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Problem : sample from a target distribution f over R?, whose
density is typically known only up to a normalization constant,
to compute quantities of the form [, gf.

Main motivation = Bayesian inference:
> Let D = (x;,y;)" alabelled dataset of i.i.d. points.

» Assume an underlying model parametrized by z € RY, e.g.
y=1f(x,2)+¢€

(p(y|x, z) gaussian)
» Compute the likelihood:

m

p(D|2) =[] p(yilxi, 2)
i=1

» Assume a prior distribution on the parameter z ~ p.



Bayes' rule : f(z) := p(z|D) = (D|ZC) , C= / p(D|z)p(z)dz

f is known up to a constant since C is intractable.

How to sample from f then? e.g. to compute the "Bayesian
model average":
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Bayes’ rule : f(z) := p(z|D) = (D|ZC) ,C= / p(D|z)p(z)dz.

f is known up to a constant since C is intractable.

How to sample from f then? e.g. to compute the "Bayesian
model average":

pyx.D) = | plylx.2)d(2

1. MCMC methods (Markov Chain Monte Carlo): generate a

markov chain (X;);>o whose law g; converges to f as

t— o0
2. Variational Inference

f = argmin KL(q|f)
geQ

where Q is a parametric family of probability distributions
3. Importance sampling : sample from a simple proposal

distribution g dominating f and reweight
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Naive Importance Sampling

Let X a random variable with distribution g dominating 7. The
basic idea of IS is to re-weight g(X) by the importance weight

W(X) = f(X)/a(X).
Since E[W(X)g(X)] = | gf and using i.i.d. samples

Xi,...,Xn ~ @, one can build an (unbiased) IS estimator of
[ of as
[t~ 15" 109 g0 = 1S wixsn
Mo AXk) Yo k=1 it

Remark: if f is known up to a normalization constant, use
normalized weights >"¢_; W(Xk)9(Xk)/ > k—1 W(Xk).



Naive importance sampling

Problem: if g is far from the target f, the importance weights
may have a large variance (hence the IS estimator as well) !

The accuracy heavily depends on the choice of g
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Idea: use a sequence of proposals (gk)«>o, learning from the
past actions and data, to approximate f.



Contributions of the paper

Approach: Adaptive Importance Sampling (AIS)

Idea: use a sequence of proposals (gk)«>o, learning from the
past actions and data, to approximate f.
We propose a new non parametric AIS method, that

> (i) introduces a new regularization strategy which raises

adaptively the importance sampling weights to a certain
power ranging from 0 to 1

» (ii) uses a mixture between a kernel density estimate of the
target and a safe reference density as proposal.
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Regularized Importance Sampling

Idea: use regularized weights of the form W(X)", n € (0,1).

Lemma: Suppose that g dominates f and define
W(X) = f(X)/q(X) with X having density g. For all n € (0,1]:

E[W(X)"] <1 and Var[W(X)"] < Var[W(X)].

Proof:
» Jensen’s inequality: E[W(X)"] < E[W(X)]" = 1 since
f<aq.
» we have, since [w"7 — 1| < |w — 1| forall w > 0:

Var[W(X)"] < Var[W(X)"] + (E[W(X)"] — 1)
=E[(W(X)" - 1)?] < E[(W(X) — 1)7].



Regularized Importance Sampling
Remarks:
» choosing 1 enables to balance bias and variance !
> E[W(X)'g(X)] = [ 'q'"g

Hence, regularized IS "moves" from the initial density g (n = 0)
to the target density f7q'~" (=f if n = 1).



Regularized Importance Sampling
Remarks:
» choosing 1 enables to balance bias and variance !
> E[W(X)"g(X)] = [ f"q'"g

Hence, regularized IS "moves" from the initial density g (n = 0)
to the target density f7q'~" (=f if n = 1).

» different from simulated annealing (sequence of tempered
posteriors) : f — £

— would yield IS weights of the form "7 /q instead of

(f/q)"
> can be seen as (entropic) mirror descent with step-size 7y:

1—
Q1 o< qy KfK
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* . B q
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Consider the sampling/variational inference objective:
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Entropic mirror descent

Consider the sampling/variational inference objective:

R _ q
g' = arginf KL(@lf). KLl = [ 1og( () a0

Entropic mirror descent applied to this objective can be written
at each time k > O:

d |og(‘f?(x)) d(q - G)(x) + KL(qlgp). (1)

(VKL(gg|f),.9—a5)
Differentiate (1) w.r.t. g yields:

Qx i1\ _
) (%)
Assuming Q = P(RY), (1) is minimized for:

. f(X)"kQ( )1 1—
G () = Jga F(X")Mqp(x7) 1= dx! o fi(x )qk( ),

Qk1 = argmin 77k/
qeQ R




Fast convergence of Entropic Mirror Descent (EMD)
The previous scheme is attractive thanks to its fast
convergence.

