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Problem: Transport an initial probability distribution 1o on R to
a target probability distribution = on RY.

Assume that 7 € Po(RY) = {1 € P(RY), [ ||x|[Pdu(x) < oo}
This problem can be written as an optimization problem on
P2(RY), e.g.
min D
LN ()
where D is a dissimilarity functional, seen as a loss, between
probability distributions.

Wasserstein Gradient Flows find continuous paths on Po(RY)
(equipped with the Wasserstein-2 geometry) that decrease this
loss.

Different algorithms result from the choice of D, and different
time-space discretizations.



Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

i ) here F(u) = D
“Eggzl&d)g(u) w (1) = D(u|m)

> sampling (ex: 7w posterior distribution in Bayesian
inference)

» optimizing Neural Networks (ex: = distribution over
parameters of a big Neural Network)

» many others : generative modelling
,barycenters of distributions

One can design new schemes/study existing ones as
discretizations of Wasserstein gradient flows.
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Setting - The Wasserstein space
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Let P»(RY) denote the space of probability measures on R?
with finite second moments, i.e.

Pa(RY) = {u € P(RY), / IX[2du(x) < o0}

P2(RY) is endowed with the Wasserstein-2 distance from
Optimal transport :

W)= inf [ - ylPdstey) Ve Pare)
sel(v,u) JRIxRA

where I'(v, 1) is the set of possible couplings between v and .
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Def (pushforward) : Let u € P(RY), T:RY — RY. The
pushforward measure T u is characterized by:

> v B meas. set, Tyu(B) = u(T~(B))
> X~y T(X) ~ Typ

Brenier’s theorem : Let , v € Po(RY) s.t. u < Leb. Then,

> Then 3! Ty : RY » Rs.t. T",u = v, and a convex
function g s.t. T = Vg u-a.e.

> W2 v) = 1= T2, ) = infresyqo (X = T(x))2du(x)
where [2(u) = {f : RI = RY, [ |f(x)[2du(x) < oo}

W, geodesics?

p(0) = p, p(1) = . ’ N
o) = ((1 =1+ 1T \

#o()=(1—-tu+tv ’
~—_——

mixture



Continuity equations

Let T > 0. Consider a family 1 : [0, T] — Po(RY), t — puy. It
satisfies a continuity equation if there exists (V;):cjo, 77 such that
Vi € L?(u;) and distributionnally:

81‘ Lt div(peVe) =0

rules density i of particles x; € R? driven by a vector field V;:

ax,
7; = Vi(x)

Riemannian interpretation :
The tangent space of Pp(RY) at 1 verifies T P2(RY) C L2(pu).



Wasserstein Gradient Flows (WGF)
Let G : Po(RY) — R U {400}, u — G(p) a regular functional.
The differential of G evaluated at ;. € P»(RY) is the unique
function dga—(u“):Rd — Rs. t. forany u, i/ € Po(RY), s.t.
W — p € Pa(RY):
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Wasserstein Gradient Flows (WGF)
Let G : Po(RY) — RU {+oo}, u— G(u) a regular functional.
The differential of G evaluated at i1 € Pg(Rd) is the unique
function ( J:RY 5 Rs. t. forany p, 1t/ € Po(RY), sit.
W—pe Pz(Rd)-

i (60 + ' )~ 6] = [ 3100 (ot = o).

e—0 €

Then y: [0, T] — P2(RY), t — u; satisfies a Wasserstein
gradient flow of G if distributionally:

Ope 0G(ut)\ _ o - _
T div <mV o )~ 0, i.e. Vi=—-VwG(n)

where VG (p) = Vag(#) € L2(p) is called the Wasserstein
gradient of G.



