translation invariant kernel on \mathbb{R}^{d}. Assume that $\eta \in C\left(\mathbb{R}^{d}\right) \cap L^{1}\left(\mathbb{R}^{d}\right)$, and that its
Fourier transform verifies: $\exists C_{1, d} \geq 0$ such that
$\left(1+|\xi|^{2}\right)^{d / 2} \leq C_{1, d}|\hat{\eta}(\xi)|^{-1}$ for any $\xi \in \mathbb{R}^{d}$.
(Satisfied for the Gaussian and Laplace kernel.)

First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) π is the
Lebesgue measure or (ii) a non-negative normalized Borel measure on $[0,1]^{d}$. Then, there exists a constant C_{d}, such that for all $n \geq 2$,

- if (i): there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{MMD}\left(\pi, \mu_{n}\right) \leq C_{d} \frac{(\log n)^{d-1}}{n}
$$

- if (ii): there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{MMD}\left(\pi, \mu_{n}\right) \leq C_{d} \frac{(\log n)^{\frac{3 d+1}{2}}}{n}
$$

Proof: Denote by \mathcal{H}_{k} the RKHS of k, we have:
$\mathcal{H}_{k}=\left\{f \in C\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right),\|f\|_{\mathcal{H}_{k}}^{2}:=\frac{1}{(2 \pi)^{d / 2}} \int|\hat{\eta}(\xi)|^{-1}|\hat{f}(\xi)|^{2} d \xi<\infty\right\}$.
We also have that the $H^{d}=W^{d, 2}\left(\mathbb{R}^{d}\right)$ Sobolev norm of f is

$$
\|f\|_{H^{d}}^{2}=\int\left(1+|\xi|^{2}\right)^{d / 2}|\hat{f}(\xi)|^{2} d \xi .
$$

Moreover, $\mathrm{A} 1 \Longrightarrow \exists C_{1, d}$ s.t. $\forall \xi,\left(1+|\xi|^{2}\right)^{d / 2} \leq C_{1, d}|\hat{\eta}(\xi)|^{-1}$. Hence, \mathcal{H}_{k} continuously embeds into H^{d} and for any $f \in \mathcal{H}_{k},\|f\|_{H^{d}} \leq\|f\|_{\mathcal{H}_{k}}$.
We then use a Koksma-Hlawka inequality [Aistleitner and Dick, 2015](Th1):

$$
\left|\int_{[0,1]^{d}} f(x) d \pi(x)-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right| \leq \mathcal{D}\left(X_{n}, \pi\right) V(f),
$$

- $\mathcal{D}\left(X_{n}, \pi\right)=2^{d} \sup _{I=\Pi_{i=1}^{n}\left[a_{i}, b_{i}\right]}\left|\pi(I)-\mu_{n}(I)\right|$ is the discrepancy of the point set X_{n}, can be bounded by [Aistleitner and Dick, 2015](Cor 2)
- $V(f)=\sum_{\alpha:|\alpha| \leq d} 2^{d-|\alpha|}\left\|\partial^{\alpha} f\right\|_{L^{1}(\pi)}$ is the Hardy \& Krause variation of f which can be bounded by $4^{d}\|f\|_{H^{d}}$.
By the definition of MMD, we have that $\operatorname{MMD}\left(\mu_{n}, \pi\right) \leq 4^{d} \mathcal{D}\left(X_{n}, \pi\right)$.

Result for non compactly supported distributions π

Proposition 1: Suppose A1 holds and that k is bounded. Assume π is a light-tailed distribution on \mathbb{R}^{d} (i.e. which has a thinner tail than an exponential distribution). Then, for $n \geq 2$ there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{MMD}\left(\pi, \mu_{n}\right) \leq C_{d} \frac{(\log n)^{\frac{5 d+1}{2}}}{n}
$$

Result for non compactly supported distributions π

Proposition 1: Suppose A1 holds and that k is bounded. Assume π is a light-tailed distribution on \mathbb{R}^{d} (i.e. which has a thinner tail than an exponential distribution). Then, for $n \geq 2$ there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{MMD}\left(\pi, \mu_{n}\right) \leq C_{d} \frac{(\log n)^{\frac{5 d+1}{2}}}{n}
$$

