Kernel Stein Discrepancy Descent

Anna Korba¹ Pierre-Cyril Aubin-Frankowski² Szymon Majewski³ Pierre Ablin⁴

¹CREST, ENSAE, Institut Polytechnique de Paris

²CAS, MINES ParisTech, Paris, France

³CMAP, Ecole Polytechnique, Institut Polytechnique de Paris

⁴CNRS and DMA, Ecole Normale Supérieure, Paris, France

ICML 2021

Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Problem : Sample from a target distribution π over \mathbb{R}^d , whose density w.r.t. Lebesgue is known up to a constant *Z* :

$$\pi(x) = rac{ ilde{\pi}(x)}{Z}$$

where Z is the (untractable) normalization constant.

Problem : Sample from a target distribution π over \mathbb{R}^d , whose density w.r.t. Lebesgue is known up to a constant *Z* :

$$\pi(x) = rac{ ilde{\pi}(x)}{Z}$$

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.

- Let $\mathcal{D} = (w_i, y_i)_{i=1,...,N}$ observed data.
- Assume an underlying model parametrized by θ (e.g. p(y|w, θ) gaussian)

$$\implies$$
 Likelihood: $p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(y_i|\theta, w_i).$

• The parameter $\theta \sim p$ the prior distribution.

Bayes' rule :
$$\pi(\theta) := p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{Z}$$
, $Z = \int_{\mathbb{R}^d} p(\mathcal{D}|\theta)p(\theta)d\theta$.

Sampling as optimization over distributions

Assume that $\pi \in \mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}(\mathbb{R}^d), \int ||x||^2 d\mu(x) < \infty \}$. The sampling task can be recast as an optimization problem:

$$\pi = \operatorname*{argmin}_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} D(\mu | \pi) := \mathcal{F}(\mu), \tag{1}$$

where *D* is a **dissimilarity functional**.

Examples:

- Wasserstein distances,
- ▶ f-divergences (KL, Chi-squared),
- Integral Probability Metrics (MMD)...

Starting from an initial distribution $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$, one can then consider the **Wasserstein gradient flow** of \mathcal{F} over $\mathcal{P}_2(\mathbb{R}^d)$ to converge to π .

Contributions of the paper

Here we choose D as the Kernel Stein Discrepancy (KSD)

We propose an algorithm that is:

- score-based ($\nabla \log \pi$ known)
- using a set of particles whose empirical distribution minimizes the Kernel Stein Discrepancy
 [Chwialkowski et al., 2016] relative to π
- easy to implement and to use (e.g. leverages L-BFGS) !

We study:

- its convergence properties (theoretically and numerically)
- its empirical performance compared to Stein Variational Gradient Descent

Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

For $\mu, \pi \in \mathcal{P}_2(\mathbb{R}^d)$, the KSD of μ relative to π is

$$\mathsf{KSD}(\mu|\pi) = \sqrt{\iint k_{\pi}(x,y)d\mu(x)d\mu(y)},$$

where $k_{\pi} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the **Stein kernel**, defined through

a score function s(x) = ∇ log π(x),
 a p.s.d. kernel k : ℝ^d × ℝ^d → ℝ, k ∈ C²(ℝ^d).

For
$$x, y \in \mathbb{R}^d$$
,
 $k_{\pi}(x, y) = s(x)^T s(y) k(x, y) + s(x)^T \nabla_2 k(x, y)$
 $+ \nabla_1 k(x, y)^T s(y) + \nabla \cdot_1 \nabla_2 k(x, y)$
 $= \sum_{i=1}^d \frac{\partial \log \pi(x)}{\partial x_i} \cdot \frac{\partial \log \pi(y)}{\partial y_i} \cdot k(x, y) + \frac{\partial \log \pi(x)}{\partial x_i} \cdot \frac{\partial k(x, y)}{\partial y_i}$
 $+ \frac{\partial \log \pi(y)}{\partial y_i} \cdot \frac{\partial k(x, y)}{\partial x_i} + \frac{\partial^2 k(x, y)}{\partial x_i \partial y_i}.$

Stein identity and link with MMD

Under mild assumptions on k and π , the Stein kernel k_{π} is p.s.d. and satisfies a **Stein identity**

$$\int_{\mathbb{R}^d} k_{\pi}(x,.) d\pi(x) = 0.$$

Hence KSD is a MMD with kernel k_{π} :

$$\begin{split} \mathsf{MMD}^2(\mu|\pi) &= \int k_\pi(x,y) d\mu(x) d\mu(y) + \int k_\pi(x,y) d\pi(x) d\pi(y) \\ &- 2 \int k_\pi(x,y) d\mu(x) d\pi(y) \\ &= \int k_\pi(x,y) d\mu(x) d\mu(y) \\ &= \mathsf{KSD}^2(\mu|\pi) \end{split}$$

