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Problem : sample from a target distribution f over Rd , whose
density is typically known only up to a normalization constant,
to compute quantities of the form

∫
Rd gf .

Main motivation = Bayesian inference:
I Let D = (xi , yi)

m
i=1 a labelled dataset of i.i.d. points.

I Assume an underlying model parametrized by z ∈ Rd , e.g.

y = f (x , z) + ε

(p(y |x , z) gaussian)

I Compute the likelihood:

p(D|z) =
m∏

i=1

p(yi |xi , z)

I Assume a prior distribution on the parameter z ∼ p.
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Bayes’ rule : f (z) := p(z|D) = p(D|z)p(z)
C

, C =

∫
Rd

p(D|z)p(z)dz.

f is known up to a constant since C is intractable.

How to sample from f then? e.g. to compute the "Bayesian
model average":

p(y |x ,D) =
∫
Rd

p(y |x , z)df (z)

1. MCMC methods (Markov Chain Monte Carlo): generate a
markov chain (Xt)t≥0 whose law qt converges to f as
t →∞

2. Variational Inference

f̃ = argmin
q∈Q

KL(q|f )

where Q is a parametric family of probability distributions
3. Importance sampling : sample from a simple proposal

distribution q dominating f and reweight
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Naive Importance Sampling

Let X a random variable with distribution q dominating f . The
basic idea of IS is to re-weight g(X ) by the importance weight
W (X ) = f (X )/q(X ).

Since E[W (X )g(X )] =
∫

gf and using i.i.d. samples
X1, . . . ,Xn ∼ q , one can build an (unbiased) IS estimator of∫

gf as∫
gf ≈ 1

n

n∑
k=1

f (Xk )

q(Xk )
g(Xk ) =

1
n

n∑
k=1

W (Xk )g(Xk ).

Remark: if f is known up to a normalization constant, use
normalized weights

∑n
k=1 W (Xk )g(Xk )/

∑n
k=1 W (Xk ).
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Naive importance sampling
Problem: if q is far from the target f , the importance weights
may have a large variance (hence the IS estimator as well) !

6/ 32



Contributions of the paper

Approach: Adaptive Importance Sampling (AIS)

Idea: use a sequence of proposals (qk )k≥0, learning from the
past actions and data, to approximate f .

We propose a new non parametric AIS method, that
I (i) introduces a new regularization strategy which raises

adaptively the importance sampling weights to a certain
power ranging from 0 to 1

I (ii) uses a mixture between a kernel density estimate of the
target and a safe reference density as proposal.
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Regularized Importance Sampling

Idea: use regularized weights of the form W (X )η, η ∈ (0,1).

Lemma: Suppose that q dominates f and define
W (X ) = f (X )/q(X ) with X having density q. For all η ∈ (0,1]:

E[W (X )η] ≤ 1 and Var[W (X )η] ≤ Var[W (X )].

Proof:
I Jensen’s inequality: E[W (X )η] ≤ E[W (X )]η = 1 since

f � q.
I we have, since |wη − 1| ≤ |w − 1| for all w ≥ 0:

Var[W (X )η] ≤ Var[W (X )η] + (E[W (X )η]− 1)2

= E[(W (X )η − 1)2] ≤ E[(W (X )− 1)2].
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Regularized Importance Sampling
Remarks:
I choosing η enables to balance bias and variance !
I E[W (X )ηg(X )] =

∫
f ηq1−ηg

Hence, regularized IS "moves" from the initial density q (η = 0)
to the target density f ηq1−η (=f if η = 1).

