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Quantization problem

Problem : approximate a target distribution π ∈ P(Rd ) by a
finite set of n points x1, . . . , xn, e.g. to compute functionals∫
Rd f (x)dπ(x).

The quality of the set can be measured by the integral
approximation error:

err(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (xi)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ .
Several approaches, among which :
I MCMC methods : generate a Markov chain whose law

converges to π, err(x1, . . . , xn) = O(n−1/2)
[Łatuszyński et al., 2013]

I deterministic particle systems, err(x1, . . . , xn)?
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Application: Bayesian statistics

I Let D = (xi , yi )i=1,...,m a labelled dataset.

I Assume an underlying model parametrized by z ∈ Rd , e.g.
y ∼ f (x , z) + ε (p(y |x , z) gaussian)

=⇒ Compute the likelihood: p(D|z) =
∏m

i=1 p(yi |xi , z).

I Assume a prior distribution on the parameter z ∼ p.

Bayes’ rule : π(z) := p(z|D) =
p(D|z)p(z)

C
, C =

∫
Rd

p(D|z)p(z)dz.

π is known up to a constant since C is intractable.
How to sample from π then? e.g. to compute:

p(y |x ,D) =

∫
Rd

p(y |x , z)dπ(z)
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Sampling as optimization over distributions
3 algorithms/particle systems at study:
I Maximum Mean Discrepancy Descent [Arbel et al., 2019]

I Kernel Stein Discrepancy Descent [Korba et al., 2021]

I Stein Variational Gradient Descent [Liu and Wang, 2016]

These particle systems are designed to minimize a loss.

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

F(µ), F(µ) = D(µ|π),

where D is a dissimilarity functional and F "a loss".

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Euclidean gradient flow and continuity equation
Let V : Rd → R and consider minimizing V . The gradient flow of V
can be written

dxt

dt
= −∇V (xt )

and assume x0 random with density µ0. What is the dynamics of the
density µt of xt ? Let φ : Rd → R a smooth function with compact
support.

d
dt

E(φ(xt )) =

∫
φ(x)

∂µt

∂t
(x)dx ,

and applying the chain rule and using I.P.P.,

d
dt

E(φ(xt )) = −
∫
〈∇φ,∇V 〉µt (x)dx =

∫
φ(x)∇ · (µt∇V )(x)dx .

Therefore,

∂µt

∂t
=∇ · (µt∇V ).
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Setting - The Wasserstein space
Let P2(Rd ) denote the space of probability measures on Rd with finite
second moments, i.e.

P2(Rd ) = {µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞}

P2(Rd ) is endowed with the Wasserstein-2 distance from Optimal
transport :

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

∫
Rd×Rd

‖x − y‖2 ds(x , y) ∀ν, µ ∈ P2(Rd )

where Γ(ν, µ) is the set of possible couplings between ν and µ (joint
distributions on Rd × Rd with first marginals ν and µ).

Can also be written (Benamou-Brenier formula):

W 2
2 (ν, µ) = inf

(ρt ,vt )t∈[0,1]

{∫ 1

0
‖vt‖2

L2(ρt )
dt(x) :

∂ρt

∂t
=∇ · (ρtvt ), ρ0 = ν, ρ1 = µ

}
.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variationl of µ 7→ F(µ) evaluated at µ ∈ P(Rd ) is the unique
function ∂F(µ)

∂µ : Rd → R s. t. for any µ, ν ∈ P(Rd ), ν − µ ∈ P(Rd ):

lim
ε→0

1
ε

(F(µ+ ε(ν − µ))−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dν − dµ)(x).

The family µ : [0,∞]→ P2(Rd ), t 7→ µt satisfies a Wasserstein
gradient flow of F if distributionnally:

∂µt

∂t
=∇ · (µt∇W2F(µt )) ,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein gradient

of F .

It can be implemented by the deterministic process:

dXt

dt
= −∇W2F(µt )(Xt ), Xt ∼ µt
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Particle system approximating the WGF

Euler time-discretization : in Rd , move particles as:

Xl+1 = Xl − γ∇W2F(µl)(Xl) ∼ µl+1, X0 ∼ µ0.

