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Sampling

Problem: Sample (=generate new examples) from a target
distribution π over Rd , whose density w.r.t. Lebesgue measure
is known up to an intractable normalisation constant Z :

π(θ) =
π̃(θ)

Z
, π̃ known, Z unknown.

Main application: Bayesian inference, where π is the posterior
distribution over parameters of a model.

3/ 37



Bayesian inference
Let D = (wi , yi )

m
i=1 a dataset of labelled examples (wi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by θ, e.g. :

y = g(w , θ) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over θ to fit the data.

1. Compute the Likelihood:

p(D|θ) =
m∏

i=1

p(yi |θ,wi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(wi , θ)‖2

)
.

2. Choose a prior distribution on the parameter:

θ ∼ p, e.g. p(θ) ∝ exp

(
−‖θ‖

2

2

)
.

3. Bayes’ rule yields:

π(θ) := p(θ|D) =
p(D|θ)p(θ)

Z
Z =

∫
Rd

p(D|θ)p(θ)dθ

i.e. π(θ) ∝ exp (−V (θ)) , V (θ) =
1
2

m∑
i=1

‖yi − g(wi , θ)‖2 +
‖θ‖2

2
.
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π is needed both for
I prediction for a new input w : ypred =

∫
Rd g(w , θ)dπ(θ)

I measure uncertainty on the prediction.

Given a discrete approximation µn = 1
n

n∑
j=1

δθj of π:

ypred ≈
1
n

n∑
j=1

g(w , θj).

Question: how can we build µn?
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Sampling as optimisation
Notice that

π = argmin
µ∈P(Rd )

KL(µ|π), KL(µ|π) =

{ ∫
Rd log

(
µ
π (θ)

)
dµ(θ) if µ� π

+∞ else.

(does not depend on the normalisation constant Z in π(θ) = π̃(θ)/Z !)

Two (non parametric) ways to produce an approximation µn:

1. Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain whose law converges to π ∝ exp(−V )

Example: Langevin Monte Carlo (LMC), discretizes an
overdamped Langevin diffusion

dθt = −∇V (θt )+
√

2dBt =⇒ θl+1 = θl−γ∇V (θl )+
√

2γεl , εl ∼ N (0, Id )

Its law corresponds to a Wasserstein gradient flow of the KL
[Jordan et al., 1998].

2. Interacting particle systems, e.g. by considering other metrics or
functionals
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Difficult cases : non-convex potentials
Recall that

π(θ) ∝ exp (−V (θ)) , V (θ) =
m∑

i=1

‖yi − g(wi , θ)‖2

︸ ︷︷ ︸
loss

+
‖θ‖2

2
.

I if V is convex (e.g. g(w , θ) = 〈w , θ〉) many sampling methods
are known to work quite well, including LMC

I but if its not (e.g. g(w , θ) is a neural network), the situation is
much more delicate

I MCMC methods do not scale and require too many iterations,
(≈ 104) see [Izmailov et al., 2021] that run HMC over 512 Tensor
processing unit (TPU) devices to obtain baselines on CIFAR10

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Sampling as optimization over distributions

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

We equip P2(Rd ) with the Wasserstein-2 distance:

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

∫
Rd×Rd

‖x − y‖2 ds(x , y) ∀ν, µ ∈ P2(Rd )

where Γ(ν, µ) is the set of possible couplings between ν and µ.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

F(µ), F(µ) := D(µ|π)

where D is a dissimilarity functional (f-div, IPM, OT
distance...).

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Euclidean gradient flow and continuity equation
Let V : Rd → R. Consider the gradient flow

dXt

dt
= −∇V (xt )

and assume x0 random with density µ0. What is the dynamics of the
density µt of xt ? Let φ : Rd → R a smooth function with compact
support.

d
dt

E(φ(xt )) = −
∫
〈∇φ,∇V 〉µt (x)dx =

∫
φ(x)∇ · (µt∇V )(x)dx ,

and
d
dt

E(φ(xt )) =

∫
φ(x)

∂µt

∂t
(x)dx .

Therefore,

∂µt

∂t
=∇ · (µt∇V ).
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variation of µ 7→ F(µ) evaluated at µ ∈ P, if it exists, is the
unique function ∂F(µ)

∂µ : Rd → R s. t. for any µ, µ′ ∈ P:

lim
ε→0

1
ε

[F(µ+ ε(µ′ − µ))−F(µ)] =

∫
Rd

∂F(µ)

∂µ
(x)(dµ′ − dµ)(x).

