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What is ranking data?
Consider a set of items JKK := {1, . . . ,K}.

A ranking is an ordered list (of any size) of items of JKK

Example:J4K := {1, 2, 3, 4}= , , , .

Ask an actor to rank/order them by preference (≻):

: ≻ ≻ ≻

: ≻

: ≻ ≻

4/ 39



What is ranking data?
Consider a set of items JKK := {1, . . . ,K}.

A ranking is an ordered list (of any size) of items of JKK
Example:J4K := {1, 2, 3, 4}= , , , .

Ask an actor to rank/order them by preference (≻):

: ≻ ≻ ≻

: ≻

: ≻ ≻

4/ 39



Many applications involve rankings/comparisons

▶ Modelling human preferences (elections, surveys, online
implicit feedback)

=⇒ easier for an individual to rank than to rate

▶ Computer systems (search engines, recommendation systems)

▶ Other (competitions, biology...)

5/ 39



Analysis of full rankings

Set of items JKK := {1, . . . ,K}. An individual expresses her
preferences as a full ranking, i.e a strict order≻ over the whole setJKK:

a1 ≻ a2 ≻ · · · ≻ aK

Other kind of rankings: Top-k rankings: a1, . . . , ak ≻ the rest, Pairwise comparisons:

a1 ≻ a2...

A full ranking can be seen as the permutation σ that maps an item
to its rank:
a1 ≻ · · · ≻ aK ⇔ σ ∈ SK such that σ(ai) = i

2 ≻ 1 ≻ 3 ≻ 4 ⇔ σ = 2134 (σ(2) = 1, σ(1) = 2, . . . )

LetSK be set of permutations of JKK, the symmetric group.
Ex: S4 = 1234, 1324, 1423, . . . , 4321
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Rankings: a big, structured space
ConsiderN individuals expressing their preferences on JKK:
=⇒ results in a dataset ofN rankings/permutations

DN = (Σ1,Σ2, . . . ,ΣN ) ∈ SN
K

How to analyze it?

▶ The set of permutationsSK is finite...
but it has exploding cardinality: |SK | = K!

⇒ Little statistical relevance

▶ A random permutationΣ ∈ SK can be seen as a random
vector (Σ(1), . . . ,Σ(K)) ∈ RK ...
but the random variablesΣ(1), . . . ,Σ(K) are highly
dependent and the sumΣ+ Σ′ is not a random permutation!
⇒ No natural notion of mean or variance forΣ
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Main approaches 1 - Parametric
▶ Choose a predefined generativemodel on the data and analyze

the data through that model

▶ Mallows [Mallows, 1957]
Parameterized by a central ranking σ0 ∈ SK and a dispersion
parameter γ ∈ R+

P (σ) = Ce−γd(σ0,σ) with d a distance onSK .

▶ Plackett-Luce [Luce, 1959]
Each item i is parameterized bywi withwi ∈ R+:

P (σ) =

K∏
i=1

wσ−1(i)∑n
j=i wσ−1(j)

Ex: 2 ≻ 1 ≻ 3 = w2

w1+w2+w3

w1

w1+w3

▶ may fail to hold on real data (see for instance
[Davidson and Marschak, 1959, Tversky, 1972] on decision
making)
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Main approaches 2 -“Non Parametric”

▶ Choose a structure onSK and analyze the data with respect to
that structure
1. Modeling of pairwise comparisons ([Jiang et al., 2011,

Rajkumar and Agarwal, 2014, Shah and Wainwright, 2017])

2. Kernel methods [Jiao and Vert, 2015]...

▶ Our setting: we exploit these structures to developmethods
for label ranking data

▶ We also rely on results on a fundamental problem: ranking
aggregation.
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Ranking aggregation

Consider a dataset ofN rankings/permutations of JKK:
DN = (Σ1, . . . ,ΣN ) ∈ SN

K

Rank. agg. aims at finding a global order (consensus) on theK
items that best represent the dataset.