Space discretization/particle system : Since µl is unknown,
introduce a particle system X 1, . . . ,X n where µl is replaced by
µ̂l = 1

n
∑n

i=1 δX i
l
:

X i
l+1 = X i

l − γ∇W2F(µ̂l)(X i
l ) for i = 1, . . . ,n,

X 1
0 , . . . ,X

n
0 ∼ µ0.
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel
((k(xi , xj )

n
i=1) is a p.s.d. matrix for all x1, . . . , xn ∈ Rd )

I examples:

I the Gaussian kernel k(x , y) = exp
(
−‖x−y‖2

h

)
I the Laplace kernel k(x , y) = exp

(
−‖x−y‖

h

)
I the inverse multiquadratic kernel

k(x , y) = (c + ‖x − y‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}
I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .
I It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk .
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Maximum Mean Discrepancy [Gretton et al., 2012]

Assume µ 7→
∫

k(x , .)dµ(x) injective.

Maximum Mean Discrepancy defines a distance on P2(Rd ):

MMD2(µ, π) = sup
f∈Hk ,‖f‖Hk≤1

∣∣∣∣∫ fdµ−
∫

fdπ
∣∣∣∣2

= ‖mµ −mπ‖2
Hk

=

∫∫
Rd

k(x , y)dµ(x)dµ(y) +

∫∫
Rd

k(x , y)dπ(x)dπ(y)

− 2
∫∫

Rd
k(x , y)dµ(x)dπ(y),

by the reproducing property 〈f , k(x , .)〉Hk = f (x) for f ∈ Hk .

The differential of µ 7→ 1
2 MMD2(., π) evaluated at µ ∈ P2(Rd ) is:∫

k(x , .)dµ(x)−
∫

k(x , .)dπ(x) : Rd → R.

Hence, for k regular enough, ∇W2
1
2 MMD2(µ, π) is:∫

∇2k(x , .)dµ(x)−
∫
∇2k(x , .)dπ(x) : Rd → R.
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

If one does not have access to samples of π but only to its
score, it is still possible to compute the KSD:

KSD2(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )1

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y) k(x , y) + s(x)T ∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

1e.g. : k(x , y) = exp
(
−‖x − y‖2/h

) 13/ 33



KSD vs MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity [Oates et al., 2017]

∫
Rd

kπ(x , .)dπ(x) = 0.

Consequently, KSD is an MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)
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KSD as kernelized Fisher Divergence
Fisher Divergence:

FD2(µ|π) =
∥∥∥∇ log

(µ
π

)∥∥∥2

L2(µ)
=

∫
‖∇ log

(µ
π

(x)
)
‖2dµ(x)

"Kernelized" with k :

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫
∇ log

(µ
π

)
(x)k(x , y)∇ log

(µ
π

)
(y)dµ(x)dµ(y)

where Sµ,k : L2(µ)→ Hk

f 7→
∫

k(x , .)f (x)dµ(x).

=⇒ minimizing the KSD is close in spirit to score-matching
[Hyvärinen and Dayan, 2005].
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MMD and KSD Descent
Recall that we want to study particle systems

X i
l+1 = X i

l − γ∇W2F(µ̂l )(X i
l ) for i = 1, . . . ,n,

where µ̂l = 1/n
∑n

i=1 δX i
l

and F(µ) = D(µ|π).

For discrete measures µ = 1
n

∑n
i=1 δX i , the MMD/KSD are well

defined, hence we let F (X 1, . . . ,X n) := F(µ).

I If D is the MMD, the gradient of F is readily obtained as

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2k(X i ,X j )−
∫
∇2k(X i , x)dπ(x).

I In contrast, if D is the KSD,

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2kπ(X i ,X j ).

MMD/KSD Descent: at each time l ≥ 0, for any i = 1, . . . ,n:

X i
l+1 = X i

l − γ∇x i F (X 1
l , . . . ,X

n
l ).
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Remarks
I The MMD/KSD/their W2 gradient write as sums of integrals

of µ and π

I Hence they can be evaluated in closed form for discrete µ
and π =⇒ use L-BFGS to automatically select the best
step-size

I depending on the information on π, choose the KSD
(unnormalized density) or MMD (samples)

I The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:∣∣∣∣∫

Rd
f (x)dπ(x)−

∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).

Similarly for the KSD with Hkπ .

17/ 33



Remarks
I The MMD/KSD/their W2 gradient write as sums of integrals

of µ and π

I Hence they can be evaluated in closed form for discrete µ
and π =⇒ use L-BFGS to automatically select the best
step-size

I depending on the information on π, choose the KSD
(unnormalized density) or MMD (samples)

I The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:∣∣∣∣∫

Rd
f (x)dπ(x)−

∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).

Similarly for the KSD with Hkπ .