Additional Remarks:
I different from simulated annealing (sequence of tempered

posteriors) : f → f η

=⇒ would yield IS weights of the form f η/q instead of
(f/q)η

I can be seen as (entropic) mirror descent with step-size ηk :

qk+1 ∝ q1−ηk
k f ηk
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Entropic mirror descent
Consider the sampling/variational inference objective:

q? = arginf
q∈Q

KL(q|f ), KL(q|f ) =
∫
Rd

log
(q

f
(x)
)

dq(x)

Entropic mirror descent applied to this objective can be written
at each time k ≥ 0:

q∗k+1 = argmin
q∈Q

ηk

∫
Rd

log

(
q∗k
f
(x)
)

d(q − q∗k )(x)︸ ︷︷ ︸
〈∇KL(q∗

k |f ),q−q∗
k 〉

+KL(q|q∗k ). (1)

Differentiate (1) w.r.t. q yields:

ηk log

(
q∗k
f

)
+ log

(
q∗k+1

q∗k

)
= 0

Assuming Q = P(Rd), (1) is minimized for:

q∗k+1(x) =
f (x)ηk q∗k (x)

1−ηk∫
Rd f (x ′)ηk q∗k (x

′)1−ηk dx ′
∝ f ηk (x)q∗(1−ηk )

k (x).
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Fast convergence of Entropic Mirror Descent (EMD)
The previous scheme is attractive thanks to its fast
convergence.

Lemma
Let (ηk )k≥1 valued in (0,1] and (q∗k )k≥1 be defined by EMD
starting from an initial probability density function q1. Then, for
all n ∈ N∗,∫

Rd
|f (x)− q∗n+1(x)|dx ≤

√
2KL(f |q1)

n∏
k=1

(1− ηk )
1/2,

I ηk = c/k with 0 < c < 1 yields the rate O(n−c/2)

I ηk = c/kβ with 0 < c < 1 and β ∈ [0,1) yields the rate
O(exp

(
−Cn(1−β)

)
) for some C > 0

I (Rk, ongoing work): linear rates in KL objective for
constant step-size.
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EMD in practice

Recall that EMD can be written at each time as:

q∗k+1 ∝ f ηk q∗(1−ηk )
k . (2)

Unfortunately, running iteration (2) in practice is not feasible:

I each iteration depends on the whole density f (not some
evaluations of f ), maybe unknown in many applications

I (ii) even if f is known, computing q∗k+1(x) for x ∈ Rd would
still be difficult due to the normalization following (2) which
ensures q∗k+1 is a probability density function.

=⇒ we propose an implementable scheme approaching (2).
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Safe and Regularized Adaptive Importance Sampling
We propose an Adaptive Importance Sampling (AIS) method
which uses a sequence of proposals (qk )k≥0.

More specifically, as in [Delyon and Portier, 2021] we choose:

qk = (1− λk )fk + λkq0, ∀k ≥ 1

i.e. a mixture between
I a safe density q0 (with heavy tails compared to f ) ,

preventing too small values of qk and high variance of IS
weights,

I a KDE estimate fk of the target f , accelerating the
convergence to f

fk (x) =
k∑

j=1

W (ηj )

k ,j Khk (x − Xj), ∀x ∈ Rd ,

where for all j = 1, . . . , k :

W (ηj )

k ,j ∝ W ηj
j =

(
f (Xj)

qj−1(Xj)

)ηj

,
k∑

j=1

W (ηj )

k ,j = 1.
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Safe and Regularized Adaptive Importance sampling
(SRAIS) algorithm

Inputs: The safe density q0, the sequences of bandwidths
(hk )k=1,...,n, mixture weights (λk )k=1,...,n, regularization param-
eters (ηk )k=1,...,n.

For k = 0,1, . . . ,n − 1:
1. Generate Xk+1 ∼ qk .

2. Compute (a) Wk+1 = f (Xk+1)/qk (Xk+1)

(b) (W (ηj )

k+1,j)1≤j≤k+1.

3. Return qk+1 = (1− λk+1)fk+1 + λk+1q0 where

fk+1 =
∑k+1

j=1 W (ηj )

k+1,jKhk+1(· − Xj).

Remark: this algorithm can be used with a batch of mk particles at
each k . 16/ 32



SRAIS as stochastic approximation of mirror descent

Notice that

fk (x) =
k∑

j=1

W (ηj )

k ,j Khk (x − Xj)

is a stochastic approximation of the mirror descent iteration
q∗k+1 ∝ (q∗k )

1−ηk f ηk . Indeed,

EXj∼qj−1 [W
ηj
j Khk (x − Xj)] = (f ηj q1−ηj

j−1 ? Khk )(x),

which approximates f ηj q1−ηj
j−1 when the bandwidth hk is small.
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Convergence of the scheme?