Kemeny’s rule [Kemeny, 1959]

Solve σ∗
DN

= argmin
σ∈SK

N∑
n = 1

d(σ,Σn)

where d is the Kendall’s τ distance, i.e. for σ, σ′ ∈ SK :
dτ (σ, σ

′) =
∑

1≤i<j≤K

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

Ex: σ= 1234, σ′= 2413⇒ dτ (σ, σ
′) = 3 (disagree on (12),(14),(34)).
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Tractable (Kemeny) ranking aggregation

▶ Natural loss when rankings represent preferences
▶ Kemeny’s rule is the ”canonical” way to aggregate rankings
▶ Pb: it is NP-hard in general even forN = 4 ([Dwork et al., 2001])

Probabilistic Modeling

DN = (Σ1, . . . ,ΣN ) with Σn ∼ P

whereP distribution onSK . In [Korba et al., 2017], we exhibit some
conditions on P so that solving (true) Kemeny ranking aggregation:

σ∗
P = argmin

σ∈SK

EΣ∼P [d(σ,Σ)]

is tractable.
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Let pi,j = P[Σ(i) < Σ(j)] prob. that item i ≻ j. Suppose:
▶ Strict Stochastic Transitivity (SST):

(pi,j ̸= 1/2) & (pi,j > 1/2 and pj,k > 1/2 ⇒ pi,k > 1/2.)
▶ Low-noise: mini<j |pi,j − 1/2| ≥ h.

i

j

k

l

p̂ i,
j
>
1/
2

p̂
i,k

>
1
/
2

p̂
i,l >

1/2

p̂
k,j >

1/2 p̂ l,k
>
1/
2

⇒ P̂ will verify SST
⇒ Sort vertices by increasing input
degree:
d(i)=0,d(l)=1,d(k)=2, d(j)=3

Theorem: The Kemenymedian of P is unique and given by the
empirical Copeland ranking (complexity: O(K2N)):

for each 1 ≤ i ≤ K, σ∗
P (i) = 1 +

∑
j ̸=i

I{p̂i,j <
1

2
}

(with overwhelming probability 1− K(K−1)
4

e−αhN ,αh = 1
2
log

(
1/(1− 4h2)

)
)
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What if P̂ does not satisfy SST (Strict Stochastic Transitivity)?
▶ We propose to compute an approximation σ̃∗

P̂
with empirical

Borda count

σ̃∗
P̂
(i) = σ∗

projim(grad)(P̂ )
(i) =

1

N

N∑
n=1

Σn(i) for 1 ≤ i ≤ K

Hodge decomposition of pairwise rankings ([Jiang et al., 2011])

▶ (Remark:) Borda ̸= Kemeny unless

pi,j > 1/2 and pj,k > 1/2 ⇒ pi,k > max(pi,j , pj,k)
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Label Ranking - A supervised learning problem

NowDN = (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of (X, Σ)

Ex: Users iwith characteristicsXi and their observed
rankings/preferencesΣi.

Goal: Learn a predictive ranking rule :
s : X → SK

x 7→ s(x)
which given a randomX , predicts the permutation s(X) on JKK.

≻ ≻ ≻

Example: targeted advertising domain
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Related Work
▶ Other applications:

▶ document categorization/sentiment analysis: rank a set of
topics or emotions by relevance for a given document

▶ meta learning: rank a set of algorithms according to their
suitability for a new dataset

▶ Can be seen as an extension of multiclass andmultilabel
classification (postprocess a label ranking prediction in a
suitable way)

▶ Most previous approaches rely on parametric modelling
[Cheng and Hüllermeier, 2009], [Cheng et al., 2010]

We develop two families of non-parametric methods:
1. Partitioningmethods relying on results obtained for ranking

aggregation.
2. Structured predictionmethods, exploiting the geometry of

well-chosen featuremaps for rankings.
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Motivation: Label ranking as an extension of ranking
aggregation

Suppose:
▶ X ∼ µ, where µ is a distribution on some feature spaceX
▶ Σ ∼ PX , where PX (onSK ) is the conditional probability

distribution : PX(σ) = P[Σ = σ|X]

Performance of s: Measured by the risk:

R(s) = EX ∼ µ EΣ ∼ PX
[dτ (s(X),Σ)]︸ ︷︷ ︸

ranking aggregation risk,
minimized if s(X) = σ∗

PX

Assumption
ForX ∈ X , PX is SST:⇒ σ∗

PX
is unique (and given by Copeland)

Idea: Relax within a region C and compute σ∗
PC

for
PC(σ) = P[Σ = σ|X ∈ C].

18/ 39



Partitioning Methods
Twomethods are investigated:

K-nearest neighbors Decision tree
(Voronoi partitioning) (Recursive partition)

 

Consider the empirical distribution of rankings in C:

P̂C =
1

|k : Xk ∈ C|
∑

k:Xk∈C
δΣk

and solve:
σ∗
P̂C

= argmin
σ∈SK

E
Σ∼P̂C

[dτ (σ,Σ)]

=⇒ compute with Copelandmethod if P̂C is SST, Borda otherwise
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Partition the feature space: ex. of the decision tree
Split recursively the feature space by minimizing some impurity
criterion.