17/ 33



Remarks
I The MMD/KSD/their W2 gradient write as sums of integrals

of µ and π

I Hence they can be evaluated in closed form for discrete µ
and π =⇒ use L-BFGS to automatically select the best
step-size

I depending on the information on π, choose the KSD
(unnormalized density) or MMD (samples)

I The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:∣∣∣∣∫

Rd
f (x)dπ(x)−

∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).

Similarly for the KSD with Hkπ .
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Stein Variational Gradient Descent (SVGD) performs gradient
descent in P(Rd ) of the Kullback-Leibler (KL) divergence :

KL(µ|π) =

{ ∫
Rd log

(µ
π (x)

)
dµ(x) if µ� π

+∞ otherwise.

where the (W2) gradient is smoothed through the kernel integral
operator.

It corresponds to an Euler discretization of the gradient flow of
the KL under a metric depending on k [Duncan et al., 2019]:

W 2
k (µ0, µ1) = inf

µ,v

{∫ 1

0
‖vt (x)‖2Hd

k
dt(x) :

∂µt

∂t
=∇ · (µtvt )

}
.
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Fix a reproducing kernel k . In continuous time, SVGD flow is defined
by the continuity equation

∂µt

∂t
+∇ · (µtvµt ) = 0, vµt = k ? (µt∇ log π)−∇k ? µt ,

i.e. vµt = Sµt ,k∇ log
(
µ
π

)
where

I ∇ log
(
µ
π

)
= ∇W2 KL(µ|π),

I Sµ,k : L2(µ)→ Hk , f 7→
∫

k(x , .)f (x)dµ(x).

Let γ > 0 be a fixed step-size. Starting from x1
0 , . . . , x

n
0 ∼ µ0, SVGD

algorithm updates the n particles as follows at each iteration :

x i
l+1 = x i

l −
γ

n

n∑
j=1

[
−∇ log π(x j

l )k(x i
l , x

j
l ) +∇x j

l
k(x i

l , x
j
l )
]
.

Remark: does not minimize a well-defined functional for discrete
measures, it is only a discrete approximation of the flow. Hence,
cannot be used with L-BFGS and measuring the quantization is tricky.
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Motivation - Final states for a Gaussian target

(a) i.i.d. (b) MMD kG (c) KSD kG (d) SVGD kG (e) SVGD kL

Figure: Final states of the algorithms for 1000 particles, kernel
bandwidth = 1. kG is the Gaussian kernel and kL is the Laplace kernel

MMD gradient is available in closed form for π = N (0d , θId)

ẋi = −
1

nh2(
√

2πh2)d

n∑
j=1

e−
|xj−xi |

2

2h2 (xj−xi)−
1

(h2 + θ2)(
√

2π(h2 + θ2))d
e
− |xi |

2

2(h2+θ2) xi .
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We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2) [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

Assumption A1: Assume that the kernel is d-times
continuously differentiable. Assume also that any mixed partial
derivative of the kernel of order smaller than d has a RKHS
norm bounded by a constant Ck ,d ≥ 0.
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First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) π is the
Lebesgue measure or (ii) a probability measure on [0,1]d .
Then, there exists a constant Cd , such that for all n ≥ 2,
I if (i): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

I if (ii): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.
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Proof: We use the well-known Koksma-Hlawka inequality
[Aistleitner and Dick, 2015](Th1):∣∣∣∣∣

∫
[0,1]d

f (x)dπ(x)− 1
n

n∑
i=1

f (xi )

∣∣∣∣∣ ≤ D(Xn, π)V (f ),

I D(Xn, π) = 2d supI=Πn
i=1[ai ,bi ]

|π(I)− µn(I)| is the discrepancy of
the point set Xn, can be bounded by [Aistleitner and Dick, 2015]

I The variation of a function f : [0,1]d → R with continuous mixed
partial derivatives is defined as

V (f ) =
∑

α⊆{1,...,d}

∫
[0,1]|α|

∣∣∣∣∂|α|f (xα,1)

∂xα

∣∣∣∣dxα.

Then, use the reproducing property on partial derivatives with
Cauchy-Schwarz inequality, and A1:∣∣∣∣∂|α|f (xα,1)

∂xα

∣∣∣∣ ≤
∥∥∥∥∂|α|k((xα,1), ·)

∂|α|xα

∥∥∥∥
Hk

‖f‖Hk ≤ Ck,d .
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Result for non compactly supported distributions π

Proposition 1: Suppose A1 holds and that k is bounded.
Assume π is a light-tailed distribution on Rd (i.e. which has a
thinner tail than an exponential distribution). Then, for n ≥ 2
there exist points x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.