WGF of Free energies

In particular, if the functional G is a free energy:

/H x))dx + /V )dp(x /Wx y)du(x)du(y)

internal energy H( ) potential energy £y (1) interaction energy W(u)
. Ot T /
Then : =2 = div(pe V(H () + V + W+ ur)). (1)
VwG (1)

For instance, if H(u) is the negative entropy (H(s) = slog(s)),
then (1) rules the density i, of particles x; € R9 driven by :

o(’;(; =—-VV(x) —/ VW(x, x1)dp(x) + vV2adB,
Rd

ut = Law(x;), B; is a Brownian motion.



Space discretization

If the vector field depends on the density of the particles at time
t, replace u; by the empirical measure of a system of N
interacting particles:

X3, XY ~ o
andforj=1,...,N:

ds!
A %
i VV(x)

2 \

N
Z W(X{, %) + V2dB;.



Time discretizations
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Time discretizations
1. Forward :
fint1 = €XPu, (—YVwG(in)) = (I = vV wG(pn)) 4 fin

where exp, : L2(1) — P, ¢ = (I + ¢)pp,
and which corresponds in R? to:

Xni1 = Xn — YV wG(un)(Xn) ~ pnit, i Xn ~ pn.

2. Backward :
fing1 = JKOsg (jin)

_ 1
where JKO,g(jn) = argmin {Q(u) + 2—W22(,u, Mn)} .
peP2(RY) v

3. Splitting schemes : if G = Gy + G, e.g. Forward/Backward:

Vnyt = (I =YV wG1)4n
pin1 = JKO g, (vn11)
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The relative entropy/Kullback-Leibler divergence

For any i, ™ € P»(RY), the Kullback-Leibler divergence of 1.
w.r.t. 7 is defined by

KL () = /R tog () du(x) f p <

and is oo otherwise.
We consider the functional KL(:|7) : Po(R?) — [0, +o<].



The relative entropy/Kullback-Leibler divergence

For any i, ™ € P»(RY), the Kullback-Leibler divergence of 1.
w.r.t. 7 is defined by

KL(u|m) = / g (X(x)) du(x) it <

and is oo otherwise.
We consider the functional KL(:|7) : Po(R?) — [0, +o<].

For any u € P>(RY), 1 < m, the differential of KL(-|7) evaluated
at u, &(’fm RY — R is the function

Iog( )()—1—1 RY = R.

Hence, for p regular enough, Vyy KL(:|7) is:
K . d
V log (w) ():RY >R



Example 1 : Bayesian statistics

> Let D = (w;,y;)i=1... n Observed data.

» Assume an underlying model parametrized by § € R?
(e.g. p(y|w, 0) gaussian)
— Likelihood: p(D|6) = [TV, p(yil0, w).

» The parameter 6 ~ p the prior distribution.

D|0)p(6

Bayes’ rule : w(0) := p(0|D) = p(Z) ,Z = /dp(D|H)p(0)d0.

7 is known up to a constant since Z is untractable.
How to sample from 7 then?

1. MCMC methods (Langevin Monte Carlo
, Hamiltonian Monte Carlo

)

2. Sampling as optimization of the KL

7w = argmin KL(u|n)
pePy(RY)
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Maximum Mean Discrepancy
Let k : RY x RY — R a positive, semi-definite kernel

k(z,2') = ($(2), p(Z))n, ¢:RT =M

Assume p — [ k(z,.)du(z) injective (characteristic k).

Maximum Mean Discrepancy defines a distance on P,(RY):
5 MMD2(u.m) = 5 [ k(z,2)du(2)d(2)

- ;/k(z, Z'Ydr(z)dn(Z)) —/k(z, ZYdu(z)dn(Z)).

The differential of ;¢ — 3 MMD?(., 7) evaluated at 1 € Po(RY) is:

/k Jdu(z /k dm(z

Hence, for k regular enough, V3 MMDZ(.,w) is:

/ Vok(z,.)du(z) — / Vok(z,.)dn(2)  RY — R.



Example 2 : Regression with infinite width NN

(x,y) ~ data

. 1 & . 2
Zm“} Egaallly — N Z ¢Z,.(x)||2] W :‘é‘; Euaral 1y = Bz [@p7(0111°]

N i=1
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The well-specified case
We have (x, y) ~ data.