The family µ : [0,∞]→ P, t 7→ µt satisfies a Wasserstein gradient

flow of F if distributionally:

∂µt

∂t
=∇ · (µt∇W2F(µt )) ,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein gradient

of F .

It can be implemented by the deterministic process:

dXt

dt
= −∇W2F(µt )(Xt )
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Time and Space discretization - Particle system
Let γ > 0 be a step-size:

Xl+1 = Xl − γ∇W2F(µl)(Xl)

Problem: the vector field depends on the unknown µl , the
density of the particle at time l .

Idea: replace it by the empirical measure of a system of n
interacting particles:

X 1
0 , . . . ,X

n
0 ∼ µ0

and for j = 1, . . . ,n:

X j
l+1 = X j

l − γ∇W2F(µ̂l)(X j
l )

where µ̂l = 1
n
∑n

i=1 δX j
l
.
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We recall that

π = argmin
µ∈P2(Rd )

KL(µ|π), KL(µ|π) =

∫
log
(µ
π

)
dµ if µ� π

and that we can consider the Forward time discretisation:

xl+1 = xl − γ∇W2 KL(µl |π)(xl), xl ∼ µl ,

where ∇W2 KL(µl |π) = ∇∂ KL(µl |π)
∂µ = ∇ log

(µl
π (.)

)
.

Problem: µl , hence ∇ log(µl) is unknown and has to be
estimated from a set of particles.
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel
((k(xi , xj )

n
i=1) is a p.s.d. matrix for all x1, . . . , xn ∈ Rd )

I examples:
I the Gaussian kernel k(x , y) = exp

(
−‖x−y‖2

h

)
I the Laplace kernel k(x , y) = exp

(
−‖x−y‖

h

)
I the inverse multiquadratic kernel

k(x , y) = (c + ‖x − y‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}

I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .
I assume

∫
Rd×Rd k(x , x)dµ(x) <∞ for any µ ∈ P(Rd ),=⇒ Hk ⊂ L2(µ).

I It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk .
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Consider the following metric depending on k 1

W 2
k (µ0, µ1) = inf

(µt ,vt )

{∫ 1

0
‖vt‖2Hd

k
dt :

∂µt

∂t
=∇ · (µtvt )

}
.

Then, the Wk gradient flow of the KL writes as the PDE
[Liu, 2017], [Duncan et al., 2019]:

∂µt

∂t
+∇·

(
µtPµt∇ log

(µt

π

))
= 0, Pµ : f 7→

∫
k(x , .)f (x)dµ(x).

It converges to π ∝ exp(−V ) under mild conditions on k and if
V grows at most polynomially [Lu et al., 2019].

1W 2
2 (µ0, µ1) = inf(µt ,vt )t∈[0,1]

{∫ 1
0 ‖vt‖2

L2(µt )dt : ∂µt
∂t =∇ · (µtvt)

}
.
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SVGD algorithm
SVGD trick: applying the kernel integral operator to the W2 gradient
of KL(·|π) leads to

Pµ∇ log
(µ
π

)
(·) =

∫
∇ log

(µ
π

)
(x)k(x , .)dµ(x)

=

∫
−∇ log(π(x))k(x , .)dµ(x) +

∫
∇(µ(x))k(x , .)dx

I.P.P.
= −

∫
[∇ log π(x)k(x , ·) +∇xk(x , ·)]dµ(x),

under appropriate boundary conditions on k and π, e.g.
lim‖x‖→∞ k(x , ·)π(x)→ 0.

Algorithm : Starting from n i.i.d. samples (X i
0)i=1,...,n ∼ µ0, SVGD

algorithm updates the n particles as follows :

X i
l+1 = X i

l − γ

1
n

n∑
j=1

∇X j
l

log π(X j
l )k(X i

l ,X
j
l ) +∇X j

l
k(X j

l ,X
i
l )


= X i

l − γPµn
l
∇ log

(
µn

l
π

)
(X i

l ), with µn
l =

1
n

n∑
j=1

δX j
l
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SVGD in practice
I more than 600 citations for [Liu and Wang, 2016]

I Relative empirical success in Bayesian inference and more
recently for deep networks

I It can suffer for multimodal distributions
[Wenliang and Kanagawa, 2020], underestimate the target variance
[Ba et al., 2021], but still can be very efficient on difficult sampling
problems.

