
Kernel Stein Discrepancy Descent

Anna Korba 1 Pierre-Cyril Aubin-Frankowski 2

Szymon Majewski 3 Pierre Ablin4

1CREST, ENSAE, Institut Polytechnique de Paris

2CAS, MINES ParisTech, Paris, France

3CMAP, Ecole Polytechnique, Institut Polytechnique de Paris

4CNRS and DMA, Ecole Normale Supérieure, Paris, France

ICML 2021

1/ 23



Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

2/ 23



Problem : Sample from a target distribution π over Rd , whose
density w.r.t. Lebesgue is known up to a constant Z :

π(x) =
π̃(x)

Z

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.
I Let D = (wi , yi)i=1,...,N observed data.

I Assume an underlying model parametrized by θ
(e.g. p(y |w , θ) gaussian)

=⇒ Likelihood: p(D|θ) =
∏N

i=1 p(yi |θ,wi).

I The parameter θ ∼ p the prior distribution.

Bayes’ rule : π(θ) := p(θ|D) = p(D|θ)p(θ)
Z

, Z =

∫
Rd

p(D|θ)p(θ)dθ.
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Sampling as optimization over distributions

Assume that π ∈ P2(Rd) =
{
µ ∈ P(Rd),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ), (1)

where D is a dissimilarity functional.

Examples:
I Wasserstein distances,
I f -divergences (KL, Chi-squared),
I Integral Probability Metrics (MMD)...

Starting from an initial distribution µ0 ∈ P2(Rd), one can then
consider the Wasserstein gradient flow of F over P2(Rd) to
converge to π.
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Contributions of the paper

Here we choose D as the Kernel Stein Discrepancy (KSD)

We propose an algorithm that is:
I score-based (∇ log π known)
I using a set of particles whose empirical distribution

minimizes the Kernel Stein Discrepancy
[Chwialkowski et al., 2016] relative to π

I easy to implement and to use (e.g. leverages L-BFGS) !

We study:
I its convergence properties (theoretically and numerically)
I its empirical performance compared to Stein Variational

Gradient Descent
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

For µ, π ∈ P2(Rd), the KSD of µ relative to π is

KSD(µ|π) =

√∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I a score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd).

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)
∂xi

.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)
∂xi

.
∂k(x , y)
∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)
∂xi

+
∂2k(x , y)
∂xi∂yi

.
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Stein identity and link with MMD
Under mild assumptions on k and π, the Stein kernel kπ is
p.s.d. and satisfies a Stein identity

∫
Rd

kπ(x , .)dπ(x) = 0.

Hence KSD is a MMD with kernel kπ:

MMD2(µ|π) =
∫

kπ(x , y)dµ(x)dµ(y) +
∫

kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

=KSD2(µ|π)
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KSD benefits

KSD can be computed when
I one has access to the score of π
I µ is a discrete measure, e.g. µ = 1

N
∑N

i=1 δx i , then :

KSD2(µ|π) = 1
N2

N∑
i,j=1

kπ(x i , x j).

KSD metrizes weak convergence [Gorham and Mackey, 2017] when:
I π is strongly log-concave at infinity (distantly dissipative),

e.g. true gaussian mixtures
I k has a slow decay rate, e.g. true when k is the IMQ kernel

defined by k(x , y) = (c2 + ‖x − y‖22)β for c > 0 and
β ∈ (−1,0).
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Time/Space discretization of the KSD gradient flow

Let F(µ) = KSD2(µ|π).
I Its Wasserstein gradient flow on P2(Rd) finds a continuous

path of distributions that minimize F .
I Different algorithms to approximate π depend on the time

and space discretization.

Discrete measures: For discrete measures µ̂ = 1
N
∑N

i=1 δx i ,
we have an explicit loss function

L([x i ]Ni=1) := F(µ̂) =
1

N2

N∑
i,j=1

kπ(x i , x j).

Then, (euclidean) gradient descent of L on the particles⇔
Wasserstein gradient descent of F for discrete measures.
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KSD Descent - algorithms
We propose two ways to implement KSD Descent:

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and requires
no choice of step-size!
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Related work
1. minimize the Kullback-Leibler divergence (requires
∇ log π), e.g. with Stein Variational Gradient descent (SVGD,
[Liu and Wang, 2016]).
Uses a set of N interacting particles and a p.s.d. kernel
k : Rd × Rd → R to approximate π:

x i
n+1 = x i

n − γ

 1
N

N∑
j=1

k(x i
n, x

j
n)∇ log π(x j

n) +∇1k(x j
n, x

i
n)

 ,
Does not minimize a closed-form functional for discrete
measures!

2. minimize the Maximum Mean Discrepancy
[Arbel et al., 2019, Mroueh et al., 2019]

x i
n+1 = x i

n − γ

 1
N

N∑
j=1

(
∇2k(x j

n, x
i
n)−∇2k(y j , x i

n)
) .

(requires samples (yj)
N
j=1 ∼ π ) 13/ 23
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Toy experiments - 2D standard gaussian

SVGD

MMD

KSD Grad KSD L-BFGS

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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Toy experiments - 1D standard gaussian
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Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 particles.
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2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions
the blue ones are the final positions
The light red arrows correspond to the score directions.

In the paper:
I theoretically: we explain how particles can get stuck in

planes of symmetry of the target π
I numerically: convergence fixed with an annealing

strategy: πβ(x) ∝ exp(−βV (x)) , with 0 < β ≤ 1 (i.e.
multiply the score by β.)
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Real world experiments
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one
dataset.
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Bayesian ICA.
Each dot correspond to the Amari
distance between an estimated
matrix and the true unmixing ma-
trix.

