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Sampling

Sampling problem: Sample (=generate new examples) from a
target distribution π over Rd , given some information on π.

Two different settings:
1. π’s density w.r.t. Lebesgue measure is known up to an

intractable normalisation constant Z :

π(x) =
π̃(x)

Z
, π̃ known, Z unknown.

Example: Bayesian inference.

2. one has access to a set of samples of π : x1, . . . , xn ∼ π.

Example: (some) Neural networks, generative modelling
(GANS...).

We’ll focus on the first setting.
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Bayesian inference
Let D = (wi , yi )

m
i=1 a dataset of labelled examples (wi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by θ, e.g. :

y = g(w , θ) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over θ to fit the data.

1. Compute the Likelihood:

p(D|θ) =
m∏

i=1

p(yi |θ,wi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(wi , θ)‖2

)
.

2. Choose a prior distribution on the parameter:

θ ∼ p, e.g. p(θ) ∝ exp

(
−‖θ‖

2

2

)
.

3. Bayes’ rule yields:

π(θ) := p(θ|D) =
p(D|θ)p(θ)

Z
Z =

∫
Rd

p(D|θ)p(θ)dθ

i.e. π(θ) ∝ exp (−V (θ)) , V (θ) =
1
2

m∑
i=1

‖yi − g(wi , θ)‖2 +
‖θ‖2

2
.
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π is needed both for
I prediction for a new input w :

ypred =

∫
Rd

g(w , θ)dπ(θ)

I measure uncertainty on the prediction.

Given a discrete approximation µn = 1
n

n∑
j=1

δθj of π:

ypred ≈
1
n

n∑
j=1

g(w , θj).

Question: how can we build µn?
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Figure: Ensembling on deep neural networks.
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Sampling as optimisation
Notice that

π = argmin
µ∈P(Rd )

KL(µ|π), KL(µ|π) =

{ ∫
Rd log

(
µ
π (x)

)
dµ(x) if µ� π

+∞ else.

(does not depend on the normalisation constant Z in π(x) = π̃(x)/Z !)

Two ways to produce an approximation µn:

1. Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain whose law converges to π ∝ exp(−V )

Example: discretize an overdamped Langevin diffusion

dθt = −∇V (θt )+
√

2dBt =⇒ θl+1 = θl−γ∇V (θl )+
√

2γεl , εl ∼ N (0, Id )

Its law corresponds to a Wasserstein gradient flow of the KL
[Jordan et al., 1998].

2. Interacting particle systems, e.g. by considering other metrics or
functionals
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Difficult cases (in practice and in theory)
Recall that

π(θ) ∝ exp (−V (θ)) , V (θ) =
m∑

i=1

‖yi − g(wi , θ)‖2

︸ ︷︷ ︸
loss

+
‖θ‖2

2
.

I if V is convex (e.g. g(w , θ) = 〈w , θ〉) many sampling methods
are known to work quite well

I but if its not (e.g. g(w , θ) is a neural network), the situation is
much more delicate

A highly nonconvex loss surface, as is common in deep neural nets.
From https://www.telesens.co/2019/01/16/
neural-network-loss-visualization.
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Sampling as optimization over distributions

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional.

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.
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Euclidean gradient flow and continuity equation

Let V : Rd → R. Consider the gradient flow

x ′(t) = −∇V (x(t))

and assume x(0) random with density µ0. What is the dynamics
of the density µt of x(t) ? Let φ : Rd → R a test function.

d
dt

E(φ(x(t))) = −
∫
〈∇φ,∇V 〉µt (x)dx =

∫
φ(x)∇·(µt∇V )(x)dx ,

and
d
dt

E(φ(x(t))) =

∫
φ(x)

∂µt

∂t
(x)dx .

Therefore,
∂µt

∂t
=∇ · (µt∇V ).
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Setting - The Wasserstein space
Let P2(Rd ) denote the space of probability measures on Rd with finite
second moments, i.e.

P2(Rd ) = {µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞}

P2(Rd ) is endowed with the Wasserstein-2 distance from Optimal
transport :

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

∫
Rd×Rd

‖x − y‖2 ds(x , y) ∀ν, µ ∈ P2(Rd )

where Γ(ν, µ) is the set of possible couplings between ν and µ (joint
distributions on Rd × Rd with first marginals ν and µ).