Recall Gini criterion in multiclassification, ifm is the nb of classes,
and fi(C) proportion of class i in cell C:

IG(C) =
m∑
i=1

fi(C)(1− fi(C))

Here, for a cell C [Alvo and Yu, 2014]:

γ(C) = 1

2

∑
1≤i<j≤K

p̂i,j(C) (1− p̂i,j(C))

which is tractable and satisfies the double inequality

γ(C) ≤ min
σ∈SK

E
Σ∼P̂C

[d(σ,Σ)] ≤ 2γ(C)

Idea: orderingK elements can be seen as
(
K
2

)
classification tasks.
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Main results of [Clémençon et al., 2018]
Approximation error: ”partitioning methods approximate well”
Suppose that ∃M < ∞ such that:
∀(x, x′) ∈ X 2,

∑
i<j |pi,j(x)− pi,j(x

′)| ≤ M · ||x− x′||, then

inf
s∈piec. cst. onP
equal to σ∗

PC
on C

R(s)−R(s∗) ≤ M.δP

where δP is the max. diameter ofP ’s cells.

Rates. Let ŝN a minimizer of the empirical risk over
{piec. cst. onP}. Excess of riskR(ŝN )−R(s∗)?
▶ classical ratesO(1/

√
N) for ERM.

▶ fast ratesO(1/N) under a ”uniform” Low-NoiseNA(h):

inf
x∈X

min
i<j

|pi,j(x)− 1/2| ≥ h.
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Extensions and Limitations

▶ Could be extended to the setting where one only observes
pairwise comparisons

▶ However, the SST assumption on PX may be strict

▶ Also, we only work with Kendall’s tau distance as a loss
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Risk minimization for label ranking

Goal: Learn a predictive ranking rule s : X → SK as:

mins : X → SK
R(s), with R(s) = E [∆ (s(X),Σ)]

with∆ some loss function for rankings, e.g.:
▶ Kendall’s τ :

∆τ (σ, σ
′) =

∑
1≤i<j≤K I[(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0]

→ Intuitive when rankings represent preferences

▶ Hamming: ∆H(σ, σ′) =
∑K

i=1 I[σ(i) ̸= σ′(i)].
→ Popular when rankings represent matchings/assignments
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Structured prediction for label ranking

Goal: Learn a predictive ranking rule s : X → SK as:

mins : X → SK
R(s), with R(s) = E [∆ (s(X),Σ)]

Main idea [Korba et al., 2018] : Consider a family of∆ loss
functions:

∆(σ, σ′) = ∥ϕ(σ)− ϕ(σ′)∥2F . (1)

with ϕ : SK → F some ranking embedding, i.e. that maps the
permutations σ ∈ SK into a Hilbert spaceF (e.g. Rm).

Motivation: There exist ϕτ , ϕH such that∆τ and∆H write as (1).
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Structured prediction - surrogate problem

mins : X → SK
R(s), with R(s) = E

[
∥ϕ(s(X))− ϕ(Σ)∥2F

]
(2)

⇒Hard to optimize.

Idea: Introduce a surrogate problem:

ming : X → FL(g), with L(g) = E
[
∥g(X)− ϕ(Σ)∥2F

]
(3)

⇒ easier to optimize since g has values inF

Let s∗ be aminimizer of (2) and g∗ aminimizer of (3).
Consistency if: R(d ◦ g∗) = R(s∗).
=⇒ approach structured prediction in two steps:
(see [Ciliberto et al., 2016, Brouard et al., 2016])
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Structured Prediction Approach
Firstly pick a loss∆ (⇔ embedding ϕ)

X SK

F

ĝ

ŝ

d (ϕ−1)

▶ Step 1 (Regression): Learn ĝ : X → F
▶ Step 1 (a): mapDN = (X1,Σ1), . . . , (XN ,ΣN ) to

D′
N = (X1, ϕ(Σ1)), . . . , (XN , ϕ(ΣN ))where ϕ(Σi) ∈ Rm

▶ Step 1 (b): Learn ĝ with any regressor

▶ Step 2 (Pre-image): ∀x ∈ X :
▶ Step 2 (a): Compute ĝ(x)
▶ Step 2 (b): Solve ŝ(x) = argminσ ∈ SK

∥ϕ(σ)− ĝ(x)∥2F
Choice of the embedding ϕ =⇒ complexities of Step 1 (a) and 2 (b)
Choice of the regressor =⇒ complexities of Step 1 (b) and 2 (a)

We now study 3 embeddings and their properties.
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∥ϕ(σ)− ĝ(x)∥2F
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∥ϕ(σ)− ĝ(x)∥2F
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Ranking embeddings - Kemeny
▶ Kemeny embedding ([Jiao and Vert, 2015, Jiao et al., 2016])

ϕτ : SK → RK(K−1)/2

σ 7→ (sign(σ(j)− σ(i)))1≤i<j≤K .

