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Quantization problem

Problem : approximate a target distribution π ∈ P(Rd ) by a
finite set of n points x1, . . . , xn, e.g. to compute functionals∫
Rd f (x)dπ(x).

The quality of the set can be measured by the integral
approximation error:

err(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (xi)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ .
Several approaches, among which :
I MCMC methods : generate a Markov chain whose law

converges to π, err(x1, . . . , xn) = O(n−1/2)
[Łatuszyński et al., 2013]

I deterministic particle systems, err(x1, . . . , xn)?
3/ 45



Motivation

(a) SVGD Gaussian (b) NSVGD Laplace

(c) MMD-lbfgs (d) i.i.d.

Figure: (a)-(c) Final states of the algorithms for 1024 particles, after 1e4
iterations. Ring structures tend to appear with the Gaussian kernel. The
kernel bandwidth for all algorithm is set to 1. 4/ 45



Sampling as optimization over distributions
3 algorithms/particle systems at study:
I Stein Variational Gradient Descent [Liu and Wang, 2016]

I Maximum Mean Discrepancy Descent [Arbel et al., 2019]

I Kernel Stein Discrepancy Descent [Korba et al., 2021]

These particle systems are designed to minimize a loss.

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional and F "a loss".

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The differential of µ 7→ F(µ) evaluated at µ ∈ P(Rd ) is the
unique function ∂F(µ)

∂µ : Rd → R s. t. for any µ, ν ∈ P(Rd ),
ν − µ ∈ P(Rd ):

lim
ε→0

1
ε

(F(µ+ ε(ν − µ))−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dν − dµ)(x).

Then µ : [0,∞]→ P2(Rd ), t 7→ µt satisfies a Wasserstein
gradient flow of F if distributionnally:

∂µt

∂t
=∇ ·

(
µt∇W2F(µt )

)
,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein

gradient of F .
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Particle system approximating the WGF
Euler time-discretization : Starting from µ0,

µl+1 =
(
I − γ∇W2F(µl)

)
#
µl

which corresponds in Rd to:

Xl+1 = Xl − γ∇W2F(µl)(Xl) ∼ µl+1, X0 ∼ µ0.

Space discretization/particle system : Since µl is unknown,
introduce a particle system X 1, . . . ,X n where µl is replaced by
µ̂l = 1

n
∑n

i=1 δX i
l
:

X i
l+1 = X i

l − γ∇W2F(µ̂l)(X i
l ) for i = 1, . . . ,n,

X 1
0 , . . . ,X

n
0 ∼ µ0.

Question : how close is µ̂l to π at stationarity?
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel, e.g.

I the Gaussian kernel k(x , x ′) = exp
(
−‖x−x ′‖2

h

)
I the Laplace kernel k(x , x ′) = exp

(
−‖x−x ′‖

h

)
I the inverse multiquadratic kernel

k(x , x ′) = (c + ‖x − x ′‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}

I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .

I It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk .

9/ 45



Maximum Mean Discrepancy [Gretton et al., 2012]

Let µ ∈ P(Rd ). If
∫ √

k(x , x)dµ(x) <∞, then the kernel mean
embedding mµ =

∫
k(x , .)dµ(x) ∈ Hk .

If the map m : P(Rd )→ Hk , µ 7→ mµ is injective, it defines a
distance on P(Rd ) called the Maximum Mean Discrepancy
(MMD):

MMD2(µ, π) = sup
f∈Hk ,‖f‖Hk≤1

∣∣∣∣∫ fdµ−
∫

fdπ
∣∣∣∣2

= ‖mµ −mπ‖2Hk

=

∫∫
Rd

k(x , y)dµ(x)dµ(y) +

∫∫
Rd

k(x , y)dπ(x)dπ(y)

− 2
∫∫

Rd
k(x , y)dµ(x)dπ(y),

by the reproducing property 〈f , k(x , .)〉Hk = f (x) for f ∈ Hk .

10/ 45



Maximum Mean Discrepancy - remarks

I The MMD writes as a sum of integrals, hence it can be
estimated as soon as one has access to samples of µ and
π,

I It enables to bound the integral approximation error for
functions in the RKHS, since by the reproducing property
and Cauchy-Schwartz:∣∣∣∣∫

Rd
f (x)dπ(x)−

∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

If one does not have access to samples of π but only to its
score, it is still possible to compute the KSD. For µ, π ∈ P(Rd ),
the KSD of µ relative to π is defined by

KSD2(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )1

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

1e.g. : k(x , y) = exp
(
−‖x − y‖2/h

) 12/ 45



KSD vs MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity [Oates et al., 2017]

∫
Rd

kπ(x , .)dπ(x) = 0.