Assume 37 € P, E[y|X = x] = Ez[pz(X)].

Then : min E[||y — EZNM[¢Z(X)]H2]
peP,(RY)
[
omin | EllEze[62(0)] ~ Ezvuléz(X)] 7]
3
min  Ez.[k(Z,Z)] +Ez.,[k(Z,Z')] - 2E 2z [k(Z,2))]
peEP(RY)  Z'~m Z'~u
with k(Z, Z') = Exqataldz(X) T ¢2/(x)]
(3

’
min =~ MMD?(u, 7
/L67’2I(Rd)2 .7)



lllustration : Student-Teacher network
Satisfies the "well-specified" assumption ! (3r, E[y|X = X] = Ez-[¢z(X)])
» the output of the Teacher network is deterministic and given by
y = [ ¢z(x)dn(Z) where m = 1. S 5,
» Student network parametrized by po = N Zn:1 dzp tries to learn
the mapping x — [ qbz(x)dw(Z).

(x,y) ~ data x

N
Jmin Egulllyr 2¢U () — Z¢z'r(x)||2]
n=1



Gradient descent on each parameter ne {1,...,N} :

Z{’+1 = Ztn — ’YEXNdata [(N Z ¢zn’ (X) M Z d)um ) Vzt’7¢ztn(x)] 9

n'=1

Re-arranging terms and recalling that
k(Z,U) = Exgata[7(x) T dy(x)], the update becomes:

N M
1 / 1
Zly =2z~ (N Z Vok(zf', z{') — I Z V2k(Umaztn)>
m=1

n'=1

Vs MMD2 . (zP)

0t

The above equation is a time-discretized version of the
gradient flow of the MMD.



KL and MMD are free energies
The relative entropy G(1) = KL(u|7) can be written:

/H x)dx+/V pu(x)dx —C,
H ()

Ev(p)

H(s) = slog(s), V(x) = —log(n(x)), C = H(x) + Ev(n).




KL and MMD are free energies

The relative entropy G(1) = KL(u|7) can be written:

/H dx+/V x)dx —C,

Ev(p)

W@zﬂ%U,W)=4www»C=Hwawﬂ

The Maximum Mean Discrepancy G(u) = 1 MMD2( ) also:

n)= [ VEdut)+ 5 [ Woxy)du(dity)+C.

Ev(p) W(n)
V(x) = — [ k(x,x")dr(x"), W(x,x") = k(x,x'), C=W(r).
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The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.
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The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.

It is written as a composite functional (7 o exp(—V)):

L(u|r) = /V )du(x +/|og(,u(x))d,u(x) +cte

Ey(p) external potential H () negative entropy

The W, gradient flow of the KL is the Fokker-Planck equation:

0 .

% — div(j V Iog< )) =div(p TV, )+ Au).
N——— VwEv(n)
Vw KL(pt|m)

It is the continuity equation (X; ~ ;) of the Langevin diffusion :

dX; = —VV(X;) + vV2dB;

where (B) is the brownian motion in RY.



Gradient flow of the entropy

The gradient flow of the negative entropy #(1) is the heat
equation

Opt

A

ot Mt

This has an exact solution which is the heat flow
pe = o * N(0, 2tly).

In space, this is implemented by adding Gaussian noise '
Xi = Xo +V2tZ

where Z ~ N (0, l4) and Z independent of Xj.

'The true solution of the heat flow is the Brownian motion in space.
However, at each time, the solution has the same distribution as (2)



Unadjusted Langevin Algorithm (ULA)

Xnt1 = Xn =V V(Xn) + v/27v¢n Where &, ~ N(0, l)
and v > 0 is a step-size.
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Unadjusted Langevin Algorithm (ULA)

Xnp1 = Xn =7V V(Xn) + /276 where §, ~ N(0, Iy)
and v > 0 is a step-size.
Problem : ULA is biased (has stationary distribution

Ty # ).