Proof: Decompose :

$$
\operatorname{MMD}\left(\pi, \mu_{n}\right) \leq \operatorname{MMD}(\pi, \mu)+\operatorname{MMD}\left(\mu, \mu_{n}\right),
$$

and choose μ compactly supported on $A_{n}=[-\log n, \log n]^{d}$. As π is light-tailed, μ is close to π in L^{1} distance, and we first get $\operatorname{MMD}(\pi, \mu) \leq C / n$.
Then, we can take a discrete μ_{n} supported on A_{n} and bound $\operatorname{MMD}\left(\mu, \mu_{n}\right)$ using similar arguments as the previous Theorem.

Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that $\pi \propto \exp (-U)$ where $U \in C^{\infty}\left(\mathbb{R}^{d}\right)$ is such that $U(x)>c_{1}|x|$ for large enough x, there exists polynomial f with degree m such that $\left\|\partial^{\alpha} U(x)\right\| \leq f(x)$ for all $1 \leq|\alpha| \leq d$. Then there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{KSD}\left(\mu_{n} \mid \pi\right) \leq C_{d} \frac{(\log n)^{\frac{6 d+2 m+1}{2}}}{n} .
$$

Satisfied for gaussian mixtures π.

Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that $\pi \propto \exp (-U)$ where $U \in C^{\infty}\left(\mathbb{R}^{d}\right)$ is such that $U(x)>c_{1}|x|$ for large enough x, there exists polynomial f with degree m such that $\left\|\partial^{\alpha} U(x)\right\| \leq f(x)$ for all $1 \leq|\alpha| \leq d$. Then there exist points x_{1}, \ldots, x_{n} such that

$$
\operatorname{KSD}\left(\mu_{n} \mid \pi\right) \leq C_{d} \frac{(\log n)^{\frac{6 d+2 m+1}{2}}}{n} .
$$

Satisfied for gaussian mixtures π.

Proof: The proof relies on bounding the first and last term of the

$$
\begin{aligned}
\operatorname{KSD}\left(\mu_{n}, \pi\right)= & 2 \iint \nabla \log (\pi)(x)^{T} \nabla_{y} k(x, y) d \mu(x) d \mu(y) \\
& +\underbrace{\iint \nabla \log (\pi)(x)^{T} \nabla \log (\pi)(y) k(x, y) d \mu(x) d \mu(y)}_{(1)}+\underbrace{\iint \nabla \cdot{ }_{x} \nabla_{y} k(x, y) d \mu(x) d \mu(y)}_{(2)},
\end{aligned}
$$

$\mu=\mu_{n}-\pi$, as the cross terms can be upper bounded by the former ones by a simple computation.
(1) $\operatorname{MMD}\left(\mu_{n}, \pi\right)$, with $k_{1}(x, y)=s(x)^{\top} s(y) k(x, y)$, bounded by Prop 1
(2) $\operatorname{MMD}\left(\mu_{n}, \pi\right)$, with $k_{2}(x, y)=\nabla \cdot{ }_{x} \nabla_{y} k(x, y)$, bounded by controlling $\|\nabla \log \pi\|_{H^{d}}$

Outline

Problem and Motivation
Background on MMD/KSD Descent
Theoretical study
MMD and KSD Quantization

Experiments

Algorithms

we investigate numerically the quantization properties of :

- MMD descent
- KSD Descent
- Kernel Herding (KH) : greedy minimization of the MMD
- Stein points (SP) : greedy minimization of the KSD

Hyperparameters:

- kernel: Gaussian, Laplace...
- bandwith of the kernel
- step-size

Quantization rates of the algorithms, $\pi=\mathcal{N}\left(0,1 / d l_{d}\right)$

2D

3D

4D

Averaged over 3 runs of each algorithm, run for 1 e 4 iterations, where the initial particles are i.i.d. samples of π. MMD/KSD Descent use bandwidth 1 ; Stein points use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was too slow.

d	Eval.	MMD-lbfgs	KSD-lbfgs	KH	SP
$\mathbf{2}$	KSD	-1.48	-1.46	-0.84	-0.77
	MMD	-1.60	-1.54	-0.93	-0.77
$\mathbf{3}$	KSD	-1.38	-1.44	-0.84	-0.78
	MMD	-1.51	-1.49	-0.92	-0.75
$\mathbf{4}$	KSD	-1.35	-1.39	-0.89	-
	MMD	-1.46	-1.40	-0.95	-
$\mathbf{8}$	KSD	-1.14	-1.16	-	-
	MMD	-1.25	-1.13	-	-

Table: Slopes for the quantization measured in KSD/MMD, for the different algorithms at study and several dimensions d.

