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Quantization problem

Problem : approximate a target distribution π ∈ P(Rd ) by a
finite set of n points x1, . . . , xn, e.g. to compute functionals∫
Rd f (x)dπ(x).

The quality of the set can be measured by the integral
approximation error:

err(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (xi)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ .
Several approaches, among which :
I MCMC methods : generate a Markov chain whose law

converges to π, err(x1, . . . , xn) = O(n−1/2)
[Łatuszyński et al., 2013]

I deterministic particle systems, err(x1, . . . , xn)?
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Example 1 : Bayesian statistics

I Let D = (xi , yi )i=1,...,m a labelled dataset.

I Assume an underlying model parametrized by z ∈ Rd , e.g.
y ∼ f (x , z) + ε (p(y |x , z) gaussian)

=⇒ Compute the likelihood: p(D|z) =
∏m

i=1 p(yi |xi , z).

I Assume a prior distribution on the parameter z ∼ p.

Bayes’ rule : π(z) := p(z|D) =
p(D|z)p(z)

C
, C =

∫
Rd

p(D|z)p(z)dz.

π is known up to a constant since C is intractable.
How to sample from π then? e.g. to compute:

p(y |x ,D) =

∫
Rd

p(y |x , z)dπ(z)
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Example 2 : Regression with infinite width NN

[Chizat and Bach, 2018, Rotskoff and Vanden-Eijnden, 2018, Mei et al., 2018]
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Illustration : Student-Teacher network
The output of the Teacher network is deterministic and given by

y =
∫
φZ (x)dπ(Z ) where π = 1

M

M∑
m=1

δUm .

Student network by µ0 = 1
N

N∑
j=1

δZ j
0

tries to learn the mapping

x 7→
∫
φZ (x)dπ(Z ).

Can be written as minimizing an MMD(µ, π). 6/ 37
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Sampling as optimization over distributions

2 algorithms/particle systems at study:
I Maximum Mean Discrepancy Descent [Arbel et al., 2019]

I Kernel Stein Discrepancy Descent [Korba et al., 2021]

These particle systems are designed to minimize a loss.

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional and F "a loss".

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variationl of µ 7→ F(µ) evaluated at µ ∈ P(Rd ) is the
unique function ∂F(µ)

∂µ : Rd → R s. t. for any µ, ν ∈ P(Rd ),
ν − µ ∈ P(Rd ):

lim
ε→0

1
ε

(F(µ+ ε(ν − µ))−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dν − dµ)(x).

The family µ : [0,∞]→ P2(Rd ), t 7→ µt satisfies a Wasserstein
gradient flow of F if distributionnally:

∂µt

∂t
=∇ ·

(
µt∇W2F(µt )

)
,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein

gradient of F .
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Particle system approximating the WGF

Euler time-discretization : Starting from µ0,

µl+1 =
(
I − γ∇W2F(µl)

)
#
µl

which corresponds in Rd to:

Xl+1 = Xl − γ∇W2F(µl)(Xl) ∼ µl+1, X0 ∼ µ0.

Space discretization/particle system : Since µl is unknown,
introduce a particle system X 1, . . . ,X n where µl is replaced by
µ̂l = 1

n
∑n

i=1 δX i
l
:

X i
l+1 = X i

l − γ∇W2F(µ̂l)(X i
l ) for i = 1, . . . ,n,

X 1
0 , . . . ,X

n
0 ∼ µ0.
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel
((k(xi , xj )

n
i=1) is a p.s.d. matrix for all x1, . . . , xn ∈ Rd )

I examples:

I the Gaussian kernel k(x , y) = exp
(
−‖x−y‖2

h

)
I the Laplace kernel k(x , y) = exp

(
−‖x−y‖

h

)
I the inverse multiquadratic kernel

k(x , y) = (c + ‖x − y‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}
I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .
I It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk .
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Maximum Mean Discrepancy [Gretton et al., 2012]

Assume µ 7→
∫

k(x , .)dµ(x) injective.