Lemma

Let (nk)x>1 valued in (0,1] and (g;)x>1 be defined by EMD
starting from an initial probability density function q;. Then, for
all n € N*,

[, 1100 = Gha)0k < V2K [0 = 0" 2
k=1

> 1k = ¢/k with 0 < ¢ < 1 yields the rate O(n—¢/?)

> nx = c/kP with0 < ¢ < 1and g3 € [0, 1) yields the rate
O(exp(—Cn(1=9))) for some C > 0

» (Rk, ongoing work): linear rates in KL objective for
constant step-size.



EMD in practice

Recall that EMD can be written at each time as:
* f1lk #(1—=nx) o
Q41 X TTq, . (2)
Unfortunately, running iteration (2) in practice is not feasible:

» each iteration depends on the whole density f (not some
evaluations of f), maybe unknown in many applications

> (i) even if f is known, computing g 4(x) for x € RY would
still be difficult due to the normalization following (2) which
ensures gj_ 4 is a probability density function.



EMD in practice

Recall that EMD can be written at each time as:
* f1lk #(1—=nx) o
Q41 X TTq, . (2)
Unfortunately, running iteration (2) in practice is not feasible:

» each iteration depends on the whole density f (not some
evaluations of f), maybe unknown in many applications

> (i) even if f is known, computing g 4(x) for x € RY would
still be difficult due to the normalization following (2) which
ensures gj_ 4 is a probability density function.

= we propose an implementable scheme approaching (2).
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Safe and Regularized Adaptive Importance Sampling

We propose an Adaptive Importance Sampling (AlS) method
which uses a sequence of proposals (gk)x>0-

More specifically, as in we choose:
ak = (1 = M) + A\kQo,  Vk>1

i.e. a mixture between
» a safe density q, (with heavy tails compared to f) ,
preventing too small values of gx and high variance of IS
weights,
> a KDE estimate f; of the target f, accelerating the
convergence to f

k
ZW( Kn (X — X)), VxR,
Jj=1
where forallj=1,... k:
, k
() nj f(X/) K ()
W, o WP = ( <) YWy = 1
j=1




Safe and Regularized Adaptive Importance sampling
(SRAIS) algorithm

Inputs: The safe density qq, the sequences of bandwidths
(hk)k=1,...n, Mixture weights (Ax)k=1...n, regularization param-
eters (k)k=1,...n-

Fork=0,1,...,n—1:
1. Generate Xxi1 ~ Q-

2. Compute (@) Wi1 = f(Xit1)/Q(Xic+1)

(o) (W, JN<i<k+1-

3. Return gkr1 = (1 — A1) fes1 + Aky1Go Where

fk+1 = ;(:Jr11 WIE+1 /th+1( - )(j)

Remark: this algorithm can be used with a batch of my particles at
each k.



SRAIS as stochastic approximation of mirror descent

Notice that
f(x) = ZW("/ K, (X — X))

is a stochastic approximatlon of the mirror descent iteration
Giq o< (gi)' ™ f. Indeed,

EX/'qu—1 [ijmth(X - X)) = (fmqqu * Kh ) (X),

which approximates " q;;"f when the bandwidth hy is small.
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Convergence of the scheme?

Does the kernel density estimate (KDE) f, converge to the
target distribution f?

Recall the hyperparameters of the algorithm :

> the safe density qq in the proposal (mixture between qg
and fy)

> mixture weights (Ax)k>o0
» KDE bandwidths (hx)k>0

> regularization parameters (7x)k>0
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Assumptions
(A1)

1. The sequence (\)x>1 is valued in (0, 1], nonincreasing, and
limg_ 00 Ak = 0 and limy_, o, log(k)/(kAk) = 0.

2. The sequence (hy)x>1 is valued in R™, nonincreasing, and
limk_s00 Mk = 0 and limg_, , log(k)/(kh\¢) = 0.

3. The sequence (nx)k>1 is valued in (0, 1], and limg_,oc nk = 1,
Iimk_>00(1 — nk) |Og(hk) =0and Iimk_>oo(1 — nk) |Og()\k_1) =0.

(A2) The density qp is bounded and there exists ¢ > 0 such that for
all x € RY, go(x) > cf(x).

(A3) The function f is nonnegative, bounded by B > 0 and is
I-Lipschitz.

(A4) The kernel K is bounded by K., > 0 and is Lk-Lipschitz with
Lk > 0. Moreover, [ K(u)du =1, [ ||u]|K(u)du < oo,
[ K'2(u)d(u) < oo and [ ||ul|K(u)'/2du < co.