Some remarks:

- The slopes remain much steeper than the Monte Carlo rate, even when the dimension increases
- Their slopes are better than our theoretical upper bounds

Robustness to evaluation discrepancy

Figure: Importance of the choice of the bandwidth in the MMD evaluation metric when evaluating the final states, in 2D. From Left to Right: (evaluation) MMD bandwidth $=1,0.7,0.3$.

- if we measure the discrepancy using a kernel with smaller bandwidth, MMD and KSD results deteriorate significantly and SVGD/NSVGD perform the best.
- likely reason : Samples of MMD and KSD with Gaussian kernel have internal structures which can affect the discrepancy at lower bandwidths.

Conclusion

- MMD and KSD descent convergence are not well grounded theoretically
- Still, they can create "super samples"

Open questions/future work:

- explain the convergence of KSD gradient flow
- improve our quantization bounds

Thank you !

References I

國 Aistleitner, C. and Dick, J. (2015).
Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality.
Acta Arith., 167(2):143-171.
(in Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient flows: in metric spaces and in the space of probability measures.
Springer Science \& Business Media.
(in Arbel, M., Korba, A., Salim, A., and Gretton, A. (2019). Maximum mean discrepancy gradient flow.
In Advances in Neural Information Processing Systems, pages 6481-6491.

References II

(Bach, F., Lacoste-Julien, S., and Obozinski, G. (2012). On the equivalence between herding and conditional gradient algorithms.
In ICML 2012 International Conference on Machine Learning.
䍰 Chen, W. Y., Mackey, L., Gorham, J., Briol, F.-X., and Oates, C. J. (2018). Stein points.
International Conference on Machine Learning (ICML).
围 Chen, Y., Welling, M., and Smola, A. (2012).
Super-samples from kernel herding.
arXiv preprint arXiv:1203.3472.

References III

围 Chizat, L. and Bach, F. (2018).
On the global convergence of gradient descent for over-parameterized models using optimal transport. Advances in neural information processing systems, 31.
© Chwialkowski, K., Strathmann, H., and Gretton, A. (2016). A kernel test of goodness of fit.
In International conference on machine learning.
嗇 Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A. (2006).
A kernel method for the two-sample-problem.
Advances in neural information processing systems,
19:513-520.

References IV

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. J. (2012).
A kernel two-sample test.
JMLR, 13.
國 Hyvärinen, A. and Dayan, P. (2005).
Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4).
睩 Korba, A., Aubin-Frankowski, P.-C., Majewski, S., and Ablin, P. (2021).

Kernel Stein discrepancy descent.
International Conference of Machine Learning.

References V

目 Łatuszyński, K., Miasojedow, B., and Niemiro, W. (2013). Nonasymptotic bounds on the estimation error of mcmc algorithms.
Bernoulli, 19(5A):2033-2066.
© Liu, Q., Lee, J., and Jordan, M. (2016).
A kernelized stein discrepancy for goodness-of-fit tests.
In International conference on machine learning, pages 276-284.
围 Lu, Y. and Lu, J. (2020).
A universal approximation theorem of deep neural networks for expressing probability distributions.
Advances in Neural Information Processing Systems, 33.

References VI

圊 Mei, S., Montanari, A., and Nguyen, P.-M. (2018).
A mean field view of the landscape of two-layer neural networks.
Proceedings of the National Academy of Sciences,
115(33):E7665-E7671.
雷 Oates, C. J., Girolami, M., and Chopin, N. (2017).
Control functionals for monte carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):695-718.

R Rotskoff, G. M. and Vanden-Eijnden, E. (2018). Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
stat, 1050:22.

References VII

(1. Steinwart, I. and Christmann, A. (2008).