Maximum Mean Discrepancy defines a distance on P2(Rd ):

MMD2(µ, π) = sup
f∈Hk ,‖f‖Hk≤1

∣∣∣∣∫ fdµ−
∫

fdπ
∣∣∣∣2

= ‖mµ −mπ‖2
Hk

=

∫∫
Rd

k(x , y)dµ(x)dµ(y) +

∫∫
Rd

k(x , y)dπ(x)dπ(y)

− 2
∫∫

Rd
k(x , y)dµ(x)dπ(y),

by the reproducing property 〈f , k(x , .)〉Hk = f (x) for f ∈ Hk .

The differential of µ 7→ 1
2 MMD2(., π) evaluated at µ ∈ P2(Rd ) is:∫

k(x , .)dµ(x)−
∫

k(x , .)dπ(x) : Rd → R.

Hence, for k regular enough, ∇W2
1
2 MMD2(µ, π) is:∫

∇2k(x , .)dµ(x)−
∫
∇2k(x , .)dπ(x) : Rd → R.
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

If one does not have access to samples of π but only to its
score, it is still possible to compute the KSD:

KSD2(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )1

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y) k(x , y) + s(x)T ∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

1e.g. : k(x , y) = exp
(
−‖x − y‖2/h

) 13/ 37



KSD vs MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity [Oates et al., 2017]

∫
Rd

kπ(x , .)dπ(x) = 0.

Consequently, KSD is an MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)
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KSD as kernelized Fisher Divergence
Fisher Divergence:

FD2(µ|π) =
∥∥∥∇ log

(µ
π

)∥∥∥2

L2(µ)
=

∫
‖∇ log

(µ
π

(x)
)
‖2dµ(x)

"Kernelized" with k :

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫
∇ log

(µ
π

)
(x)k(x , y)∇ log

(µ
π

)
(y)dµ(x)dµ(y)

where Sµ,k : L2(µ)→ Hk

f 7→
∫

k(x , .)f (x)dµ(x).

=⇒ minimizing the KSD is close in spirit to score-matching
[Hyvärinen and Dayan, 2005].
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MMD and KSD Descent
Recall that we want to study particle systems

X i
l+1 = X i

l − γ∇W2F(µ̂l )(X i
l ) for i = 1, . . . ,n,

where µ̂l = 1/n
∑n

i=1 δX i
l

and F(µ) = D(µ|π).

For discrete measures µ = 1
n

∑n
i=1 δX i , the MMD/KSD are well

defined, hence we let F (X 1, . . . ,X n) := F(µ).

I If D is the MMD, the gradient of F is readily obtained as

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2k(X i ,X j )−
∫
∇2k(X i , x)dπ(x).

I In contrast, if D is the KSD,

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2kπ(X i ,X j ).

MMD/KSD Descent: at each time l ≥ 0, for any i = 1, . . . ,n:

X i
l+1 = X i

l − γ∇x i F (X 1
l , . . . ,X

n
l ).
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Remarks
I The MMD/KSD/their W2 gradient write as sums of integrals

of µ and π

I Hence they can be evaluated in closed form for discrete µ
and π =⇒ use L-BFGS to automatically select the best
step-size

I depending on the information on π, choose the KSD
(unnormalized density) or MMD (samples)

I The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:∣∣∣∣∫

Rd
f (x)dπ(x)−

∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).

Similarly for the KSD with Hkπ .
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Functional inequalities
How fast F(µt ) decreases along its WGF ?

∂µt

∂t
=∇ · (µtVt ), Vt = ∇W2F(µt )

dF(µt )

dt
=
〈
Vt ,∇W2F(µt )

〉
L2(µt )

= −
∥∥∇W2F(µt )

∥∥2
L2(µt )

= −‖Ex∼µt [∇2k(x , y)]− Ex∼π[∇2k(x , y)]‖2L2(µt )

= −‖∇fµt ,π‖
2
L2(µt )︸ ︷︷ ︸

‖fµt ,π‖Ḣ−1(µt )

where fµt ,π = Ex∼µt [k(x , .)]− Ex∼π[k(x , .)].