Proof: Decompose MMD(π, µn) ≤ MMD(π, µ) + MMD(µ, µn), choosing µ
compactly supported on An = [− log n, log n]d .
As π is light-tailed, ‖µ− π‖TV ≤ C1/n distance, and we first get
MMD(π, µ) ≤ Ck‖µ− π‖TV ≤ C/n.
Then, we can take a discrete µn supported on An and bound MMD(µ, µn)
using similar arguments as in the previous Theorem.
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Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that π ∝ exp(−U)
with U ∈ C∞(Rd ). Assume furthermore that U(x) > c1‖x‖ for large
enough x , and that there exists a real-valued polynomial V of degree
m ≥ 0, such that for any multi-index β,

∣∣∣ ∂βU(x)

∂β1 x1...∂
βj xj

∣∣∣ ≤ V (x) for all

1 ≤ |β| ≤ d + 1. Then there exist points x1, ..., xn such that

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

Satisfied for gaussian mixtures π.

Proof: The proof relies on bounding the first and last term of the

KSD(µn, π) = 2
∫∫
∇ log(π)(x)T∇y k(x, y)dµ(x)dµ(y)

+

∫∫
∇ log(π)(x)T∇ log(π)(y)k(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

(1)

+

∫∫
∇ ·x ∇y k(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

(2)

,

µ = µn − π, as the cross terms can be upper bounded by the former ones by
a simple computation.
(1) MMD(µn, π), with k1(x , y) = s(x)T s(y)k(x , y), bounded by controlling
‖∇ log π‖Hd

(2) MMD(µn, π), with k2(x , y) =∇ ·x ∇y k(x , y), bounded by Prop 1 for
bounded kernels.
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Algorithms

we investigate numerically the quantization properties of :
I SVGD
I MMD descent
I KSD Descent
I Kernel Herding (KH) : greedy minimization of the MMD
I Stein points (SP) : greedy minimization of the KSD

Hyperparameters:
I kernel: Gaussian, Laplace...
I bandwith of the kernel
I step-size
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Quantization rates of the algorithms, π = N (0, 1/dId)
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Averaged over 3 runs of each algorithm, run for 1e4 iterations, where the
initial particles are i.i.d. samples of π. MMD/KSD Descent use bandwidth 1;
Stein points use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was
too slow.
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d Eval. SVGD MMD-lbfgs KSD-lbfgs KH SP

2 KSD -0.98 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.60 -1.54 -0.93 -0.77

3 KSD -0.91 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -1.51 -1.49 -0.92 -0.75

4 KSD -0.91 -1.35 -1.39 -0.89 –
MMD -0.94 -1.46 -1.40 -0.95 –

8 KSD -0.84 -1.14 -1.16 – –
MMD -0.77 -1.25 -1.13 – –

Some remarks:
I The slopes remain much steeper than the Monte Carlo

rate, even when the dimension increases
I Their slopes are better than our theoretical upper bounds
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Robustness to evaluation discrepancy

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

I if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

I likely reason : Samples of MMD and KSD with Gaussian kernel have
internal structures which can affect the discrepancy at lower
bandwidths. 31/ 33



For ν, µ ∈ Pp(Rd ) , the Sliced p-Wasserstein distance is defined as:

dsw,p(ν, µ) =

∫
Sd−1

Wp(Pθ#ν,Pθ#µ)dθ,

where Pθ : x 7→ x · θ and # is the pushforward operator.
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Figure: Quantization rates measured in Sliced Wasserstein distance
of the algorithms π = N (0, 1/dId ). In practice, we use p = 1 and 50
random directions drawn uniformly on Sd−1 to discretize the
integration.

The rates for NSVGD are approximately n−0.72,n−0.65,n−0.63 in
dimensions d = 2,3, and 4, respectively. We note that these are quite
close to the rate we theoretically predict for the distance between the
measure on a grid in [0,1]d , and the Lebesgue measure:
dsw,1 ∼ n−

1
2−

1
2d , which is n−0.75,n−0.67,n−0.625 in dimensions

d = 2,3, and 4.
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Conclusion

I MMD/ KSD descent, SVGD can create "super samples"

Open questions/future work:
I improve our quantization bounds for MMD/KSD

(dependence in dimension, Laplace kernel?)
I obtain quantization bounds for SVGD

Thank you !
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Alternative assumption for the MMD bound:

A2. Let k(x , y) = η(x − y) a translation invariant kernel on Rd .
Assume that η ∈ C(Rd ) ∩ L1(Rd ), and that its Fourier transform
verifies : ∃Ck ,d ≥ 0 such that (1 + |ξ|2)d ≤ Ck ,d |η̂(ξ)|−1 for any
ξ ∈ Rd .