Support vector machines.
Springer Science \& Business Media.
固 Tolstikhin, I., Sriperumbudur, B. K., and Muandet, K. (2017).

Minimax estimation of kernel mean embeddings.
The Journal of Machine Learning Research, 18(1):3002-3048.

The well-specified case [Arbel et al., 2019]

We have $(x, y) \sim$ data.

Assume $\exists \pi \in \mathcal{P}, \mathbb{E}[y \mid X=x]=\mathbb{E}_{Z \sim \pi}\left[\phi_{Z}(x)\right]$.

Then: $\quad \min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left[\left\|y-\mathbb{E}_{Z \sim \mu}\left[\phi_{Z}(x)\right]\right\|^{2}\right]$

$$
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left[\left\|\mathbb{E}_{Z \sim \pi}\left[\phi_{Z}(x)\right]-\mathbb{E}_{Z \sim \mu}\left[\phi_{Z}(x)\right]\right\|^{2}\right]
$$

§
$\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\underset{Z^{\prime} \sim \pi}{\sim \pi}}\left[k\left(Z, Z^{\prime}\right)\right]+\mathbb{E}_{\underset{Z^{\prime} \sim \mu}{\sim \sim}}\left[k\left(Z, Z^{\prime}\right)\right]-2 \mathbb{E}_{\underset{Z^{\prime} \sim \mu}{ } \sim \mu}\left[k\left(Z, Z^{\prime}\right)\right]$ with $k\left(Z, Z^{\prime}\right)=\mathbb{E}_{x \sim \operatorname{data}}\left[\phi_{Z}(x)^{T} \phi_{Z^{\prime}}(x)\right]$

$$
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \frac{1}{2} \operatorname{MMD}^{2}(\mu, \pi)
$$

L-BFGS

L-BFGS (Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm) is a quasi-Newton method:

$$
\begin{equation*}
x_{l+1}=x_{l}-\gamma_{l} B_{l}^{-1} \nabla F\left(x_{l}\right):=x_{l}+\gamma_{l} d_{l} \tag{1}
\end{equation*}
$$

where B_{l}^{-1} is a p.s.d. matrix approximating the inverse Hessian at x_{l}.
Step1. (requires ∇F) It computes a cheap version of d_{l} based on BFGS recursion:

$$
\begin{aligned}
& B_{l+1}^{-1}=\left(I-\frac{\Delta x_{l} y_{l}^{T}}{y_{l}^{T} \Delta x_{l}}\right) B_{l}^{-1}\left(I-\frac{y_{l} \Delta x_{l}^{T}}{y_{l}^{T} \Delta x_{l}}\right)+\frac{\Delta x_{l} \Delta x_{l}^{T}}{y_{l}^{T} \Delta x_{l}} \\
& \text { where } \quad \begin{aligned}
\Delta x_{l} & =x_{l+1}-x_{l} \\
y_{l} & =\nabla F\left(x_{l+1}\right)-\nabla F\left(x_{l}\right)
\end{aligned}
\end{aligned}
$$

Step2. (requires F and ∇F) A line-search is performed to find the best step-size in (1) :

$$
\begin{aligned}
F\left(x_{l}+\gamma_{l} d_{l}\right) & \leq F\left(x_{l}\right)+c_{1} \gamma_{l} \nabla F\left(x_{l}\right)^{T} d_{l} \\
\nabla F\left(x_{l}+\gamma_{l} d_{l}\right)^{T} d_{l} & \geq c_{2} \nabla F\left(x_{l}\right)^{T} d_{l}
\end{aligned}
$$

Kernel Herding (KH) and Stein Points (SP)

They attempt to solve MMD or KSD quantization in a greedy manner, i.e. by sequentially constructing μ_{n}, adding one new particle at each iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD [Chen et al., 2012]:

$$
\begin{aligned}
& x^{n+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmax}}\left\langle w_{n}, k(x, .)\right\rangle_{\mathcal{H}_{k}} \\
& w_{n+1}=w_{n}+m_{\pi}-k\left(x_{n+1}, .\right)
\end{aligned}
$$

[Bach et al., 2012] obtain a linear rate of convergence $\mathcal{O}\left(e^{-b n}\right)$

- if the mean embedding $m_{\pi}=\mathbb{E}_{x \sim \pi}[k(x,)$.$] lies in the relative$ interior of the marginal polytope convexhull $\left(\left\{k(x,),. x \in \mathbb{R}^{d}\right\}\right)$ with distance b away from the boundary
- however for infinite-dimensional kernels $b=0$ and the rate does not hold.