It can be shown that:

‖fµt ,π‖2Hk
≤ ‖fµt ,π‖Ḣ(µt )

‖µt − π‖Ḣ−1(µt )︸ ︷︷ ︸
sup‖g‖2

Ḣ(µt )
≤1 |

∫
gdµt−

∫
gdπ|
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Hence, if ‖µt − π‖Ḣ−1(µt )
≤ C for all t ≥ 0, we have

dF(νt )

dt
≤ −CF(νt )

2, hence

F(µt ) ≤
1

F(µ0) + 4C−1t

where F(µ0) = 1
2 MMD2(µt , π).

Problems:
I depends on the whole sequence (µt )t≥0 (not only π)
I hard to verify in practice
I we observed convergence issues in practice (more for the

MMD than the KSD)
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Geodesic convexity

Let µ, ν ∈ P2(Rd ) and ρt a W2 geodesic between µ and ν.

A functional F is (λ)-geodesically convex if it is convex along
W2 geodesics, i.e. if for any t ∈ [0,1]:

F(ρt ) ≤ (1− t)F(µ) + tF(ν)− t(1− t)
λ

2
W 2

2 (µ, ν)2

where ρt = ((1− t)I + tT ν
µ )#µ.

If G is λ-convex with λ > 0:

W2(µt , π) ≤ e−λtW2(µ0, π)
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Geodesic convexity
Let ψ ∈ C∞c (Rd ) and :

HessµF(ψ,ψ) = 〈HF ,µ∇ψ,∇ψ〉L2(µt )
=

d2

dt2

∣∣∣
t=0
F(ρt )

if ρt = (I + t∇ψ)#µ is a geodesic starting at µ.

For ψ ∈ C∞c (Rd ), we have

HessµF(ψ,ψ) = Ex ,y∼µ

[
∇ψ(x)T∇1∇2k(x , y)∇ψ(y)

]
︸ ︷︷ ︸

‖Ex∼µ[∇ψ(x)T∇k(x ,.)]‖2
Hk

+Ex∼µ

[
∇ψ(x)T (Ex∼µ[H1k(x , y)]− Ex∼π[H1k(x , y)])∇ψ(x)

]
.

I the first term is always positive but not the second one
I i.e. we don’t have generally HessµF(ψ,ψ) ≥ 0
I i.e. neither the MMD nor the KSD are convex w.r.t. W2

geodesics
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Third strategy : curvature near equilibrium?
What happens near equilibrium π? the second term vanishes
due to the Stein property of kπ and :

Hessπ F(ψ,ψ) = ‖Sπ,kπLπψ‖2Hkπ
≥ 0

where

Lπ : f 7→ −∆f − 〈∇ log π,∇f 〉Rd

Sµ,kπ : f 7→
∫

kπ(x , .)f (x)dµ(x) ∈ Hkπ

Question: can we bound from below the Hessian at π by a
quadratic form on the tangent space of P2(Rd ) at π (⊂ L2(π))?

Hessπ F(ψ,ψ) ≥ λ‖∇ψ‖2L2(π) ?

That would imply exponential decay of F near π.
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Curvature near equilibrium - negative result

Theorem : Let π ∝ e−V . Assume that V ∈ C2(Rd ), ∇V is
Lipschitz and Lπ has discrete spectrum. Then exponential
decay near equilibium does not hold.

Proof: The previous inequality

‖Sπ,kπLπψ‖
2
Hkπ
≥ λ‖∇ψ‖2

L2(π)

I can be seen as a kernelized version of the Poincaré inequality for π :

‖Lπψ‖2
L2(π) ≥ λπ‖∇ψ‖2

L2(π).