We can write ULA as the composition :

Yni1 = Xn —yVV(X,) gradient descent/forward method for V
Xni1 = Ynr1 + V270 exact solution for the heat flow

= Forward-Flow discretization

In the space of measures P:

Vnp1 = (I =V V)ppin gradient descent for &y
pnit = N(0,2v1) * vpyq exact gradient flow for 2/

This Forward-flow discretization is biased
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Forward Backward discretization

G(u) = Ev(p) +H(p)

We analyzed :
Vnit = (I =9V V)gpn

pns1 = JKO 3 (Vny1)

where JKOy(vp41) = argmin,,cp, oy H(p) + 217 W2 (11, vny1).



Forward Backward discretization

G(u) = Ev(p) +H(p)

We analyzed :
Vnit = (I =9V V)gpn

pns1 = JKO 3 (Vny1)
where JKOy(vp41) = argmin,,cp, oy H(p) + 217 W2 (11, vny1).

We showed that this scheme enjoys the same
rates than proximal gradient in the euclidean setting, i.e.

Assume V is L-smooth, A-strongly convex, and assume the
step size v < 1/L and py < Leb. Then for all n > 0:

1. G(un) — G(m) < M in the convex case (\ = 0)
2. WE(pn,m) < (1 - ’Y)\)”sz(uo,w) when A > 0

— faster than ULA (1/v/nfor A =0 and 1/n for A > 0)



Implementation of the JKO of the negative entropy

» some subroutines exist to compute the JKO , or the
JKO w.r.t. the entropy-regularized W,

> |t is possible to compute the JKO of negative entropy in closed form
in the gaussian case (i.e. for 7, uo gaussians)

../ ../ ../20-wass—-prox—fral. nElr-ipsySapmisat /IR Yo AL

../../../20-wass-prox—-grad/neuripsg?/3ir



Forward discretization for the KL

Let g € P. Forward discretization (gradient descent on
(P2(RY), Wh)) is written:

pins1 = (1= 7V log (%))# fin (3)

where v > 0 is a step-size.
i.e. in R, given Xo ~ po,

Xnt1 = Xn—~Vlog ( ) (Xn) ~ pngr if Xp ~ pp.



Forward discretization for the KL

Let g € P. Forward discretization (gradient descent on
(P2(RY), Wh)) is written:

pins1 = (1= 7V log (%))# fin (3)

where v > 0 is a step-size.

i.e. in R, given Xo ~ po,

Xnt1 = Xn—~Vlog ( ) (Xn) ~ pngr if Xp ~ pp.

Problem: In practice, we do not know the density 1, we only
have access to particles X,.

We studied Stein Variational Gradient Descent ,
which proposes a particle scheme to implement (3).



Stein Variational Gradient Descent
> Let k: RY x R? — R a positive, semi-definite kernel
> example : k(x,y) = exp(—M)
d
> Hits RKHS : {f: R = R, f(.) = Y1, aik(xi,.)}
Hilbert space of functions equipped with (-, )4, || - |l%-

we assume : Vu, [pq K(X, X)du(x) < oo = H C L?(p).
> Define the kernel integral operator S, : L2(u) — H :

/k du(x) Ve ()

and denote Py, = t3_,/2(,) © Sp-

SVGD trick: under mild boundary conditions, applying this
operator to the W, gradient of KL(:|r) leads to

PuVlog (£) ()= - / [V log r()K(x, -) + Vk(X, )] du(x).