Laplace kernel k(x , y) = exp(−‖x − y‖) corresponds to
j = (d + 1)/2.
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Figure: Quantization rates of the algorithms at study when the target
distribution is a 2D-Gaussian mixture distribution with variance 0.3,
centred at [1,0] and [-1,0]. We evaluate them using MMD and KSD
with bandwidth 1. We run algorithms under the same setting as the
2-4D experiments on Figure 29.
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L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xl+1 = xl − γlB−1
l ∇F (xl ) := xl + γldl (1)

where B−1
l is a p.s.d. matrix approximating the inverse Hessian at xl .

Step1. (requires ∇F ) It computes a cheap version of dl based on
BFGS recursion:

B−1
l+1 =

(
I −

∆xlyT
l

yT
l ∆xl

)
B−1

l

(
I −

yl ∆xT
l

yT
l ∆xl

)
+

∆xl ∆xT
l

yT
l ∆xl

where ∆xl = xl+1 − xl

yl = ∇F (xl+1)−∇F (xl )

Step2. (requires F and ∇F ) A line-search is performed to find the
best step-size in (1) :

F (xl + γldl ) ≤ F (xl ) + c1γl∇F (xl )
T dl

∇F (xl + γldl )
T dl ≥ c2∇F (xl )

T dl
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Kernel Herding (KH) and Stein Points (SP)
They attempt to solve MMD or KSD quantization in a greedy manner,
i.e. by sequentially constructing µn, adding one new particle at each
iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD [Chen et al., 2012]:

xn+1 = argmax
x∈Rd

〈wn, k(x , .)〉Hk

wn+1 = wn + mπ − k(xn+1, .)

[Bach et al., 2012] obtain a linear rate of convergence O(e−bn)

I if the mean embedding mπ = Ex∼π[k(x , .)] lies in the relative
interior of the marginal polytope convexhull(

{
k(x , .), x ∈ Rd

}
)

with distance b away from the boundary
I however for infinite-dimensional kernels b = 0 and the rate does

not hold.

Stein Points for the KSD [Chen et al., 2018] greedily minimizes the KSD
similarly. The authors establish a O((log(n)/n)

1
2 ) rate, which seem

slower than their empirical observations.
10/ 14



So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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1 - Bayesian Logistic regression
Datapoints d1, . . . ,dq ∈ Rp, and labels y1, . . . , yq ∈ {±1}.
Labels yi are modelled as p(yi = 1|di ,w) = (1 + exp

(
−w>di

)
)−1 for

some w ∈ Rp.

The parameters w follow the law p(w |α) = N (0, α−1Ip), and α > 0 is
drawn from an exponential law p(α) = Exp(0.01).

The parameter vector is then x = [w , log(α)] ∈ Rp+1, and we use
KSD-LBFGS to obtain samples from p(x |

(
di , yi )

q
i=1

)
for 13 datasets,

with N = 10 particles for each.

0.6 0.8 1.0

SVGD

0.6

0.8

1.0

K
S

D
D

es
ce

n
t Accuracy of the KSD descent and

SVGD on bayesian logistic regression
for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one dataset.
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2 - Bayesian Independent Component Analysis
ICA: x = W−1s, where x is an observed sample in Rp, W ∈ Rp×p is
the unknown square unmixing matrix, and s ∈ Rp are the
independent sources.
1)Assume that each component has the same density si ∼ ps.
2) The likelihood of the model is p(x |W ) = log |W |+

∑p
i=1 ps([Wx ]i ).

3)Prior: W has i.i.d. entries, of law N (0,1).
The posterior is p(W |x) ∝ p(x |W )p(W ), and the score is given by
s(W ) = W−> − ψ(Wx)x> −W , where ψ = − p′s

ps
. In practice, we

choose ps such that ψ(·) = tanh(·). We then use the presented
algorithms to draw 10 particles W ∼ p(W |x) on 50 experiments.
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Left: p = 2. Middle: p = 4. Right: p = 8.
Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.
KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex. 13/ 14



Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ≈ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.
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Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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