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Quantization problem

Problem : approximate a target distribution = € P(R9) by a
finite set of n points xy, ..., xn, €.9. to compute functionals

Jga f(x)d7(x).

The quality of the set can be measured by the integral
approximation error:

err(Xq,...,Xp) =

1 n
- ; f(x;) — g f(x)dm(x)

Several approaches, among which :
» MCMC methods : generate a Markov chain whose law
converges to , err(xy, ..., Xx,) = O(n~1/2)

» deterministic particle systems, err(xq, ..., xn)?



Application: Bayesian statistics

> Let D = (X, ¥i)i=1....m a labelled dataset.

~~~~~

» Assume an underlying model parametrized by z € RY, e.g.
y ~f(x,z)+e¢ (p(y|x,z) gaussian)

= Compute the likelihood: p(D|z) = [, p(yi|Xi, 2).

» Assume a prior distribution on the parameter z ~ p.



Application: Bayesian statistics

> Let D = (X, ¥i)i=1....m a labelled dataset.

~~~~~

» Assume an underlying model parametrized by z € RY, e.g.
y ~f(x,z)+e¢ (p(y|x,z) gaussian)

= Compute the likelihood: p(D|z) = [, p(yi|Xi, 2).
» Assume a prior distribution on the parameter z ~ p.

Bayes’ rule : w(z) := p(z|D) = P(LC)P(Z) , C= / p(D|z)p(z)dz.
Rd

m is known up to a constant since C is intractable.
How to sample from 7 then? e.g. to compute:

pyIx.D) = | plylx.2)an(2)



Outline

Background on MMD/KSD Descent
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Sampling as optimization over distributions

3 algorithms/particle systems at study:
» Maximum Mean Discrepancy Descent
» Kernel Stein Discrepancy Descent
» Stein Variational Gradient Descent
These particle systems are designed to minimize a loss.
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Sampling as optimization over distributions
3 algorithms/particle systems at study:
» Maximum Mean Discrepancy Descent
» Kernel Stein Discrepancy Descent
» Stein Variational Gradient Descent
These particle systems are designed to minimize a loss.

Assume that 7 € Po(RY) = {1 € P(RY), [ ||x|[Pdu(x) < oo}
The sampling task can be recast as an optimization problem:

7= argmin F(p), F(u)=D(u|r),
pEP2(RY)

where D is a dissimilarity functional and F "a loss™.

Starting from an initial distribution 19 € P2(R?), one can then
consider the Wasserstein gradient flow of F over P,(RY) to
transport o to 7.



Euclidean gradient flow and continuity equation

Let V : RY — R and consider minimizing V. The gradient flow of V
can be written

ax,
7; = —VV(x)

and assume xp random with density 1. What is the dynamics of the
density y; of x; ? Let ¢ : RY — R a smooth function with compact

support.
3
Xt)—/¢ /“

and applying the cham rule and using I.P.P.
d
S0 = - [(96.VVmi)dx = [ 6009 - (uvV)(dx

Therefore,

O



Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.

Pa(R) = (€ PRY), [ |x|du(x) < oc)



Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.

Pa(R) = (€ PRY), [ |x|du(x) < oc)



Setting - The Wasserstein space
Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.
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Po(RY) is endowed with the Wasserstein-2 distance from Optimal
transport :
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where I'(v, 1) is the set of possible couplings between v and p (joint
distributions on R? x RY with first marginals v and p).



Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.

Pa(R) = (€ PRY), [ |x|du(x) < oc)

Po(RY) is endowed with the Wasserstein-2 distance from Optimal
transport :

WE(v,p) = inf Ix — y|?ds(x.y) Vv, e Po(RY)
sel(v,u) RA xRI

where I'(v, 1) is the set of possible couplings between v and p (joint
distributions on R? x RY with first marginals v and p).

Can also be written (Benamou-Brenier formula):

9]
W2(v, 1) mf {/ ||Vt||L2 p,)dt X) : pf =V - (ptVt),po = v, p1 = /J}~

(pt;Vt)tep0.1]



Wasserstein gradient flows (WGF)
The first var|at|onl of u— F(u) evaluated at . € P(RY) is the unique
function 2 ( ). RY 5 Rs. t. forany p,v € P(RY), v — pu € P(RY):

lim L+ v = ) = ) = [ 8’;3 ) (x)(dv — d)(x).
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where Vi, F(p) == Vaf € L2(u) denotes the Wasserstein gradient
of F.