SVGD discrete time, infinite particles
For the scheme:

Mt = (I — P,V log (%))# Hn

we showed a descent lemma, for a bounded of k, Vk, Hessian
of V = log 7, and gamma small enough :

2
KL{tncl) = KLolr) < =6, S, 9 0g (°7 ).

KSD?(pun|)

Rk: The KL is not smooth so such a descent lemma is specific
to SVGD.
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SVGD discrete time, infinite particles
For the scheme:

e (I — P,V log (%))# Hn

we showed a descent lemma, for a bounded of k, Vk, Hessian
of V = log 7, and gamma small enough :

2
KL(in1 1) = KL{pr) < =0, SV og (°7)

KSD?(pun|)

Rk: The KL is not smooth so such a descent lemma is specific
to SVGD.
This descent lemma implies

_ KL(polr)

L n11|n KSD2(pup|m) < ZKSDz k) < cn

Rk: Does not depend on the convexity of V.
31/37



SVGD discrete time, finite particles

Algorithm : Starting from N i.i.d. samples (X )i=1....N ~ [0,
SVGD algorithm updates the N particles as foIIows

N
1 o , o
8 D KX X0V i log (X)) + ¥ k(X X)
=1

Xrlr+1 =Xp—1

Py V log( 22)(X})

where fi, = §; SN, 0,/ How faris 2, from p&N?

Propagation of chaos result (non uniform in time)
Letn>0and T > 0. Under boundedness and Lipschitzness
assumptions for all k, Vk, V;forany 0 < n < % we have :

EWE (" o) < 5 (g /vartia)e ) (7 - 1)

where L is a constant depending on k and .



Open questions

Numerics;

» Closed-form or efficient subroutines for JKO (e.g. the JKO
of the negative entropy)?

Theory:
» Rate of convergence in the KL objective for SVGD?

» uniform in time Propagation of chaos for a convex
potential?



Outline

Recent results (MMD and KSD gradient flows)
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MMD gradient flow

We noticed convergence issues for the regular dynamics.
We proposed the following perturbation.
At each iteration n, sample &, ~ A/(0,1) and 3, is the noise level:

Xny1 = Xn —7Vw MMDQ(X” + Bn&n)
Different from adding noise outside ("diffusion”)
Xnp1 =Xn— 7V MMDZ(X”) + Bnén

( which corresponds to an entropic regularization of the loss.)

Test error per epoch

—— SGD

—— SGD + noise

. —— SGD + diffusion
10 —— KSD flow

1072

0 2x103 4x103 6x103 8x103
Epochs

Training of a neural network.
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KSD gradient flow

Idea: implement a forward discretization for the KSD.

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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Conclusion, open questions

Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

min G(u), where F(u) = D(u|r)
pEP2(RY)



Conclusion, open questions

Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

in G(p), where F(u)=D
e (1) (1) = D(plm)

Many ideas from optimization can be useful in this setting
(perturbation of dynamics, adapted discretizations...)

Open questions: numerics (improve the convergence of the
schemes), theory (obtain finer guarantees)
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Identification of the optimal transport maps

From pinto vpp1 = (I = yVV)pin

Assumption : V is L-smooth i.e. V (x, y) € RY,
L
V(y) = Vx) +{VV(X)y = x) + 5lix — vl

Then : If up < Leband v < 1/L, the OT map from p, t0 vy 1
corresponds to :
T = (I=7VYV)

and v, 1 < Leb.

Proof : (/ — vV V) is the gradient of a convex function for
v <1/L



Identification of the optimal transport maps

From vy 10 pipgt € JKO 3y (vngt) -

There exists a strong Fréchet subgradient at v,, 1 denoted
VwH(pns1), such that the OT map from vy, 1 10 ppq
corresponds to :

Tt = 1+ AV wH(png1)

and pp1 < Leb

By Brenier’s theorem (7,71 o T;,"%" = I) this also means

it = (I =yVwH(pnt1) o TZZT)#VnH-



Generalized geodesic convexity of H

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any u, 7,v € P with v <« Leb, t € [0,1] :

H((AT) + (1 = )T )pv) < tH(m) + (1 — )H(n)

where T™ and T} are the OT maps from v to 7 and from v to p.