KSD benefits

KSD can be computed when

- one has access to the score of π
- μ is a discrete measure, e.g. $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}$, then :

$$\mathsf{KSD}^2(\mu|\pi) = rac{1}{N^2} \sum_{i,j=1}^N k_{\pi}(x^i, x^j).$$

KSD metrizes weak convergence [Gorham and Mackey, 2017] when:

- π is strongly log-concave at infinity (distantly dissipative),
 e.g. true gaussian mixtures
- k has a slow decay rate, e.g. true when k is the IMQ kernel defined by k(x, y) = (c² + ||x − y||₂²)^β for c > 0 and β ∈ (−1, 0).

Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Time/Space discretization of the KSD gradient flow

Let $\mathcal{F}(\mu) = \mathsf{KSD}^2(\mu|\pi)$.

- Its Wasserstein gradient flow on P₂(R^d) finds a continuous path of distributions that minimize F.
- Different algorithms to approximate π depend on the time and space discretization.

Discrete measures: For discrete measures $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}$, we have an explicit loss function

$$L([x^{i}]_{i=1}^{N}) := \mathcal{F}(\hat{\mu}) = \frac{1}{N^{2}} \sum_{i,j=1}^{N} k_{\pi}(x^{i}, x^{j}).$$

Then, (euclidean) gradient descent of *L* on the particles \Leftrightarrow Wasserstein gradient descent of \mathcal{F} for discrete measures.

KSD Descent - algorithms

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles $(x_0^i)_{i=1}^N \sim \mu_0$, number of iterations M, step-size γ for n = 1 to M do $[x_{n+1}^i]_{i=1}^N = [x_n^i]_{i=1}^N - \frac{2\gamma}{N^2} \sum_{j=1}^N [\nabla_2 k_\pi(x_n^j, x_n^i)]_{i=1}^N$, end for Return: $[x_M^i]_{i=1}^N$.

Algorithm 2 KSD Descent L-BFGS

Input: initial particles $(x_0^i)_{i=1}^N \sim \mu_0$, tolerance tol

Return: $[x_*^i]_{i=1}^N = L$ -BFGS $(L, \nabla L, [x_0^i]_{i=1}^N, \text{tol})$.

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is faster and more robust than Gradient Descent, and requires no choice of step-size!

Related work

1. minimize the Kullback-Leibler divergence (requires $\nabla \log \pi$), e.g. with Stein Variational Gradient descent (SVGD, [Liu and Wang, 2016]).

Uses a set of *N* interacting particles and a p.s.d. kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ to approximate π :

$$x_{n+1}^{i} = x_{n}^{i} - \gamma \left[\frac{1}{N} \sum_{j=1}^{N} k(x_{n}^{i}, x_{n}^{j}) \nabla \log \pi(x_{n}^{j}) + \nabla_{1} k(x_{n}^{j}, x_{n}^{i}) \right],$$

Does not minimize a closed-form functional for discrete measures!

2. minimize the Maximum Mean Discrepancy

[Arbel et al., 2019, Mroueh et al., 2019]

$$x_{n+1}^{i} = x_{n}^{i} - \gamma \left[\frac{1}{N} \sum_{j=1}^{N} \left(\nabla_{2} k(x_{n}^{j}, x_{n}^{i}) - \nabla_{2} k(y^{j}, x_{n}^{i}) \right) \right]$$

(requires samples $(y_j)_{j=1}^N \sim \pi$)

13/23

Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Toy experiments - 2D standard gaussian

The green points represent the initial positions of the particles. The light grey curves correspond to their trajectories.

Toy experiments - 1D standard gaussian

Convergence speed of KSD and SVGD on a Gaussian problem in 1D, with 30 particles.

2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions the blue ones are the final positions The light red arrows correspond to the score directions.

In the paper:

- theoretically: we explain how particles can get stuck in planes of symmetry of the target π
- numerically: convergence fixed with an annealing strategy: π^β(x) ∝ exp(−βV(x)), with 0 < β ≤ 1 (i.e. multiply the score by β.)

Real world experiments

Bayesian logistic regression.

Accuracy of the KSD descent and SVGD for 13 datasets. Both methods yield similar results. KSD is better by 2% on one dataset.

Bayesian ICA.