Consequently, KSD is an MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)
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KSD as kernelized Fisher Divergence

Fisher Divergence:

FD2(µ|π) =
∥∥∥∇ log

(µ
π

)∥∥∥2

L2(µ)
=

∫
‖∇ log

(µ
π

(x)
)
‖2dµ(x)

"Kernelized" with k :

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫
∇ log

(µ
π

)
(x)k(x , y)∇ log

(µ
π

)
(y)dµ(x)dµ(y)

where Sµ,k : L2(µ)→ Hk , f 7→
∫

k(x , .)f (x)dµ(x).

=⇒ minimizing the KSD is close in spirit to score-matching
[Hyvärinen and Dayan, 2005].
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MMD and KSD Descent[Arbel et al., 2019, Korba et al., 2021]

Recall that we want to study particle systems

X i
l+1 = X i

l − γ∇W2F(µ̂l )(X i
l ) for i = 1, . . . ,n,

where µ̂l = 1/n
∑n

i=1 δX i
l

and F(µ) = D(µ|π).

For discrete measures µ = 1
n

∑n
i=1 δX i , the MMD/KSD are well

defined, hence we let F (X 1, . . . ,X n) := F(µ).

I If D is the MMD, the gradient of F is readily obtained as

∇x i F (X 1, . . . ,X N) =
1
N

N∑
j=1

∇2k(X i ,X j )−
∫
∇2k(X i , x)dπ(x).

I In contrast, if D is the KSD,

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2kπ(X i ,X j ).

MMD/KSD Descent: at each time l ≥ 0, for any i = 1, . . . ,n:

X i
l+1 = X i

l − γ∇x i F (X 1
l , . . . ,X

n
l ).
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Stein Variational Gradient Descent (SVGD) performs gradient
descent in P(Rd ) of the Kullback-Leibler (KL) divergence :

KL(µ|π) =

{ ∫
Rd log

(µ
π (x)

)
dµ(x) if µ� π

+∞ otherwise.

where the (W2) gradient is smoothed through the kernel integral
operator.

It corresponds to an Euler discretization of the gradient flow of
the KL under a metric depending on k [Duncan et al., 2019]:

W 2
k (µ0, µ1) = inf

µ,v

{∫ 1

0
‖vt (x)‖2Hd

k
dt(x) :

∂µt

∂t
=∇ · (µtvt )

}
.
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Fix a reproducing kernel k . In continuous time, SVGD flow is
defined by the continuity equation

∂µt

∂t
+∇ · (µtvµt ) = 0, vµt = k ? (µt∇ log π)−∇k ? µt ,

i.e. vµt = Sµt ,k∇ log
(µ
π

)
where

I ∇ log
(µ
π

)
= ∇W2 KL(µ|π),

I Sµ,k : L2(µ)→ Hk , f 7→
∫

k(x , .)f (x)dµ(x).

Let γ > 0 be a fixed step-size. Starting from x1
0 , . . . , x

n
0 ∼ µ0,

SVGD algorithm updates the n particles as follows at each
iteration :

x i
l+1 = x i

l −
γ

n

n∑
j=1

[
−∇ log π(x j

l )k(x i
l , x

j
l ) +∇x j

l
k(x i

l , x
j
l )
]
,

for any i = 1, . . . ,n.
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Kernel Herding (KH) and Stein Points (SP)
They attempt to solve MMD or KSD quantization in a greedy manner,
i.e. by sequentially constructing µns, adding one new particle at each
iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD [Chen et al., 2012]:

xn+1 = argmax
x∈Rd

〈wn, k(x , .)〉Hk

wn+1 = wn + mπ − k(xn+1, .)

citebach2012equivalence obtain a linear rate of convergence O(e−bn)

I if the mean embedding mπ = Ex∼π[k(x , .)] lies in the relative
interior of the marginal polytope convexhull(

{
k(x , .), x ∈ Rd

}
)

with distance b away from the boundary
I however for infinite-dimensional kernels b = 0 and the rate does

not hold.

Stein Points for the KSD [Chen et al., 2018] greedily minimizes the KSD
similarly. The authors establish a O((log(n)/n)

1
2 ) rate, which seem

slower than their empirical observations. 19/ 45



Contributions of our work

I We investigate the quantization properties of particle
systems derived from WGF, assuming the particles have
attained a minimizer of their discrepancy objective.

I Furthermore, as these algorithms might be difficult to tune
to guarantee particles convergence, we also discuss
practical improvements.
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Normalized SVGD

Problem: vµt is small where µt is small. This creates
convergence issues, especially if the initial distribution, µ0, is
spread in space.

We introduce a normalized SVGD (NSVGD) reweighing the
kernel by a kernel density estimate of µ.