18/ 23



Outline

Introduction

Preliminaries on Kernel Stein Discrepancy

Sampling as Optimization of the KSD

Experiments

Theoretical properties of the KSD flow

19/ 23



Wasserstein-2 convexity of the KSD
The underlying geometry is the one of (P2(Rd),W2).

Our result: under mild assumptions on π and k , exponential
convergence of the KSD flow near π does not hold (even for π
gaussian!)
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Conclusion

Pros:

I KSD Descent is a very simple algorithm, and can be used with
L-BFGS [Liu and Nocedal, 1989] (fast, and does not require the
choice of a step-size as in SVGD)

I works well on log-concave targets (unimodal gaussian, Bayesian
logistic regression with gaussian priors)

Cons:

I KSD is not convex w.r.t. W2, and no exponential decay near
equilibrium holds

I does not work well on non log-concave targets (mixture of
isolated gaussians, Bayesian ICA)
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Open questions

I explain the convergence of KSD Descent when π is
log-concave?

I quantify propagation of chaos ? (KSD for a finite number of
particles vs infinite)
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Code

I Python package to try KSD descent yourself:
pip install ksddescent

I website: pierreablin.github.io/ksddescent/
I It also features pytorch/numpy code for SVGD.

Thank you for listening and happy to talk at the poster!
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Continuous dynamics of KSD Descent
Let F(µ) = 1

2 KSD2(µ|π). The KSD gradient flow is defined as
the flow induced by the continuity equation:

∂µt

∂t
+ div(µtvµt ) = 0, vµt := −∇W2F(µt).

For µt regular enough,

∇W2F(µt) = ∇
∂F(µt)

∂µ

∂F(µ)
∂µ : Rd → R is the differential of µ 7→ F(µ), evaluated at µ.

It is the unique function such that for any µ, µ′ ∈ P, µ′ − µ ∈ P:

lim
ε→0

1
ε
(F(µ+ ε(µ′ − µ))−F(µ)) =

∫
Rd

∂F(µ)
∂µ

(x)(dµ′ − dµ)(x).
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Wassertein gradient of the KSD
We have

∂F(µ)
∂µ

=

∫
kπ(x , .)dµ(x) = Ex∼µ[kπ(x , .)]

and under appropriate growth assumptions on kπ:

∇W2F(µ) = Ex∼µ[∇2kπ(x , ·)],

Hence

dF(µt)

dt
= 〈∇W2F(µt),−∇W2F(µt)〉L2(µt )

= −Ey∼µt

[
‖Ex∼µt [∇2kπ(x , y)]‖2

]
(2)

I F is indeed a Lyapunov functional for its W2 GF since (2)≤ 0.
I but difficult to identify a functional inequality to relate (2) to

F(µt), and establish convergence in continuous time.
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Stationary measures of the KSD flow

Consider a stationary measure µ∞ of the KSD flow, i.e the
dissipation is null:

dF(µ∞)

dt
= 0

=⇒
∫

kπ(x , .)dµ∞(x) is µ∞-a.e equal to a constant function c.

If µ∞ has full support, since we can prove Hkπ does not
contain non-zero constant functions, then F(µ∞) = 0.

If µ∞ is a discrete measure (as in practice) the dissipation
can vanish even for µ 6= π because µ is not full-support.
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Some results on stationary measures of the KSD flow

Lemma

Let x0 such that s(x0) = 0 and J(s)(x0) is invertible, and
consider a translation-invariant kernel k(x , y) = φ(x − y), for
ψ ∈ C1(Rd). Then δx0 is a stable fixed measure of the KSD flow.

Lemma

LetM be a plane of symmetry of π and consider a radial kernel
k(x , y) = φ(‖x − y‖2/2) with φ ∈ C2, then, for all (x , y) ∈M2,
∇2kπ(x , y) ∈ TM(x) andM is flow-invariant for the KSD flow,
i.e. : for any µ0 s.t. supp(µ0) ⊂M, then supp(µt) ⊂M for all
t ≥ 0.
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Real world experiment 1 - Bayesian Logistic
regression

Datapoints d1, . . . ,dq ∈ Rp, and labels y1, . . . , yq ∈ {±1}.
Labels yi are modelled as p(yi = 1|di ,w) = (1 + exp

(
−w>di

)
)−1 for

some w ∈ Rp.

The parameters w follow the law p(w |α) = N (0, α−1Ip), and α > 0 is
drawn from an exponential law p(α) = Exp(0.01).

The parameter vector is then x = [w , log(α)] ∈ Rp+1, and we use
KSD-LBFGS to obtain samples from p(x |

(
di , yi)

q
i=1

)
for 13 datasets,

with N = 10 particles for each.
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SVGD on bayesian logistic regression
for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one dataset.
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2 - Bayesian Independent Component Analysis
ICA: x = W−1s, where x is an observed sample in Rp, W ∈ Rp×p is
the unknown square unmixing matrix, and s ∈ Rp are the
independent sources.

1)Assume that each component has the same density si ∼ ps.
2) The likelihood of the model is p(x |W ) = log |W |+

∑p
i=1 ps([Wx ]i).

3)Prior: W has i.i.d. entries, of law N (0,1).

The posterior is p(W |x) ∝ p(x |W )p(W ), and the score is given by
s(W ) = W−> − ψ(Wx)x> −W , where ψ = − p′

s
ps

. In practice, we
choose ps such that ψ(·) = tanh(·). We then use the presented
algorithms to draw particles W ∼ p(W |x).
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Figure: Bayesian ICA results. Left: p = 2. Middle: p = 4. Right:
p = 8. Each dot correspond to the Amari distance between an
estimated matrix and the true unmixing matrix. 9/ 9
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