Ex: σ = 132 =⇒ ϕτ (σ) = (1, 1,−1)

(Recovers Kendall’s tau distance dτ )
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Ranking embeddings - Hamming and Lehmer
▶ Hamming embedding ([Plis et al., 2011])

ϕH : SK → RK×K

σ 7→ (I{σ(i) = j})1≤i,j≤K ,

Ex: σ = 132 =⇒ ϕH(σ) =
(

1 0 0
0 0 1
0 1 0

)
(recovers Hamming distance dH )

▶ Lehmer embedding ([Li et al., 2017])

ϕL : SK → RK

σ 7→ (#{i : i < j, σ(i) > σ(j)})j=1,...,K ,

”number of elements iwith index smaller than j that are ranked
higher than j in the permutation σ”

Ex: σ = 132 =⇒ ϕL(σ) = (0, 0, 1)
σ = 321 =⇒ ϕL(σ) = (0, 1, 2)
Im(ϕL) = CK = {0} × J0, 1K × J0, 2K × · · · × J0,K − 1K
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Complexity the pre-image step - 2 (b)

Now suppose ĝ(x) is known (after the learning step).

argmin
σ ∈ SK

∥ϕ(σ)− ĝ(x)∥2F

For Kemeny and Hamming, ∥ϕ(σ)∥ = C for any σ, so it can be
rewritten:

argmax
σ ∈ SK

⟨ϕ(σ), ĝ(x)⟩F

The solution comes in two steps:
1. Find the embedded object ϕ∗

σ in Im(ϕ) ⊂ F which maximizes the linear program :

ϕ∗
σ = argmax

ϕσ ∈ Im(ϕ)

⟨ϕσ , ĝ(x)⟩F

=⇒ NP-hard for Kemeny,O(K3) for Hamming with the Hungarian algorithm.
2. Invert the embedding: σ = ϕ−1(ϕ∗

σ)
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Pre-image for the Lehmer Embedding

Recall: ϕL(σ) ∈ CK = {0} × J0, 1K × J0, 2K × · · · × J0,K − 1K,
where for j = 1, . . . ,K:

ϕL(σ)(j) = #{i : i < j, σ(i) > σ(j)}

The decoupled coordinates enable a trivial solving of the pre-image

problem:

ŝ(x) = ϕ−1
L ◦ dL︸ ︷︷ ︸

d

◦ ĝ(x) with
dL : RK → CK

(hj)j=1,...,K 7→ (argmin
j∈J0,i−1K(hj − i))j=1,...,K

where d is the global decoding function.
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Theoretical guarantees
For Kemeny and Hamming embedding:
▶ consistency holds: R(d ◦ g∗) = R(s∗) and:

R(d ◦ ĝ)−R(s∗) ≤ cϕ
√

L(ĝ)− L(g∗)

with cϕτ =

√
K(K−1)

2 and cϕH
=

√
K (constants withK)

▶ but the pre-image step is hard : NP-hard for Kemeny,O(K3)
for Hamming (K=number of labels)

In contrast, for the Lehmer embedding:
▶ we lose consistency:

R(d◦ĝ)−R(s∗) ≤
√

K(K − 1)

2

√
L(ĝ)− L(g∗)+R(d◦g∗)−R(s∗)

▶ but the pre-image step is simple: O(K)
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Total complexity

Algorithmic analysis (forK objects to rank,N examples andm
dimension of ϕ(σ))

ϕ Step 1 (a) Step 2 (b)
ϕτ O(K2N) NP-hard
ϕH O(KN) O(K3N)
ϕL O(KN) O(KN)

Regressor Step 1 (b) Step 2 (a)
kNN O(1) O(Nm)
Ridge O(N3) O(Nm)

Embeddings and regressors complexities.