Uniform convergence of the scheme

Proposition: Assume A1-A4. Then, for any r > 0:

sup |f(x)—f(x)] -0 ask — oca.s.
llxll<k”

Proof: fx = Nk /Dy where

=

Ni(x kZW"’th(x X)), Dx= - Zm‘,

J=1 J=1
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Uniform convergence of the scheme

Proposition: Assume A1-A4. Then, for any r > O:

sup |fx(x) —f(x)] -0 ask — oca.s.
lIx[I<k"

Proof: fx = Nk /Dy where

Ni(x ZW"’th(x X)), Dx= - ZW"’
j 1

=

Ne— = Z{ W) K (X — X) {f"fq}:(’f}*th(x)}

1

k
1 .
+ EE:(f"/q;q”—f) o Kny ¢+ {F % Kn, —f}.
j=1 (3")

&)
(1): avg of martingale increments, (2): regularization bias (—0 as
nk — 1), (3) KDE bias (— 0 as hx — 0).
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Our conditions for uniform convergence require that the
sequence (7, )k>1 converges to 1. We propose an adaptive way
to construct it.
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Adaptive Choice of Regularization (RAR)

Our conditions for uniform convergence require that the
sequence (7, )k>1 converges to 1. We propose an adaptive way
to construct it.

s )

Idea: Draw my i.i.d samples Xk 1,5 Xk,m, from gx_;.

LetP = ZWkléxk,andQ Z 5Xk/

the rewelghted and uniform dlstrlbutlon on the particles.
— If gk_1 = f, IS weights =1 and P = Q.
— penalize the divergence between P and Q!

\. J

We propose to use Renyi’s a-divergences and set:

Da (||Q) g <Z Wz me- 1> |

~ log(my)

Do (P||Q) =

Nk,oo =



RAR

_ . Du(P|Q) _
Nk,a = 11— W’ Da(PHQ) -

Iog <Z Witemi™ > .
3)
Proposition: Let a € [0, 1] and let (7x o )x>1 be the sequence
defined by (3) for all k > 1. Then, we have:
1. The sequence (7k o )k>1 is valued in [0, 1], with 7 , = 1 iff
P=0Q;

2. 0< k1 < ko <15

3. Further assume that (gk)k>1 is a sequence of probability
density functions s.t. limk_, |gk(X) — f(x)| = 0 almost
everywhere and that my = mfor all k > 1 (fixed batch
size). Then, limg_,oc k.o = 1IN Ly.



Renyi’s a-divergences

Table 1: Special cases in the Rényi divergence family.

« Definition Notes

Kullback-Leibler (KL) divergence,

used in VI (KL[g||p]) and EP (KL(p||q])
a=0.5 —2log(l—Hel%p|lg]) function of the square Hellinger distance
zero when supp(q) C supp(p)

a—1 J p(6)log p(e)dﬂ

-1 0)do
a0 &)y @>040)d (not a divergence)
o= —log(1 — x2[p|lq])  proportional to the x2-divergence
N 1 p(6) worst-case regret in
@7 e 08 MAX0EO 4(g) minimum description length principle [24]
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Toy Experiments

log of MSE

Figure: Logarithm of the average squared error for SRAIS for constant
values of 1 or Adaptive 7, over 50 replicates. 4 x 10* particles sampled from
initial density, then my = 18 x 10° particles from g at each k > 1.

Different target densities (¢x = N(0q, X)), initial densities have different
means/variance than the target:
» "Cold Start" fi(x) = ¢s(x — 514/+/d), £ = (0.16/d)l4
> "Gaussian Mixture"
fo(x) = 0.5¢x(x — 14/(2V/d)) + 0.5¢x (x + 14/(2V/d))
» "Anisotropic Gaussian Mixture"
B(x) = 0.25¢v(x — 14/(2V/d)) + 0.756v(x + 14/(2V/d)),
V = (.4/Vd)?diag(10,1,...,1)



Evolution of Adaptive Regularization

Evolution of (7)k>1
on the Anisotropic Gaussian mixture (d=16)

w00 i
qggglﬂv 8

Evolution of (1)1
on the Cold Start (d=16)

§° ___________ 10~ T 10-
) %é ;ééi§

o

; s Nt

Figure: Boxplot of the values of (1« )x>1 obtained from RAR
(Adaptive n), with o = 0.5.

» at the beginning of the algorithm when the policy is poor,
the value of 7 is automatically set to a small value (leading
to a uniformization of the weights)

» when the policy becomes better the value of 7 ,,
converges to 1.



Bayesian Logistic Regression (Waveform dataset,
5000 datapoints in d = 22)

Dimension 22 (Waveform dataset) Evolution of (5 4):>1 (Waveform dataset)

=005
a=008
a=01

078 - - e e 06-

s

Accuracy
o o o
3 ¥ 3

Tea

o 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
sample size sample size

Figure: Left plot: Average accuracy over 100 trials of different learning
policies (n«,«)k>1 for Bayesian Logistic Regression on the Waveform dataset.
Right plot: Averaged values of the learning policy (7, )x>1 associated to
each choice of a.

» a proper tuning of the parameter « allows us to outperform (7x)x>1
constant and equal to 1

> the case a = 0.2 yielding the best results here overall in terms of speed
and accuracy



Conclusion

Contributions:

» We proposed a new algorithm for Adaptive Importance
Sampling, that regularizes the importance weights by
raising them to a certain power

» This algorithm is related to mirror descent on the space of
probability distributions

» |t enjoys a uniform convergence guarantee under mild
assumptions on the target, safe density, and
hyperparameters

> |t outperforms numerically constant values of n
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