From Repulsive Deep Ensembles are Bayesian. F. D’angelo, V. Fortuin. Conference on Neural Information
Processing Systems (NeurIPS 2021). 18/ 37



Continuous-time dynamics of SVGD

∂µt

∂t
+∇ ·

(
µtPµt∇ log

(µt

π

))
= 0, Pµ : f 7→

∫
k(x , .)f (x)dµ(x).

How fast the KL decreases along SVGD dynamics? Apply the chain
rule in the Wasserstein space2:

d KL(µt |π)

dt
=
〈

Vt ,∇ log
(µt

π

)〉
L2(µt )

= −
∥∥∥Pµt∇ log

(µt

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µt |π)

≤ 0.

On the r.h.s. we have the Kernel Stein discrepancy (KSD)
[Chwialkowski et al., 2016] or Stein Fisher information of µt relative to π:∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

= 〈Pµ,k∇ log
(µ
π

)
,Pµ,k∇ log

(µ
π

)
〉Hk

=

∫∫
∇ log

(µ
π

(x)
)
∇ log

(µ
π

(y)
)

k(x , y)dµ(x)dµ(y).

Recall that the Fisher divergence is defined as ‖∇ log
(
µ
π

)
‖2

L2(µ).

2Pµ = S∗µ ◦ Sµ, where Sµ : L2(µ)→ Hk , f 7→
∫

k(x , .)f (x)dµ(x) and S∗µ =
ιHk→L2(µ) the injection from Hk to L2(µ). We sometimes abuse notation here
between Pµ,Sµ for ease of presentation. 19/ 37
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A descent lemma in discrete time for SVGD [Korba et al., 2020]

Idea: in optimisation, descent lemmas can be shown if the objective
function has a bounded Hessian.

Assume that π ∝ exp(−V ) where ‖HV (x)‖ ≤ M.
The Hessian of the KL at µ is an operator on L2(µ):

〈f ,HessKL(.|π)(µ)f 〉L2(µ) = EX∼µ
[
〈f (X ),HV (X )f (X )〉+ ‖Jf (X )‖2

HS
]

and yet, this operator is not bounded due to the Jacobian term.

However: In the case of SVGD, the descent directions f are restricted
to Hk (bounded functions, bounded derivatives for bounded k ,∇k ).

Proposition: Assume (boundedness of k and ∇k , HV and moments
on the trajectory), then for γ small enough:

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Pµl∇ log

(µl

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µl |π)

.
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Rates in KSD

Consequence of the descent lemma: for γ small enough,

min
l=1,...,L

KSD2(µl |π) ≤ 1
L

L∑
l=1

KSD2(µl |π) ≤ KL(µ0|π)

cγL
.

This result only relies on the smoothness of V , not on any kind of
convexity, in contrast with many convergence results on LMC.

The KSD metrizes convergence for instance when
[Gorham and Mackey, 2017]:

I π is distantly dissipative (log concave at infinity, e.g. mixture of
Gaussians)

I k is the IMQ kernel defined by k(x , y) = (c2 + ‖x − y‖2
2)β for

c > 0 and β ∈ (−1,0).
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Open question 1: Rates in terms of the KL objective?
To obtain rates, one may combine a descent lemma (1) of the form

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Pµn∇ log

(µl

π

)∥∥∥2

Hk

and the Stein log-Sobolev inequality (2) with constant λ:

KL(µ|π) ≤ 1
2λ

KSD2(µ|π) for all µ.

Then:

KL(µl+1|π)−KL(µl |π) ≤︸︷︷︸
(1)

−cγ
∥∥∥Pµl∇ log

(µn

π

)∥∥∥2

Hk

≤︸︷︷︸
(2)

−cγ2λKL(µn|π).

Iterating this inequality yields KL(µl |π) ≤ (1− 2cγλ)l KL(µ0|π).