I can be written:

〈ψ,Pπ,kπψ〉L2(π) ≥ λ〈ψ,L−1
π ψ〉L2(π),

where Pπ,kπ : L2(π)→ L2(π), f 7→
∫

kπ(x , .)f (x)dπ(x).

I compare decay of eigenvalues
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Motivation - Final states for a Gaussian target

(a) i.i.d. (b) MMD Gaussian kernel (c) KSD Gaussian kernel

Figure: (a)-(c) Final states of the algorithms for 1024 particles, after
1e4 iterations. Ring structures tend to appear with the Gaussian
kernel. The kernel bandwidth for all algorithm is set to 1.

MMD gradient is available in closed form for π = N (0d , θId)

ẋi = −
1

nh2(
√

2πh2)d

n∑
j=1

e−
|xj−xi |

2

2h2 (xj − xi)

− 1
(h2 + θ2)(

√
2π(h2 + θ2))d

e
− |xi |

2

2(h2+θ2) xi .
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We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2) [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We first consider the following assumption on the Fourier
transform of kernel k .

Assumption A1: Let k(x , y) = η(x − y) a translation invariant
kernel on Rd . Assume that η ∈ C(Rd ) ∩ L1(Rd ), and that its
Fourier transform verifies : ∃C1,d ≥ 0 such that
(1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1 for any ξ ∈ Rd .

(Satisfied for the Gaussian and Laplace kernel.)
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First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) π is the
Lebesgue measure or (ii) a non-negative normalized Borel
measure on [0,1]d . Then, there exists a constant Cd , such that
for all n ≥ 2,
I if (i): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

I if (ii): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.
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Proof: Denote by Hk the RKHS of k , we have:

Hk =
{

f ∈ C(Rd ) ∩ L2(Rd ), ‖f‖2
Hk

:=
1

(2π)d/2

∫
|η̂(ξ)|−1 |̂f (ξ)|2dξ <∞

}
.

We also have that the Hd = W d,2(Rd ) Sobolev norm of f is

‖f‖2
Hd =

∫
(1 + |ξ|2)d/2 |̂f (ξ)|2dξ.

Moreover, A1 =⇒ ∃C1,d s.t. ∀ξ, (1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1. Hence,
Hk continuously embeds into Hd and for any f ∈ Hk , ‖f‖Hd ≤ ‖f‖Hk .

We then use a Koksma-Hlawka inequality [Aistleitner and Dick, 2015](Th1):∣∣∣∣∣
∫

[0,1]d
f (x)dπ(x)− 1

n

n∑
i=1

f (xi )

∣∣∣∣∣ ≤ D(Xn, π)V (f ),

I D(Xn, π) = 2d supI=Πn
i=1[ai ,bi ]

|π(I)−µn(I)| is the discrepancy of the
point set Xn, can be bounded by [Aistleitner and Dick, 2015](Cor 2)

I V (f ) =
∑
α : |α|≤d 2d−|α|‖∂αf‖L1(π) is the Hardy & Krause

variation of f which can be bounded by 4d‖f‖Hd .

By the definition of MMD , we have that MMD(µn, π) ≤ 4dD(Xn, π).
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Result for non compactly supported distributions π

Proposition 1: Suppose A1 holds and that k is bounded.
Assume π is a light-tailed distribution on Rd (i.e. which has a
thinner tail than an exponential distribution). Then, for n ≥ 2
there exist points x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.

Proof: Decompose :

MMD(π, µn) ≤ MMD(π, µ) + MMD(µ, µn),

and choose µ compactly supported on An = [− log n, log n]d .
As π is light-tailed, µ is close to π in L1 distance, and we first get
MMD(π, µ) ≤ C/n.
Then, we can take a discrete µn supported on An and bound MMD(µ, µn)
using similar arguments as the previous Theorem.
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Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that π ∝ exp(−U)
where U ∈ C∞(Rd ) is such that U(x) > c1|x | for large enough x ,
there exists polynomial f with degree m such that ‖∂αU(x)‖ ≤ f (x)
for all 1 ≤ |α| ≤ d . Then there exist points x1, ..., xn such that

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

Satisfied for gaussian mixtures π.