The Lehmer embedding with kNN regressor thus provides the
fastest (linear) theoretical complexity ofO(KN) at the cost of
weaker theoretical guarantees.
And now in practice?
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Structured prediction - Numerical results

Table: Mean Kendall’s τ coefficient on benchmark datasets

authorship glass iris vehicle vowel wine

kNN Hamming 0.01±0.02 0.08±0.04 -0.15±0.13 -0.21±0.04 0.24±0.04 -0.36±0.04
kNN Kemeny 0.94±0.02 0.85±0.06 0.95±0.05 0.85±0.03 0.85±0.02 0.94±0.05
kNN Lehmer 0.93±0.02 0.85±0.05 0.95±0.04 0.84±0.03 0.78±0.03 0.94±0.06
ridge Hamming -0.00±0.02 0.08±0.05 -0.10±0.13 -0.21±0.03 0.26±0.04 -0.36±0.03
ridge Lehmer 0.92±0.02 0.83±0.05 0.97±0.03 0.85±0.02 0.86±0.01 0.84±0.08
ridge Kemeny 0.94±0.02 0.86±0.06 0.97±0.05 0.89±0.03 0.92±0.01 0.94±0.05

Cheng PL 0.94±0.02 0.84±0.07 0.96±0.04 0.86±0.03 0.85±0.02 0.95±0.05
Cheng LWD 0.93±0.02 0.84±0.08 0.96±0.04 0.85±0.03 0.88±0.02 0.94±0.05
Zhou RF 0.91 0.89 0.97 0.86 0.87 0.95

Cheng PL (O(K log(K)N)) [Cheng et al., 2010] , Cheng LWD (O(K3N))
[Cheng and Hüllermeier, 2013], Zhou RF (O(K2N2)) [Zhou and Qiu, 2016]

Kendall’s τ coefficient corresponds to a rescaling of Kendall’s tau distance dτ between [-1,1]
(so the closer from 1 is the better)
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Extension to partial and incomplete rankings

Different types of rankings:
▶ Full: a1 ≻ a2 ≻ · · · ≻ aK
▶ Partial: a1, .., ak1 ≻ · · · ≻ akr−1+1, .., akr with

∑r
i=1 ki = K

▶ Incomplete: a1 ≻ · · · ≻ ak with k < K

Can we extend our approach to take as input these types of
rankings?

▶ Hamming: absolute information =⇒ No
▶ Kemeny: relative information =⇒ Yes
▶ Lehmer: both =⇒ Yes for partial, no for incomplete

Extending our approach to predict other types of rankings is
mathematically muchmore challenging.
[Fagin et al., 2004] propose an extension of Kendall’s tau on partial rankings, which can be
written as∆(σ, σ′) = ∥ϕ(σ)− ϕ(σ′)∥2F , but the consistency will be lost.
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Conclusion

▶ Flexible methods to optimize various ranking losses

▶ Statistical and Algorithmic analysis: Optimizing ’good’ losses
has a price.

▶ Possible extensions to predict partial / incomplete ranking

▶ Code/datasets available: https://github.com/akorba/
Structured_Approach_Label_Ranking
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Pre-image for the Kemeny embedding

To encode the transitivity constraint we introduce
ϕ′
σ = (ϕ′

σ)i,j ∈ RK(K−1) defined by
(ϕ′

σ)i,j = (ϕσ)i,j if 1 ≤ i < j ≤ K and (ϕ′
σ)i,j = −(ϕσ)i,j else

then the problem becomes.

ϕ̂σ = argmin
ϕσ

′

∑
1≤i,j≤K

ĝ(x)i,j(ϕ
′
σ)i,j ,

s.c.


(ϕ′

σ)i,j ∈ {−1, 1} ∀ i, j

(ϕ′
σ)i,j + (ϕ′

σ)j,i = 0 ∀ i, j

−1 ≤ (ϕ′
σ)i,j + (ϕ′

σ)j,k + (ϕ′
σ)k,i ≤ 1 ∀ i, j, k s.t. i ̸= j ̸= k.

Minimal feedback Arc Set problem→ NP-Hard
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Pre-image for the Hamming embedding

Enforce the constraints of Hamming representations

ϕ̂σ = argmax
ϕσ

∑
1≤i,j≤K

ĝ(x)i,j(ϕσ)i,j ,

s.c

{
(ϕσ)i,j ∈ {0, 1} ∀ i, j∑

i(ϕσ)i,j =
∑

j(ϕσ)i,j = 1 ∀ i, j ,

=⇒ Bipartite graphmatching problem.

Solved inO(K3)with the Hungarian Algorithm.
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