Wasserstein gradient flows (WGF)
The first variationl of u— F(u) evaluated at . € P(RY) is the unique
function 2 ( ). RY 5 Rs. t. forany p,v € P(RY), v — pu € P(RY):

lim L+ v = ) = ) = [ 8’;3 ) (x)(dv — d)(x).

The family y : [0, 00] — P2(RY), t +— u; satisfies a Wasserstein
gradient flow of F if distributionnally:

0
G =V (VT ().
where Vi, F(p) == Vaf € L2(u) denotes the Wasserstein gradient
of F.

It can be implemented by the deterministic process:

axX;

E = _VWZJ:(,L“)(XT)) Xf ~ it



Particle system approximating the WGF

Euler time-discretization : in RY, move particles as:

Xipr = Xi = YV F () (X)) ~ w1, Xo ~ po-

Space discretization/particle system : Since p; is unknown,
introduce a particle system X', ..., X" where 1, is replaced by

A 1N .
Hr = ﬁz,’:1 5x;-

Xioy =X =V, F(iu)(X]) fori=1,....n,
X3, .., X5 ~ po.



Background on kernels and RKHS
> Let k: RY x RY — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)
> examples:
> the Gaussian kernel k(x,y) = exp(—w)

> the Laplace kernel k(x, y) = exp(—w)

» the inverse multiquadratic kernel
k(x,y) = (c+ [lx = yll)~” with 8 €]0, 1]
Hy its corresponding RKHS (Reproducing Kernel Hilbert Space):

v

Hk{Za, (v x7); meN,; a1,...,am€R;X1,...,Xm€Rd}

v

Hy is a Hilbert space with inner product (., )3, and norm ||. ||,

v

It satisfies the reproducing property:
V o feHk, xERY,  F(x) = (f,k(X,.))n,-



Maximum Mean Discrepancy
Assume p — [ k(x,.)du(x) injective.

Maximum Mean Discrepancy defines a distance on P,(RY):

/ fay — / fd7r

= [lmy — me 3,

// K(x, y)du(x)du(y //kxydw )dr(y)
-2 f / k() du(x)dn(y),

by the reproducing property (f, k(x,.))s, = f(x) for f € Hy.

MMD?(p, ) = sup
fEH K |[fll 2, <1




Maximum Mean Discrepancy
Assume p — [ k(x,.)du(x) injective.

Maximum Mean Discrepancy defines a distance on P,(RY):

/ fay — / fd7r

= [lmy — me 3,

/ Kk(x,y)du(x)du(y / k(x,y)dr(x)dn(y)

_ 2//Rd k(x, y)du(x)dn(y),

by the reproducing property (f, k(x,.))s, = f(x) for f € Hy.

MMD?(p, ) = sup
fEH K |[fll 2, <1

The differential of 1 — 3 MMD?(., 7) evaluated at 1 € P2(R7) is:

/k(x,. /k Jdn(x) : R = R.

Hence, for k regular enough, Vw, 3 MMD?(y, ) is:

/ng /vgk Jdr(x) : RY = R.



Kernel Stein Discrepancy

If one does not have access to samples of 7 but only to its
score, it is still possible to compute the KSD:

KSD?(p|r) = / / kr (X, y)du(x)du(y),

where k; : RY x R — R is the Stein kernel, defined through

» the score function s(x) = V log 7(x),
> ap.s.d. kernel k: RY x RY — R, k € C?(RY)?

For x,y € RY,
ke(X,y) = s(x)"s(y) k(x,y) + s(x)T V2k(x,y)
+ Vik(x,y)" s(y) + V +1 Vak(x,y)

cR.