Proof: The proof relies on bounding the first and last term of the

KSD(µn, π) = 2
∫∫
∇ log(π)(x)T∇y k(x, y)dµ(x)dµ(y)

+

∫∫
∇ log(π)(x)T∇ log(π)(y)k(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

(1)

+

∫∫
∇ ·x ∇y k(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

(2)

,

µ = µn − π, as the cross terms can be upper bounded by the former ones by
a simple computation.
(1) MMD(µn, π), with k1(x , y) = s(x)T s(y)k(x , y), bounded by Prop 1
(2) MMD(µn, π), with k2(x , y) =∇ ·x ∇y k(x , y), bounded by controlling
‖∇ log π‖Hd
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Algorithms

we investigate numerically the quantization properties of :
I MMD descent
I KSD Descent
I Kernel Herding (KH) : greedy minimization of the MMD
I Stein points (SP) : greedy minimization of the KSD

Hyperparameters:
I kernel: Gaussian, Laplace...
I bandwith of the kernel
I step-size
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Quantization rates of the algorithms, π = N (0, 1/dId)

2D 3D 4D

Averaged over 3 runs of each algorithm, run for 1e4 iterations, where the
initial particles are i.i.d. samples of π. MMD/KSD Descent use bandwidth 1;
Stein points use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was
too slow.
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d Eval. MMD-lbfgs KSD-lbfgs KH SP

2 KSD -1.48 -1.46 -0.84 -0.77
MMD -1.60 -1.54 -0.93 -0.77

3 KSD -1.38 -1.44 -0.84 -0.78
MMD -1.51 -1.49 -0.92 -0.75

4 KSD -1.35 -1.39 -0.89 –
MMD -1.46 -1.40 -0.95 –

8 KSD -1.14 -1.16 – –
MMD -1.25 -1.13 – –

Table: Slopes for the quantization measured in KSD/MMD, for the
different algorithms at study and several dimensions d .

Some remarks:
I The slopes remain much steeper than the Monte Carlo

rate, even when the dimension increases
I Their slopes are better than our theoretical upper bounds
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Robustness to evaluation discrepancy

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

I if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

I likely reason : Samples of MMD and KSD with Gaussian kernel have
internal structures which can affect the discrepancy at lower
bandwidths. 36/ 37



Conclusion

I MMD and KSD descent convergence are not well
grounded theoretically

I Still, they can create "super samples"

Open questions/future work:
I explain the convergence of KSD gradient flow
I improve our quantization bounds

Thank you !
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The well-specified case [Arbel et al., 2019]

We have (x , y) ∼ data.

Assume ∃π ∈ P , E[y |X = x ] = EZ∼π[φZ (x)].

Then : min
µ∈P2(Rd )

E[‖y − EZ∼µ[φZ (x)]‖2]

m
min

µ∈P2(Rd )
E[‖EZ∼π[φZ (x)]− EZ∼µ[φZ (x)]‖2]

m
min

µ∈P2(Rd )
EZ∼π

Z ′∼π
[k(Z ,Z ′)] + EZ∼µ

Z ′∼µ
[k(Z ,Z ′)]− 2EZ∼π

Z ′∼µ
[k(Z ,Z ′)]

with k(Z ,Z ′) = Ex∼data[φZ (x)TφZ ′(x)]

m

min
µ∈P2(Rd )

1
2

MMD2(µ, π)
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L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xl+1 = xl − γlB−1
l ∇F (xl ) := xl + γldl (1)

where B−1
l is a p.s.d. matrix approximating the inverse Hessian at xl .