Does the kernel density estimate (KDE) fk converge to the
target distribution f?

Recall the hyperparameters of the algorithm :
I the safe density q0 in the proposal (mixture between q0

and fk )

I mixture weights (λk )k≥0

I KDE bandwidths (hk )k≥0

I regularization parameters (ηk )k≥0

19/ 32



Assumptions
(A1)

1. The sequence (λk )k≥1 is valued in (0,1], nonincreasing, and
limk→∞ λk = 0 and limk→∞ log(k)/(kλk ) = 0.

2. The sequence (hk )k≥1 is valued in R+, nonincreasing, and
limk→∞ hk = 0 and limk→∞ log(k)/(khd

kλk ) = 0.

3. The sequence (ηk )k≥1 is valued in (0,1], and limk→∞ ηk = 1,
limk→∞(1− ηk ) log(hk ) = 0 and limk→∞(1− ηk ) log(λk−1) = 0.

(A2) The density q0 is bounded and there exists c > 0 such that for
all x ∈ Rd , q0(x) ≥ cf (x).

(A3) The function f is nonnegative, bounded by Bf ≥ 0 and is
lf -Lipschitz.

(A4) The kernel K is bounded by K∞ ≥ 0 and is LK -Lipschitz with
LK > 0. Moreover,

∫
K (u)du = 1,

∫
‖u‖K (u)du <∞,∫

K 1/2(u)d(u) <∞ and
∫
‖u‖K (u)1/2du <∞.

20/ 32
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Uniform convergence of the scheme
Proposition: Assume A1-A4. Then, for any r > 0:

sup
‖x‖≤k r

|fk (x)− f (x)| → 0 as k →∞ a.s.

Proof: fk = Nk/Dk where

Nk (x) =
1
k

k∑
j=1

W ηj
j Khk (x − Xj), Dk =

1
k

k∑
j=1

W ηj
j .

Nk − f =
1
k

k∑
j=1

{
W ηj

j Khk (x − Xj)− {f ηj q1−ηj
j−1 } ? Khk (x)

}
︸ ︷︷ ︸

(1)

+


1

k

k∑
j=1

(f ηj q1−ηj
j−1 − f )

 ? Khn

︸ ︷︷ ︸
(2)

+
{

f ? Khk − f
}︸ ︷︷ ︸

(3)

.

(1): avg of martingale increments, (2): regularization bias (→0 as
ηk → 1), (3) KDE bias (→ 0 as hk → 0).
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Adaptive Choice of Regularization (RAR)
Our conditions for uniform convergence require that the
sequence (ηk )k≥1 converges to 1. We propose an adaptive way
to construct it.

Idea: Draw mk i.i.d samples Xk ,1, . . . ,Xk ,mk from qk−1.

Let P =

mk∑
l=1

Wk ,lδXk,l and Q =

mk∑
l=1

1
mk

δXk,l

the reweighted and uniform distribution on the particles.
=⇒ If qk−1 = f , IS weights = 1 and P = Q.
=⇒ penalize the divergence between P and Q!

We propose to use Renyi’s α-divergences and set:

ηk ,α = 1− Dα(P||Q)

log(mk )
, Dα(P||Q) =

1
α− 1

log

( mk∑
`=1

Wα
k ,`m

α−1
k

)
.
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RAR

ηk ,α = 1− Dα(P||Q)

log(mk )
, Dα(P||Q) =

1
α− 1

log

( mk∑
`=1

Wα
k ,`m

α−1
k

)
.