'e.q. : k(x,y) = exp(—||x — y||?/h)



KSD vs MMD

Under mild assumptions on k and =, the Stein kernel k; is p.s.d. and
satisfies a Stein identity

/ k-(x,.)dr(x) = 0.
Rd

Consequently, KSD is an MMD with kernel k., since:
MMD(ujr) = [ s () dn(0du(y) + [ ka(x.y)n(x)din(y)
-2 [ k(. y)du(0d(y)

:/kw(x,y)du(x)dﬂ(}/)
= KSD?(ulr)



KSD as kernelized Fisher Divergence

Fisher Divergence:

FD2(u|r) = HVIog

/ 19 tog () 2alu(x)

"Kernelized" with k:

KSD?(u|) = HSMV '°g(§> ‘ i

= /v |og<%)(x)k(an)v Iog(%)(y)du(X)du(Y)

where S, x 1 L?(1) — Hy

f— /k(x,.)f(x)du(x).

= minimizing the KSD is close in spirit to score-matching
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MMD and KSD Descent

Recall that we want to study particle systems
Xy = X| =V F(@)(X]) fori=1,....n,
where iy = 1/n 3" dx; and F(u) = D(ulr).

For discrete measures 1= 1 "7, 5xi, the MMD/KSD are well
defined, hence we let F(X',..., X") := F(u).

» If D is the MMD, the gradient of F is readily obtained as

n
VF(X',... X") = %ZVQK(X’}X’)—/Vzk(X’?X)dW(X)‘

j=1
» In contrast, if D is the KSD,

12 o
VF(X',...,X") = - Z Vak (X', X).
]:

MMD/KSD Descent: at eachtime / > 0, forany i=1,...,n:

X=X —yVuF(X, ..., XD).



Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =



Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =

» Hence they can be evaluated in closed form for discrete p
and m = use L-BFGS to automatically select the best
step-size



Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =

» Hence they can be evaluated in closed form for discrete p
and m = use L-BFGS to automatically select the best
step-size

» depending on the information on 7, choose the KSD
(unnormalized density) or MMD (samples)



Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =

» Hence they can be evaluated in closed form for discrete p
and m = use L-BFGS to automatically select the best
step-size

» depending on the information on 7, choose the KSD
(unnormalized density) or MMD (samples)

» The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:

< [1ll3, MMD (s, ).

f(X)d?T(X)—/ f(x)du(x)
Rd R

Similarly for the KSD with Hy_.




Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) performs gradient
descent in P(RY) of the Kullback-Leibler (KL) divergence :

KL(u|m) = { Jralog (£(x)) du(x) it p<m

400 otherwise.

where the (W,) gradient is smoothed through the kernel integral
operator.

It corresponds to an Euler discretization of the grad|ent flow of
the KL under a metric depending on k

WA(ji0, 1) = {/ Ive(x)]2 ddt(x):%‘?:vmvt)}-



Stein Variational Gradient Descent
Fix a reproducing kernel k. In continuous time, SVGD flow is defined
by the continuity equation

0
% + Vo (uivy,) =0, vy, = k* (uViegm) — VK * i,

i.e. vy, = S,,.kVlog (£) where

> Viog (£) = Vi, KL(p|7),
> Sk L2(n) = M f > [ k(x, )F(x)dp(x).



Stein Variational Gradient Descent
Fix a reproducing kernel k. In continuous time, SVGD flow is defined
by the continuity equation

0
% + Vo (uivy,) =0, vy, = k* (uViegm) — VK * i,
i.e. vy, = S,,.kVlog (£) where

> Viog (£) = Vi, KL(p|7),
> Sk L2(n) = M f > [ k(x, )F(x)dp(x).

Let v > 0 be a fixed step-size. Starting from x{, ..., xJ ~ uo, SVGD
algorithm updates the n particles as follows at each iteration :

n
Xiq=xi— % 3 [—v log (X} k(xf, X}) + ¥ ok}, x})| .
j=1

Remark: does not minimize a well-defined functional for discrete

measures, it is only a discrete approximation of the flow. Hence,
cannot be used with L-BFGS and measuring the quantization is tricky.
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MMD and KSD Quantization
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Motivation - Final states for a Gaussian target

(a) iid. (b) MMD kg (C) KksD kg

(e) svap k.

Figure: Final states of the algorithms for 1000 particles, kernel
bandwidth = 1. kg is the Gaussian kernel and k; is the Laplace kernel

MMD gradient is available in closed form for m = A(0q, 614)
n

1 \Xj—X,‘\Z

= e 22 (Xi—X;
nh?(V2rhR)d (=)

g2

2(h2+62) Xi.