Each dot correspond to the Amari distance between an estimated matrix and the true unmixing matrix.

Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

Wasserstein-2 convexity of the KSD

The underlying geometry is the one of $(\mathcal{P}_2(\mathbb{R}^d), W_2)$.

Our result: under mild assumptions on π and k, exponential convergence of the KSD flow near π does not hold (even for π gaussian!)

Conclusion

Pros:

- KSD Descent is a very simple algorithm, and can be used with L-BFGS [Liu and Nocedal, 1989] (fast, and does not require the choice of a step-size as in SVGD)
- works well on log-concave targets (unimodal gaussian, Bayesian logistic regression with gaussian priors)

Cons:

- ► KSD is not convex w.r.t. *W*₂, and no exponential decay near equilibrium holds
- does not work well on non log-concave targets (mixture of isolated gaussians, Bayesian ICA)

Open questions

- explain the convergence of KSD Descent when π is log-concave?
- quantify propagation of chaos ? (KSD for a finite number of particles vs infinite)

Code

- Python package to try KSD descent yourself: pip install ksddescent
- website: pierreablin.github.io/ksddescent/
- It also features pytorch/numpy code for SVGD.

```
>>> import torch
>>> from ksddescent import ksdd_lbfgs
>>> n, p = 50, 2
>>> x0 = torch.rand(n, p) # start from uniform distribution
>>> score = lambda x: x # simple score function
>>> x = ksdd_lbfgs(x0, score) # run the algorithm
```

Thank you for listening and happy to talk at the poster!

References I

 Arbel, M., Korba, A., Salim, A., and Gretton, A. (2019).
 Maximum mean discrepancy gradient flow.
 In Advances in Neural Information Processing Systems, pages 6481–6491.

- Chwialkowski, K., Strathmann, H., and Gretton, A. (2016).
 A kernel test of goodness of fit.
 In International conference on machine learning.
- Gorham, J. and Mackey, L. (2017).
 Measuring sample quality with kernels.
 In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1292–1301. JMLR. org.

References II

- Liu, D. C. and Nocedal, J. (1989).

On the limited memory BFGS method for large scale optimization.

Mathematical programming, 45(1-3):503–528.

- Liu, Q., Lee, J., and Jordan, M. (2016).
 A kernelized stein discrepancy for goodness-of-fit tests.
 In *International conference on machine learning*, pages 276–284.
- Liu, Q. and Wang, D. (2016).
 Stein variational gradient descent: A general purpose bayesian inference algorithm.
 In Advances in neural information processing systems,

pages 2378-2386.

Mroueh, Y., Sercu, T., and Raj, A. (2019). Sobolev descent.

In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 2976–2985. PMLR.

Continuous dynamics of KSD Descent

Let $\mathcal{F}(\mu) = \frac{1}{2} \text{KSD}^2(\mu | \pi)$. The KSD gradient flow is defined as the flow induced by the continuity equation:

$$rac{\partial \mu_t}{\partial t} + \operatorname{div}(\mu_t v_{\mu_t}) = \mathbf{0}, \ v_{\mu_t} := -\nabla_{W_2} \mathcal{F}(\mu_t).$$

For μ_t regular enough,

$$\nabla_{W_2} \mathcal{F}(\mu_t) = \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}$$

 $\frac{\partial \mathcal{F}(\mu)}{\partial \mu} : \mathbb{R}^{d} \to \mathbb{R} \text{ is the differential of } \mu \mapsto \mathcal{F}(\mu), \text{ evaluated at } \mu.$ It is the unique function such that for any $\mu, \mu' \in \mathcal{P}, \, \mu' - \mu \in \mathcal{P}$:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} (\mathcal{F}(\mu + \epsilon(\mu' - \mu)) - \mathcal{F}(\mu)) = \int_{\mathbb{R}^d} \frac{\partial \mathcal{F}(\mu)}{\partial \mu} (x) (d\mu' - d\mu) (x).$$

Wassertein gradient of the KSD

We have

$$rac{\partial \mathcal{F}(\mu)}{\partial \mu} = \int k_{\pi}(x,.) d\mu(x) = \mathbb{E}_{x \sim \mu}[k_{\pi}(x,.)]$$

and under appropriate growth assumptions on k_{π} :

$$\nabla_{W_2}\mathcal{F}(\mu) = \mathbb{E}_{\boldsymbol{x} \sim \mu}[\nabla_2 \boldsymbol{k}_{\pi}(\boldsymbol{x}, \cdot)],$$

Hence

$$\frac{d\mathcal{F}(\mu_t)}{dt} = \langle \nabla_{W_2} \mathcal{F}(\mu_t), -\nabla_{W_2} \mathcal{F}(\mu_t) \rangle_{L^2(\mu_t)}
= -\mathbb{E}_{\mathbf{y} \sim \mu_t} \left[\|\mathbb{E}_{\mathbf{x} \sim \mu_t} [\nabla_2 \mathbf{k}_{\pi}(\mathbf{x}, \mathbf{y})] \|^2 \right]$$
(2)

F is indeed a Lyapunov functional for its W2 GF since (2)≤ 0.
 but difficult to identify a functional inequality to relate (2) to *F*(µt), and establish convergence in continuous time.