Step1. (requires ∇F ) It computes a cheap version of dl based on
BFGS recursion:

B−1
l+1 =

(
I −

∆xlyT
l

yT
l ∆xl

)
B−1

l

(
I −

yl ∆xT
l

yT
l ∆xl

)
+

∆xl ∆xT
l

yT
l ∆xl

where ∆xl = xl+1 − xl

yl = ∇F (xl+1)−∇F (xl )

Step2. (requires F and ∇F ) A line-search is performed to find the
best step-size in (1) :

F (xl + γldl ) ≤ F (xl ) + c1γl∇F (xl )
T dl

∇F (xl + γldl )
T dl ≥ c2∇F (xl )

T dl
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Kernel Herding (KH) and Stein Points (SP)
They attempt to solve MMD or KSD quantization in a greedy manner,
i.e. by sequentially constructing µn, adding one new particle at each
iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD [Chen et al., 2012]:

xn+1 = argmax
x∈Rd

〈wn, k(x , .)〉Hk

wn+1 = wn + mπ − k(xn+1, .)

[Bach et al., 2012] obtain a linear rate of convergence O(e−bn)

I if the mean embedding mπ = Ex∼π[k(x , .)] lies in the relative
interior of the marginal polytope convexhull(

{
k(x , .), x ∈ Rd

}
)

with distance b away from the boundary
I however for infinite-dimensional kernels b = 0 and the rate does

not hold.

Stein Points for the KSD [Chen et al., 2018] greedily minimizes the KSD
similarly. The authors establish a O((log(n)/n)

1
2 ) rate, which seem

slower than their empirical observations.
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SVGD with laplace kernel
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable β : πβ(x) ∝ exp(−βV (x)) ,
with 0 < β ≤ 1 (i.e. multiply the score by β.)

β = 1 β = 0.1 β = 0.1→ 1

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed.

Beyond Log-concavity: Provable Guarantees for Sampling
Multi-modal Distributions using Simulated Tempering Langevin
Monte Carlo. Rong Ge, Holden Lee, Andrej Risteski. 2017.
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So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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1 - Bayesian Logistic regression
Datapoints d1, . . . ,dq ∈ Rp, and labels y1, . . . , yq ∈ {±1}.
Labels yi are modelled as p(yi = 1|di ,w) = (1 + exp

(
−w>di

)
)−1 for

some w ∈ Rp.

The parameters w follow the law p(w |α) = N (0, α−1Ip), and α > 0 is
drawn from an exponential law p(α) = Exp(0.01).

The parameter vector is then x = [w , log(α)] ∈ Rp+1, and we use
KSD-LBFGS to obtain samples from p(x |

(
di , yi )

q
i=1

)
for 13 datasets,

with N = 10 particles for each.

0.6 0.8 1.0

SVGD

0.6

0.8

1.0

K
S

D
D

es
ce

n
t Accuracy of the KSD descent and

SVGD on bayesian logistic regression
for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one dataset.

14/ 16



2 - Bayesian Independent Component Analysis
ICA: x = W−1s, where x is an observed sample in Rp, W ∈ Rp×p is
the unknown square unmixing matrix, and s ∈ Rp are the
independent sources.
1)Assume that each component has the same density si ∼ ps.
2) The likelihood of the model is p(x |W ) = log |W |+

∑p
i=1 ps([Wx ]i ).

3)Prior: W has i.i.d. entries, of law N (0,1).
The posterior is p(W |x) ∝ p(x |W )p(W ), and the score is given by
s(W ) = W−> − ψ(Wx)x> −W , where ψ = − p′s

ps
. In practice, we

choose ps such that ψ(·) = tanh(·). We then use the presented
algorithms to draw 10 particles W ∼ p(W |x) on 50 experiments.
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Left: p = 2. Middle: p = 4. Right: p = 8.
Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.
KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex. 15/ 16



Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ≈ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.
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Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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