1
()2 )
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We are interested in establishing bounds on the quantization
error

. 1 n
Qn = Xn=|xr11f..,x,, D(m, pn), for un = - ; Sx.)
where D is the MMD or KSD.

Remark: For x4, ..., x, ~ mi.i.d., the rate is known to be
O(nf1/2)



We are interested in establishing bounds on the quantization
error

Xn=Xq,...,Xn

. 1o
Qn = inf  D(m, pun), forpu,= - 21: Ox;
j=

where D is the MMD or KSD.

Remark: For x4, ..., x, ~ mi.i.d., the rate is known to be
O(nf1/2)

Assumption A1: Assume that the kernel is d-times
continuously differentiable. Assume also that any mixed partial
derivative of the kernel of order smaller than d has a RKHS
norm bounded by a constant Cy 4 > 0.



First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) = is the
Lebesgue measure or (i) a probability measure on [0, 1]¢.
Then, there exists a constant Cy, such that for all n > 2,

» if (i): there exist points xq, ..., X, such that
| ad—1
MMD(r, un) < CdM

» if (ii): there exist points xq, ..., X, such that
(log n)*%"
MMD(7, pn) < Cdf

23/33



Proof: We use the well-known Koksma-Hlawka inequality
(Th1):

< D(Xp, m) V(F),

1 n
/W 1009m0) ~ 3 100)

> D(Xp, ) = 295upi_py (4. [7(/) — 1n(1)] is the discrepancy of
the point set X, can be bounded by

> The variation of a function f : [0,1]¢ — R with continuous mixed
partial derivatives is defined as

1 f(Xq, 1)
00X,

’ ax,.

Then, use the reproducing property on partial derivatives with
Cauchy-Schwarz inequality, and A1:

f < Cio
Oxe Blalx, Hm” I < Cha



Result for non compactly supported distributions =

Proposition 1: Suppose A1 holds and that k is bounded.
Assume 7 is a light-tailed distribution on R (i.e. which has a
thinner tail than an exponential distribution). Then, for n > 2
there exist points Xy, ..., X, such that

5d-+1

MMD(r, pin) < CdM
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Result for non compactly supported distributions =

Proposition 1: Suppose A1 holds and that k is bounded.
Assume 7 is a light-tailed distribution on R (i.e. which has a
thinner tail than an exponential distribution). Then, for n > 2
there exist points Xy, ..., X, such that

5d-+1

MMD(r, un) < CdM

Proof: Decompose MMD(, 11n) < MMD(7, p) + MMD(p, un), choosing
compactly supported on A, = [— log n, log n]d.

As 7 is light-tailed, | — «||7v < Ci/n distance, and we first get
MMD(r, p1) < Ckl[p — l[7v < C/n.

Then, we can take a discrete u, supported on A, and bound MMD(, f4n)
using similar arguments as in the previous Theorem.



Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that 7 oc exp(—U)
with U € C>(R?). Assume furthermore that U(x) > c¢1||x|| for large
enough x, and that there exists a real-valued polynomial V of degree

m > 0, such that for any multi-index 4, | 2% | < V(x) for all
i oon (i

1 < |B| < d+ 1. Then there exist points xi, ..., X, such that

6d+2m-+1

KSD(junfr) < G418~

Satisfied for gaussian mixtures .
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Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that 7 oc exp(—U)
with U € C>(R?). Assume furthermore that U(x) > c¢1||x|| for large
enough x, and that there exists a real-valued polynomial V of degree

m > 0, such that for any multi-index g, ﬁ < V(x) for all

1 < |B| < d+ 1. Then there exist points xi, ..., X, such that

(l() n) 6d+2m-+1
KSD(pn|r) < Cooro——.
Satisfied for gaussian mixtures .

Proof: The proof relies on bounding the first and last term of the
KSD(un, m) = 2 [ [ 7 log(m)(0T 7y k(x, y)d()du(y)

+ [ 7 10am00T logm ke, 1)) + [ 7 -x Tyk(x )dudu(y),
& @
= pun — m, as the cross terms can be upper bounded by the former ones by
a simple computation.