Consider a translation-invariant kernel parametrized by a
bandwidth τ > 0: ητ (x − y) = η(x−y

τ ) with η ∈ C1(Rd \ {0}),
and µ a (potentially discrete) distribution.

We now introduce a density-dependent kernel:

Kµ(x , y) = ητ (x − y)µh(x)−
1
2µh(y)−

1
2 (1)

where µh denotes the smoothed density µ ? ηh.
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Normalised SVGD (NSVGD)
In the discrete setting where µ = 1/n

∑n
i=1 δxi , we can write the

NSVGD vector field ruling the particle system as

vµ(x) = −1
n

n∑
j=1

(
µh(x)µh(x j )

)− 1
2 w j (x), (2)

where µh(x) = 1
n

n∑
i=1

ηh(x − xi ), and

w j (x) =∇ητ (x − x j )− ητ (x − x j )∇ log π(x j ) (3)

+
ητ (x − x j )

2µh(x j )

1
n

n∑
m=1

∇ηh(x j − xm). (4)

I the term µh(.)µh(x j ) acts as a preconditioner,
I (3) is the vector field of the original SVGD algorithm
I (4) can be understood as a weighted repulsive term

The preconditioner accelerates or slows down the dynamic depending on the
density regions and makes NSVGD less sensitive to the choice of the
step-size than original SVGD. 23/ 45
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We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2) [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We first consider the following assumption on the Fourier
transform of kernel k .

Assumption A1: Let k(x , y) = η(x − y) a translation invariant
kernel on Rd . Assume that η ∈ C(Rd ) ∩ L1(Rd ), and that its
Fourier transform verifies : ∃C1,d ≥ 0 such that
(1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1 for any ξ ∈ Rd .

(Satisfied for the Gaussian and Laplace kernel.)
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First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) π is the
Lebesgue measure or (ii) a non-negative normalized Borel
measure on [0,1]d . Then, there exists a constant Cd , such that
for all n ≥ 2,
I if (i): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

I if (ii): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.
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Proof: Denote by Hk the RKHS of k , we have:

Hk =
{

f ∈ C(Rd ) ∩ L2(Rd ), ‖f‖2
Hk

:=
1

(2π)d/2

∫
|η̂(ξ)|−1 |̂f (ξ)|2dξ <∞

}
.

We also have that the Hd = W d,2(Rd ) Sobolev norm of f is

‖f‖2
Hd =

∫
(1 + |ξ|2)d/2 |̂f (ξ)|2dξ.

Moreover, A1 =⇒ ∃C1,d s.t. ∀ξ, (1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1. Hence,
Hk continuously embeds into Hd and for any f ∈ Hk , ‖f‖Hd ≤ ‖f‖Hk .

We then use a Koksma-Hlawka inequality [Aistleitner and Dick, 2015](Th1):∣∣∣∣∣
∫

[0,1]d
f (x)dπ(x)− 1

n

n∑
i=1

f (xi )

∣∣∣∣∣ ≤ D(Xn, π)V (f ),

I D(Xn, π) = 2d supI=Πn
i=1[ai ,bi ]

|π(I)−µn(I)| is the discrepancy of the
point set Xn, can be bounded by [Aistleitner and Dick, 2015](Cor 2)

I V (f ) =
∑
α : |α|≤d 2d−|α|‖∂αf‖L1(π) is the Hardy & Krause

variation of f which can be bounded by 4d‖f‖Hd .

By the definition of MMD , we have that MMD(µn, π) ≤ 4dD(Xn, π).
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Result for non compactly supported distributions π

Proposition: Suppose A1 holds and that k is bounded.
Assume π is a light-tailed distribution on Rd (i.e. which has a
thinner tail than an exponential distribution). Then, for n ≥ 2
there exist points x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.

Proof: Decompose :

MMD(π, µn) ≤ MMD(π, µ) + MMD(µ, µn),

and choose µ compactly supported on An = [− log n, log n]d .
As π is light-tailed, µ is close to π in L1 distance, and we first get
MMD(π, µ) ≤ C/n.
Then, we can take a discrete µn supported on An and bound MMD(µ, µn)
using similar arguments as the previous Theorem.
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Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that π ∝ exp(−U)
where U ∈ C∞(Rd ) is such that U(x) > c1|x | for large enough x ,
there exists polynomial f with degree m such that ‖∂αU(x)‖ ≤ f (x)
for all 1 ≤ |α| ≤ d . Then there exist points x1, ..., xn such that

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

We note that for Gaussian mixtures π, U satisfies the conditions of
the theorem.