Problem: not possible to combine (1) and (2). (2) fails to hold if k is
too regular with respect to π (e.g. k bounded, π Gaussian)
[Duncan et al., 2019] . Some working examples in dimension 1, open
question in greater dimensions...
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First Experiments (d=1)
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD2(µn

l |π) and KL(k ? µn
l |π) to 0.
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Open question 2: SVGD quantisation
The quality of a set of points (x1, . . . , xn) can be measured by the
integral approximation error:

E(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (x i )−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ . (1)

(a) i.i.d. (b) SVGD Gaussian k (c) SVGD Laplace k

For i.i.d. points or MCMC iterates, (1) is of order n−
1
2 . Can we bound

(1) for SVGD final states?

Accurate quantization of measures via interacting particle-based
optimization. Xu, L., Korba, A., Slepčev, D. ICML 2022.
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Outline

Problem and Motivation

Wasserstein Gradient Flows

Part I - Stein Variational Gradient Descent

Part II : Sampling as optimization of the KSD
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A lot of problems previously came from the fact that the KL is not
defined for discrete measures µn. Can we consider functionals that
are well-defined for µn?

Remember the Kernel Stein discrepancy of µ relative to π:

KSD2(µ|π) =
∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

, Pµ,k : f 7→
∫

f (x)k(x , .)dµ(x).

With several integration by parts we have:

KSD2(µ|π) =
∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫ ∫
∇ log

(µ
π

(x)
)
∇ log

(µ
π

(y)
)

k(x , y)dµ(x)dµ(y)

=

∫∫
∇ log π(x)T∇ log π(y)k(x , y) +∇ log π(x)T∇2k(x , y)

+∇1k(x , y)T∇ log π(y) +∇ ·1 ∇2k(x , y)dµ(x)dµ(y)

:=

∫∫
kπ(x , y)dµ(x)dµ(y).

can be written in closed-form for discrete measures µ.
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KSD Descent - algorithms [Korba et al., 2021]

We propose two ways to implement KSD Descent:

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!
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Toy experiments - 2D standard gaussian

SVGD KSD Grad KSD L-BFGS

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size
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Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 particles.

29/ 37



2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions
the blue ones are the final positions
The light red arrows correspond to the score directions.
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable β : πβ(x) ∝ exp(−βV (x)) ,
with 0 < β ≤ 1 (i.e. multiply the score by β.)

β = 1 β = 0.1 β = 0.1→ 1

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed [Lee et al., 2018].
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Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ≈ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.

Random KSD SVGD
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Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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Theoretical properties of KSD flow

Stationary measures:

I we show that if a stationary measure µ∞ is full support, then
F(µ∞) = 0.

I however, we also show that if supp(µ0) ⊂M, whereM is a
plane of symmetry of π, then for any time t it remains true for µt :
supp(µt ) ⊂M.

Explain convergence in the log-concave case? again an open
question:

I the KSD is not geodesically convex

I it is not strongly geo convex near the global optimum π

I convergence of the continuous dynamics can be shown with a
functional inequality, but which does not hold for discrete
measures
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KSD quantization

Theorem (Xu, K., Slečev): Assume that
I k is a Gaussian kernel
I π ∝ exp(−U) where U ∈ C∞(Rd ) is such that U(x) > c1|x |

for large enough x , there exists polynomial f with degree m
such that ‖∂αU(x)‖ ≤ f (x) for all 1 ≤ |α| ≤ d .

Then there exist points x1, ..., xn such that µn =
∑n

i=1 δxi

satisfies:

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

Note that for Gaussian mixtures π satisfies the conditions of the
theorem.
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Conclusion

I Mixing kernels and Wasserstein gradient flows enable to design
deterministic interacting particle systems

I They can provide a better approximation of the target for a finite
number of particles

I Theory does not match practice yet

I Numerics can be improved, via perturbed dynamics, change of
geometry...
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Python package to try KSD descent and SVGD:
pip install ksddescent
website: pierreablin.github.io/ksddescent/

Thank you!

References:
I A non-asymptotic Analysis of Stein Variational Gradient

Descent. Korba A., Salim A., Arbel, M., Luise. G, Gretton, A.
Neurips 2020.

I Kernel Stein Discrepancy Descent. Korba, A., Aubin-Frankowski,
P-C., Majewski, S., Ablin, P. ICML 2021.

I Accurate quantization of measures via interacting particle-based
optimization. Xu, L., Korba, A., Slepčev, D. ICML 2022. 37/ 37

pierreablin.github.io/ksddescent/
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