(1) MMD(pn, ), with ki(x, y) = s(x)"s(y)k(x, y), bounded by controlling
[V log || 1ya
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Experiments
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Algorithms

we investigate numerically the quantization properties of :
» SVGD
» MMD descent
» KSD Descent
» Kernel Herding (KH) : greedy minimization of the MMD
» Stein points (SP) : greedy minimization of the KSD

Hyperparameters:
» kernel: Gaussian, Laplace...
» bandwith of the kernel
> step-size



Quantization rates of the algorithms, = = N(0, 1/aly)

o mmd-bfgs o mmd-lbfgs o mmd-ibfgs
i,& ksd-Ibfgs N ksd-Ibfgs. N ksd~|bigsg
-24%% o SVGD EPERNN o SVGD N N
N RS o ls SVGD
<SRN e NsveD RS o NSVGD N ‘§i o NSVGD
\\ \‘\\ o mmd herding AU NN . * mmd herding "\ N &_mmd herding
N Q\ o stein point X \H\ o steinpoint 3, ii.d:
-4 N M e id q —4 XS N o id J
5 N h
E -6
S -
-6
-
(o))
O -81
= _g
-8
—104
—104
-10
~12
2 4 6 2 6 2 4 6

loi_:](n)

Averaged over 3 runs of each algorithm, run for 1e4 iterations, where the
initial particles are i.i.d. samples of 7. MMD/KSD Descent use bandwidth 1;
Stein points use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was
too slow.



d Eval. SVGD MMD-Ibfgs KSD-lbfgs KH SP
2 KSD -0.98 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.60 -1.54 -0.93 -0.77
3 KSD -0.91 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -1.51 -1.49 -0.92 -0.75
4 KSD -0.91 -1.35 -1.39 -0.89 -
MMD -0.94 -1.46 -1.40 -0.95 -
8 KSD -0.84 -1.14 -1.16 - -
MMD -0.77 -1.25 -1.13 - -

Some remarks:

» The slopes remain much steeper than the Monte Carlo
rate, even when the dimension increases

» Their slopes are better than our theoretical upper bounds



Robustness to evaluation discrepancy

AR
SR
-
\\ B
= N
°
1S \\
1S v
> o mmd-bfgs
o ksd-Ibfgs
e SVGD
® NSVGD
o mmd herding
o stein point
e iid.
: : T T : T T T
25 5.0 7.5 2.5 5.0 7.5 2.5 5.0 7.5
log(n)

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

> if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

> likely reason : Samples of MMD and KSD with Gaussian kernel have

internal structures which can affect the discrepancy at lower
bandwidths.



For v, u € Pp(RY) , the Sliced p-Wasserstein distance is defined as:

Oow,p(V, j1) = /Sd—1 Wo(Poyv, Pyy)db,

where P, : x — x - 6 and # is the pushforward operator.

log(sw)

5 6 7 2 3 a 5 6 7

2 3 4 5 6 7 2 3 4
log(n)

Figure: Quantization rates measured in Sliced Wasserstein distance
of the algorithms = = N(0, 1/aly). In practice, we use p = 1 and 50
random directions drawn uniformly on S9—" to discretize the
integration.

The rates for NSVGD are approximately n=072 n=0-65 =063 jp
dimensions d = 2, 3, and 4, respectively. We note that these are quite
close to the rate we theoretically predict for the distance between the



Conclusion

» MMD/ KSD descent, SVGD can create "super samples”

Open questions/future work:

> improve our quantization bounds for MMD/KSD
(dependence in dimension, Laplace kernel?)

» obtain quantization bounds for SVGD
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Alternative assumption for the MMD bound:

A2. Let k(x,y) = n(x — y) a translation invariant kernel on R9.
Assume that € C(RY) N L'(RY), and that its Fourier transform
verifies : 3Cx ¢ > 0 such that (1 + [¢]2)9 < C 4|7(&)|~" for any
£ e RY.

Laplace kernel k(x, y) = exp(—||x — y||) corresponds to
j=(d+1)/2



log(ksd)
log(mmd)

o mmd-ibfgs
ksd-Ibfgs

® SVGD

® NSVGD

©  mmd herding

©  stein point

e iid.