(3)

Proposition: Let α ∈ [0,1] and let (ηk ,α)k≥1 be the sequence
defined by (3) for all k ≥ 1. Then, we have:

1. The sequence (ηk ,α)k≥1 is valued in [0,1], with ηk ,α = 1 iff
P = Q;

2. 0 ≤ ηk ,1 ≤ ηk ,α ≤ 1;

3. Further assume that (qk )k≥1 is a sequence of probability
density functions s.t. limk→∞ |qk (x)− f (x)| = 0 almost
everywhere and that mk = m for all k ≥ 1 (fixed batch
size). Then, limk→∞ ηk ,α = 1 in L1.
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Renyi’s α-divergences
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Toy Experiments
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Figure: Logarithm of the average squared error for SRAIS for constant
values of η or Adaptive η, over 50 replicates. 4× 104 particles sampled from
initial density, then mk = 18× 103 particles from qk at each k ≥ 1.

Different target densities (φΣ = N (0d ,Σ)), initial densities have different
means/variance than the target:

I "Cold Start" f1(x) = φΣ(x − 51d/
√

d), Σ = (0.16/d)Id

I "Gaussian Mixture"
f2(x) = 0.5φΣ(x − 1d/(2

√
d)) + 0.5φΣ(x + 1d/(2

√
d))

I "Anisotropic Gaussian Mixture"
f3(x) = 0.25φV (x − 1d/(2

√
d)) + 0.75φV (x + 1d/(2

√
d)),

V = (.4/
√

d)2diag(10, 1, . . . , 1) 27/ 32



Evolution of Adaptive Regularization

10000
46000

82000

118000

154000

190000

226000

262000

298000

334000

370000

Sample size

0.2

0.4

0.6

0.8

1.0

η k

Evolution of (ηk)k≥1

on the Cold Start (d=16)

10000
46000

82000

118000

154000

190000

226000

262000

298000

334000

370000

Sample size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η k

Evolution of (ηk)k≥1

on the Gaussian mixture (d=16)

10000
46000

82000

118000

154000

190000

226000

262000

298000

334000

370000

Sample size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η k

Evolution of (ηk)k≥1

on the Anisotropic Gaussian mixture (d=16)

Figure: Boxplot of the values of (ηk,α)k≥1 obtained from RAR
(Adaptive η), with α = 0.5.

I at the beginning of the algorithm when the policy is poor,
the value of ηk is automatically set to a small value (leading
to a uniformization of the weights)

I when the policy becomes better the value of ηk ,α
converges to 1.
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Bayesian Logistic Regression (Waveform dataset,
5000 datapoints in d = 22)

Figure: Left plot: Average accuracy over 100 trials of different learning
policies (ηk,α)k≥1 for Bayesian Logistic Regression on the Waveform dataset.
Right plot: Averaged values of the learning policy (ηk,α)k≥1 associated to
each choice of α.

I a proper tuning of the parameter α allows us to outperform (ηk )k≥1

constant and equal to 1
I the case α = 0.2 yielding the best results here overall in terms of speed

and accuracy
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Conclusion

Contributions:
I We proposed a new algorithm for Adaptive Importance

Sampling, that regularizes the importance weights by
raising them to a certain power

I This algorithm is related to mirror descent on the space of
probability distributions

I It enjoys a uniform convergence guarantee under mild
assumptions on the target, safe density, and
hyperparameters

I It outperforms numerically constant values of η
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Conclusion
Future work:
I Non-asymptotic analysis of the scheme

I Adaptive schedules for other hyperparameters
I Replace KDE by a more scalable approximate ? e.g.

normalizing flows [Papamakarios et al., 2021]:
I generative models that transform a simple q ∈ P(Rd ) into

f̃ ∈ P(Rd ) (f̃ ≈ f )
I through a sequence of invertible transformations:

f̃ = G#q = (g1 ◦ . . . gn)#q, gi : Rd → Rd

I =⇒ sampling and evaluating the density are efficient

f̃ (y) = q(z0)
n∏

i=1

∣∣∣∣det
(

∂gi

∂zi−1

)∣∣∣∣−1

, y , z0 ∈ Rd

where ∂g
∂zi−1

is the Jacobian matrix of gi .

Thank you !
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