Generalized geodesic convexity of H

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any u, 7,v € P with v <« Leb, t € [0,1] :

H(ETT + (1 = )T )pv) < tH(m) + (1 — )H(w)
where T™ and T} are the OT maps from v to 7 and from v to p.

This enables us to prove a descent lemma for V being
L-smooth and v < 1/L:

L
KL(ptng1|m) < KL(pn|m)—v <1 - ;) IVV+V wH(pn1)oXn i1 “%2(#,,)7

where X,p1 = T, o (I =V V).

Yn1



A dual point of view
Consider the gradient flow of V : RY — R

X(t) = ~VV(x(1))

for V : R? — R smooth and assume x(0) random with density
uo- What is the dynamics of the density p; of x(t) ?

2¢® function from RY to R with compact support.



A dual point of view
Consider the gradient flow of V : RY — R

X(t) = ~VV(x(1))

for V : R? — R smooth and assume x(0) random with density
uo- What is the dynamics of the density p; of x(t) ?

Let ¢ : R — R a test function?.

/qS aﬂt

SEE(0) =~ (V0.9 V)mx)ak = [ o(0dliv(uv V)(x)dx

Therefore,

0
% = div(utVV).

2¢® function from RY to R with compact support.




Forward-Backward discretization

G(n) = Ev(p) +H(p)
= We propose to analyze :

Vnit = (I =YV V)gpn

pint1 = JKO 3 (Vni1)

1
where JKOx(vpyq) = argmin H(p) + = W2 (1, vpi).
HEP,(RY) 2y

Tools for the proof :
» Identification of OT maps

> use geodesic convexity (convexity of V and generalized
geodesic convexity of H)



Descent Lemma in the smooth case

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any p, v, u* € P with v < Leb, t € [0,1] :

H((tTye + (1 = )T )pp™) < tH(v) + (1 = HH(p).

T!. and T'. are the OT maps from * to v and from p* to .



Descent Lemma in the smooth case

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any p, v, u* € P with v < Leb, t € [0,1] :

H((tTye + (1 = )T )pp™) < tH(v) + (1 = HH(p).

T!. and T'. are the OT maps from * to v and from p* to .

Result: A descent lemma for V being L-smooth? and v < 1/L:

L
G1ins1) < Glpn)= (1= 5 ) IV VAT 1)oXo1

where X1 = T, o (I — 4V V).

Vn41

eV (x,y) € RY, V(y) < V(x) + (VV(X),y — x) + £[|x — yI2.



Rates of convergence in the convex case
Assumption : V is \-strongly convex, i.e. V (x, y) € RY,
A
V(x)+ (VV(x),y = x) + SlIx =y < V().



Rates of convergence in the convex case
Assumption : V is \-strongly convex, i.e. V (x, y) € RY,

V() + (TV0),y — )+ 5l -yl < V().

Theorem : Assume the step size v < 1/L and ug < Leb. Then
foralln>0

WE (k1. m) < (1 =y A) W3 (kin, ) — 27(G(pin 1) — G ().
which implies:
1. G(un) — G(m) < g ™) in the convex case (A=0)
2. W2(pn,m) < (1 —y\)"W2(uo, 7) when A > 0

— same rates than proximal gradient in the euclidean setting!
— faster than ULA (1/v/nfor A =0 and 1/n for A > 0)



Closed-form for the Gaussian case
It is possible to compute the JKO of negative entropy in closed
form in the gaussian case (i.e. for 7, ug gaussians)

Assume ™ = N (m, ¥).

Let o = NM(mg, Xo) and let £y = [ for simplicity, so ¥
commutes with X. Along FB, un, = N (mp, X,) stays Gaussian,
and:

Va1 = m+ (1= yE") (X — m)

Xpp1 = Mppq + (1 - ’72;411)71(}%—1-1 — Wn)

where

pngt = m+ (I == ") (pn — m)

Tnpr(l— 'er_;+11)2 =Tn(l - 7271)2
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