~104

log(n) log(n)
Figure: Quantization rates of the algorithms at study when the target
distribution is a 2D-Gaussian mixture distribution with variance 0.3,
centred at [1,0] and [-1,0]. We evaluate them using MMD and KSD
with bandwidth 1. We run algorithms under the same setting as the
2-4D experiments on Figure 29.



L-BFGS

L-BFGS ( Limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm ) is a quasi-Newton method:

Xit1 =X — B "VF(x) = X + 0| (1)

1

where B, is a p.s.d. matrix approximating the inverse Hessian at x;.

Step1. (requires VF) It computes a cheap version of d; based on
BFGS recursion:

g1 _ (] AxyT 51 (] vidx"\  AxAxT
=\ T ! T T T
Y/ Ax Y/ Ax Y Ax

where Ax;= X1 — X
¥i=VF(Xi1) — VF(x)

Step2. (requires F and VF) A line-search is performed to find the
best step-size in (1) :

F(xi +yid)) < F(xi) + cimVF(x) g
VF(X/ + ’y/d/)Td/ > CQVF(X/)Td/



Kernel Herding (KH) and Stein Points (SP)

They attempt to solve MMD or KSD quantization in a greedy manner,
i.e. by sequentially constructing 1., adding one new particle at each
iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD

XM = argmax(Wp, K(X, .)) 2,
xeRd

Wit = Wp+ My — K(Xn11, )
obtain a linear rate of convergence O(e~?")

> if the mean embedding m, = Ex.-[k(X,.)] lies in the relative
interior of the marginal polytope convexhull({k(x,.), x € R%})
with distance b away from the boundary

» however for infinite-dimensional kernels b = 0 and the rate does
not hold.

Stein Points for the KSD greedily minimizes the KSD

similarly. The authors establish a O((log(n)/n)z) rate, which seem
slower than their empirical observations.



So.. when does it work?

. KSDD Stein points /
AN\ ~ z ya /

Comparison of KSD Descent and Stein poinis on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.



1 - Bayesian Logistic regression

Datapoints di,...,dy € RP, and labels y1,...,y; € {£1}.
Labels y; are modelled as p(y; = 1|d;, w) = (1 + exp(—w ' d;))~" for
some w € RP,

The parameters w follow the law p(w|a) = N'(0,a"lp), and « > 0 is
drawn from an exponential law p(«) = Exp(0.01).

The parameter vector is then x = [w, log(a)] € RP*, and we use
KSD-LBFGS to obtain samples from p(x| (d;, ;){_,) for 13 datasets,
with N = 10 particles for each.

1.0 1
2 Accuracy of the KSD descent and
§ 0.8 1 SVGD on bayesian logistic regression
= for 13 datasets.
< 06 Both methods yield similar results.
' KSD is better by 2% on one dataset.

0.6 0.8 1.0
SVGD



2 - Bayesian Independent Component Analysis

ICA: x = W~'s, where x is an observed sample in RP, W € RP*P is
the unknown square unmixing matrix, and s € RP are the
independent sources.

1)Assume that each component has the same density s; ~ ps.

2) The likelihood of the model is p(x|W) = log |W| + S"F_, ps([Wx];).
3)Prior: W has i.i.d. entries, of law N (0, 1).

The posterior is p(W|x) « p(x|W)p(W), and the score is given by
sS(W)=W=T —y(Wx)x" — W, where ¢ = —Z—é. In practice, we
choose ps such that ¢ (-) = tanh(-). We then use the presented
algorithms to draw 10 particles W ~ p(W/|x) on 50 experiments.

10° 4 [ -~ )
é‘ 10 \‘P? ? 10° 4 {é?* m”-q;‘? 4?

s
E 1074 4 E
< <
T T T T T T T T T
Random KSD SVGD Random KSD SVGD Random KSD SVGD

Left: p = 2. Middle: p = 4. Right: p = 8.

Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.

KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex.

Amari distance




Real world experiments (10 particles)

KSD Descent

Amari distance

%
L

>
f

0.6 0.8 1.0
SVGD

10° 4

1071 4

i

Random KSD SVGD

Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ~ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Bayesian ICA.

Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d < 8).

KSD is not better than random.
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