Proof: The proof relies on bounding the first and last term of the KSD(µn, π)
as the cross terms can be upper bounded by the former ones by a simple
computation.
Then, the two remaining terms in the KSD(µn, π) are treated independently
as two MMD(µn, π), with k1(x , y) = s(x)T s(y)k(x , y) and
k2(x , y) =∇ ·x ∇y k(x , y).
The second one is controlled by our Proposition on MMD’s for bounded
kernels. The first one relies on controlling ∇ log π Sobolev norms and our
Proposition for MMD.
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Algorithms

we investigate numerically the quantization properties of :
I SVGD
I Normalized SVGD
I MMD descent
I KSD Descent
I Kernel Herding (KH)
I Stein points (SP)

Hyperparameters:
I kernel: Gaussian, Laplace...
I bandwith of the kernel
I step-size
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Normalised SVGD
We found that
I Laplace kernel leads to more regular configurations than

Gaussian kernel
I NSVGD reaches convergences much faster than SVGD

Figure: Example of a 2D Gaussian mixture. The configuration of 128
particles are plotted in green at initialization, and in different colors after
convergence. The light grey curves correspond to their trajectories. From left
to right: SVGD with Gaussian and Laplace kernel, γ=0.5, after 1000 iters;
NSVGD with Laplace kernel and γ=0.1, after 30 iters.
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Figure: Convergence speed of SVGD (tuned time-step or AdaGrad)
and Normalized SVGD (fixed time-step) on a 2D mixture of
Gaussians, with 128 particles.
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Final states for a Gaussian target

(a) SVGD Gaussian (b) NSVGD Laplace

(c) MMD-lbfgs (d) i.i.d.

Figure: (a)-(c) Final states of the algorithms for 1024 particles, after
1e4 iterations. Ring structures tend to appear with the Gaussian
kernel. The kernel bandwidth for all algorithm is set to 1. 34/ 45



Quantization rates of the algorithms, π = N (0, 1/dId)

2D 3D 4D

Figure: Each point is the result of averaging 3 runs of each algorithm run for
1e4 iterations, where the initial particles are i.i.d. samples of π. MMD/KSD
Descent use bandwidth 1; SVGD use Laplace kernel with median trick;
NSVGD use Laplace kernel with adaptive choice of bandwidth. Stein points
use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was too slow.
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d Eval. SVGD NSVGD MMD-lbfgs KSD-lbfgs KH SP

2 KSD -0.98 -0.94 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.00 -1.60 -1.54 -0.93 -0.77

3 KSD -0.91 -0.81 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -0.91 -1.51 -1.49 -0.92 -0.75

4 KSD -0.91 -0.81 -1.35 -1.39 -0.89 –
MMD -0.94 -0.89 -1.46 -1.40 -0.95 –

8 KSD -0.84 -0.80 -1.14 -1.16 – –
MMD -0.77 -0.90 -1.25 -1.13 – –

Table: Slopes for the quantization measured in KSD/MMD, for the
different algorithms at study and several dimensions d .

Some remarks:
I The slopes remain much steeper than the Monte Carlo

rate, even when the dimension increases
I MMD/KSD Descent performs the best, but they are

designed to minimize the MMD/KSD
I Their slopes are better than our theoretical upper bounds
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Robustness to evaluation discrepancy

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

I if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

I likely reason : SVGD samples are more regular, while samples of MMD
and KSD with Gaussian kernel have internal structures which can affect
the discrepancy at lower bandwidths. 37/ 45



Conclusion

I We highlighted both theoretically and numerically that
interacting particle systems derived from Wasserstein (and
related) gradient flows, such as SVGD, MMD and KSD
descent create "super samples"

I we proposed a normalized version of SVGD which
accelerates the dynamics and observed that Laplace
kernels produce more regular sample point distributions.

Open questions:
I proving quantization rates for SVGD
I improve our bounds

Thank you !
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L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xl+1 = xl − γnB−1
l ∇F (xl ) := xl + γldl (5)

where B−1
l is a p.s.d. matrix approximating the inverse Hessian at xl .

Step1. (requires ∇F ) It computes a cheap version of dl based on
BFGS recursion:

B−1
l+1 =

(
I −

∆xlyT
l

yT
l ∆xl

)
B−1

l

(
I −

yl ∆xT
l

yT
l ∆xl

)
+

∆xl ∆xT
l

yT
l ∆xl

where ∆xl = xl+1 − xl

yl = ∇F (xl+1)−∇F (xl )

Step2. (requires F and ∇F ) A line-search is performed to find the
best step-size in (5) :

F (xl + γldl ) ≤ F (xl ) + c1γl∇F (xl )
T dl

∇F (xl + γldl )
T dl ≥ c2∇F (xl )

T dl
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