Stein Points for the KSD [Chen et al., 2018] greedily minimizes the KSD similarly. The authors establish a $\mathcal{O}\left((\log (n) / n)^{\frac{1}{2}}\right)$ rate, which seem slower than their empirical observations.

SVGD with laplace kernel

Isolated Gaussian mixture - annealing

Add an inverse temperature variable $\beta: \pi^{\beta}(x) \propto \exp (-\beta V(x))$, with $0<\beta \leq 1$ (i.e. multiply the score by β.)

This is a hard problem, even for Langevin diffusions, where tempering strategies also have been proposed.
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo. Rong Ge, Holden Lee, Andrej Risteski. 2017.

So.. when does it work?

Comparison of KSD Descent and Stein points on a "banana" distribution. Green points are the initial points for KSD Descent. Both methods work successfully here, even though it is not a log-concave distribution.
We posit that KSD Descent succeeds because there is no saddle point in the potential.

1 - Bayesian Logistic regression

Datapoints $d_{1}, \ldots, d_{q} \in \mathbb{R}^{p}$, and labels $y_{1}, \ldots, y_{q} \in\{ \pm 1\}$.
Labels y_{i} are modelled as $p\left(y_{i}=1 \mid d_{i}, w\right)=\left(1+\exp \left(-w^{\top} d_{i}\right)\right)^{-1}$ for some $w \in \mathbb{R}^{p}$.
The parameters w follow the law $p(w \mid \alpha)=\mathcal{N}\left(0, \alpha^{-1} / p\right)$, and $\alpha>0$ is drawn from an exponential law $p(\alpha)=\operatorname{Exp}(0.01)$.
The parameter vector is then $x=[w, \log (\alpha)] \in \mathbb{R}^{p+1}$, and we use KSD-LBFGS to obtain samples from $p\left(x \mid\left(d_{i}, y_{i}\right)_{i=1}^{q}\right)$ for 13 datasets, with $N=10$ particles for each.

Accuracy of the KSD descent and SVGD on bayesian logistic regression for 13 datasets.
Both methods yield similar results. KSD is better by 2% on one dataset.

2 - Bayesian Independent Component Analysis

ICA: $x=W^{-1} s$, where x is an observed sample in $\mathbb{R}^{p}, W \in \mathbb{R}^{p \times p}$ is the unknown square unmixing matrix, and $s \in \mathbb{R}^{p}$ are the independent sources.
1)Assume that each component has the same density $s_{i} \sim p_{s}$.
2) The likelihood of the model is $p(x \mid W)=\log |W|+\sum_{i=1}^{p} p_{s}\left([W x]_{i}\right)$.
3)Prior: W has i.i.d. entries, of law $\mathcal{N}(0,1)$.

The posterior is $p(W \mid x) \propto p(x \mid W) p(W)$, and the score is given by $s(W)=W^{-\top}-\psi(W x) x^{\top}-W$, where $\psi=-\frac{p_{s}^{\prime}}{p_{s}}$. In practice, we choose p_{s} such that $\psi(\cdot)=\tanh (\cdot)$. We then use the presented algorithms to draw 10 particles $W \sim p(W \mid x)$ on 50 experiments.

Left: $p=2$. Middle: $p=4$. Right: $p=8$.
Each dot = Amari distance between an estimated matrix and the true unmixing matrix.

KSD Descent is not better than random. Explanation: ICA

 likelihood is highly non-convex.
Real world experiments (10 particles)

Bayesian logistic regression.
Accuracy of the KSD descent and SVGD for 13 datasets ($d \approx 50$).
Both methods yield similar results. KSD is better by 2% on one dataset.
Hint: convex likelihood.
Bayesian ICA.
Each dot is the Amari distance between an estimated matrix and the true unmixing matrix ($d \leq 8$).
KSD is not better than random.
Hint: highly non-convex likelihood.