Stationary measures of the KSD flow

Consider a stationary measure μ_{∞} of the KSD flow, i.e **the dissipation** is null:

$$\frac{d\mathcal{F}(\mu_{\infty})}{dt} = 0$$

 $\Longrightarrow \int k_{\pi}(x,.)d\mu_{\infty}(x)$ is μ_{∞} -a.e equal to a constant function *c*.

If μ_{∞} has full support, since we can prove $\mathcal{H}_{k_{\pi}}$ does not contain non-zero constant functions, then $\mathcal{F}(\mu_{\infty}) = 0$.

If μ_{∞} is a discrete measure (as in practice) the dissipation can vanish even for $\mu \neq \pi$ because μ is not full-support.

Some results on stationary measures of the KSD flow

Lemma

Let x_0 such that $s(x_0) = 0$ and $J(s)(x_0)$ is invertible, and consider a translation-invariant kernel $k(x, y) = \phi(x - y)$, for $\psi \in C^1(\mathbb{R}^d)$. Then δ_{x_0} is a stable fixed measure of the KSD flow.

Lemma

Let \mathcal{M} be a plane of symmetry of π and consider a radial kernel $k(x, y) = \phi(||x - y||^2/2)$ with $\phi \in C^2$, then, for all $(x, y) \in \mathcal{M}^2$, $\nabla_2 k_{\pi}(x, y) \in T_{\mathcal{M}}(x)$ and \mathcal{M} is flow-invariant for the KSD flow, i.e. : for any μ_0 s.t. supp $(\mu_0) \subset \mathcal{M}$, then supp $(\mu_t) \subset \mathcal{M}$ for all $t \ge 0$.

Real world experiment 1 - Bayesian Logistic regression

Datapoints $d_1, \ldots, d_q \in \mathbb{R}^p$, and labels $y_1, \ldots, y_q \in \{\pm 1\}$.

Labels y_i are modelled as $p(y_i = 1 | d_i, w) = (1 + \exp(-w^\top d_i))^{-1}$ for some $w \in \mathbb{R}^p$.

The parameters *w* follow the law $p(w|\alpha) = \mathcal{N}(0, \alpha^{-1}I_p)$, and $\alpha > 0$ is drawn from an exponential law $p(\alpha) = \text{Exp}(0.01)$.

The parameter vector is then $x = [w, \log(\alpha)] \in \mathbb{R}^{p+1}$, and we use KSD-LBFGS to obtain samples from $p(x|(d_i, y_i)_{i=1}^q)$ for 13 datasets, with N = 10 particles for each.

Accuracy of the KSD descent and SVGD on bayesian logistic regression for 13 datasets.

Both methods yield similar results. KSD is better by 2% on one dataset.

2 - Bayesian Independent Component Analysis

ICA: $x = W^{-1}s$, where x is an observed sample in \mathbb{R}^{p} , $W \in \mathbb{R}^{p \times p}$ is the unknown square unmixing matrix, and $s \in \mathbb{R}^{p}$ are the independent sources.

1)Assume that each component has the same density $s_i \sim p_s$. 2) The likelihood of the model is $p(x|W) = \log |W| + \sum_{i=1}^{p} p_s([Wx]_i)$. 3)Prior: *W* has i.i.d. entries, of law $\mathcal{N}(0, 1)$.

The posterior is $p(W|x) \propto p(x|W)p(W)$, and the score is given by $s(W) = W^{-\top} - \psi(Wx)x^{\top} - W$, where $\psi = -\frac{p'_s}{p_s}$. In practice, we choose p_s such that $\psi(\cdot) = \tanh(\cdot)$. We then use the presented algorithms to draw particles $W \sim p(W|x)$.

Figure: Bayesian ICA results. Left: p = 2. Middle: p = 4. Right: p = 8. Each dot correspond to the Amari distance between an estimated matrix and the true unmixing matrix.