Can also be written:

W 2
2 (ν, µ) = inf

(ρt ,vt )t∈[0,1]

{∫ 1

0
‖vt (x)‖2

L2(ρt )
dt(x) :

∂ρt

∂t
=∇ · (ρtvt ), ρ0 = ν, ρ1 = µ

}
.
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Definition : Let µ ∈ P2(Rd ), T : Rd → Rd . The pushforward
measure T#µ is characterized by:

I ∀ B meas. set, T#µ(B) = µ(T−1(B))

I x ∼ µ, T (x) ∼ T#µ

(Brenier’s theorem): Let µ, ν ∈ P2(Rd ) s.t. µ� Leb. Then, there
exists T ν

µ : Rd → Rd such that

I T ν
µ#µ = ν

I W 2
2 (µ, ν) = ‖I − T ν

µ ‖2
L2(µ) =

∫
‖x − T ν

µ (x)‖2dµ(x)

W2 geodesics?
ρ(0) = µ, ρ(1) = ν.

ρ(t) = ((1− t)I + tT ν
µ )#µ

6= ρ(t) = (1− t)µ+ tν︸ ︷︷ ︸
mixture
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The first variation of µ 7→ F(µ) evaluated at µ ∈ P, if it exists, is
the unique function ∂F(µ)

∂µ : Rd → R s. t. for any µ, µ′ ∈ P:

lim
ε→0

1
ε

[
F(µ+ ε(µ′ − µ))−F(µ)

]
=

∫
Rd

∂F(µ)

∂µ
(x)(dµ′ − dµ)(x).

The family µ : [0,∞]→ P, t 7→ µt satisfies a Wasserstein

gradient flow of F if distributionally:

∂µt

∂t
=∇ ·

(
µt∇W2F(µt )

)
,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein

gradient of F .
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WGF of Free energies
In particular, if the functional F is a free energy:

F(µ) =

∫
H(µ(x))dx︸ ︷︷ ︸

internal energy

+

∫
V (x)dµ(x)︸ ︷︷ ︸

potential energy

+

∫
W (x , y)dµ(x)dµ(y)︸ ︷︷ ︸

interaction energy

Then :
∂µt

∂t
=∇ ·

µt ∇(H ′(µt ) + V + W ∗ µt )︸ ︷︷ ︸
∇W2F(µ)

. (1)

For instance, if H = 0 then (1) rules the density µt of particles
xt ∈ Rd driven by :

dxt

dt
= −∇V (xt )−

∫
Rd
∇W (x , xt )dµt (x)

µt = Law(xt ).
15/ 49



(Some) unbiased time discretizations
For a step-size γ > 0:

1. Backward (expensive) [Jordan et al., 1998] :

µl+1 = JKOγF (µl)

where JKOγF (µl) = argmin
µ∈P2(Rd )

{
F(µ) +

1
2γ

W 2
2 (µ, µl)

}
.

2. Forward (cheap) :

µl+1 = expµl (−γ∇W2F(µl)) =
(
I − γ∇W2F(µl)

)
#
µl

where expµ : L2(µ)→ P, φ 7→ (I + φ)#µ,
and which corresponds in Rd to:

Xl+1 = Xl − γ∇W2F(µl)(Xl) ∼ µl+1, if Xl ∼ µl .
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Space discretization - Interacting particle system

Problem: the vector field depends on the unknown µl , the
density of the particle at time l .

Idea: replace it by the empirical measure of a system of n
interacting particles:

X 1
0 , . . . ,X

n
0 ∼ µ0

and for j = 1, . . . ,n:

X j
l+1 = X j

l − γ∇W2F(µ̂l)(X j
l )

= X j
l −

1
γ

[
∇V (X j

l ) +
1
n

n∑
i=1

∇W (X j
l ,X

i
l )

]

where µ̂l = 1
n
∑n

i=1 δX j
l
.
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Goal: Sample from a target distribution π, whose density w.r.t.
Lebesgue measure is known up to an intractable normalisation
constant Z :

π(x) =
π̃(x)

Z
, π̃ known, Z unknown.

Remember that

π = argmin KL(µ|π), KL(µ|π) =

∫
log
(µ
π

)
dµ if µ� π

and that we can consider the Forward time discretisation:

xl+1 = xl − γ∇W2 KL(µl |π)(xl), xl ∼ µl ,

where ∇W2 KL(µl |π) = ∇∂ KL(µl |π)
∂µ = ∇ log

(µl
π (.)

)
.

Problem: µl , hence ∇ log(µl) is unknown and has to be
estimated from a set of particles.
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel
((k(xi , xj )

n
i=1) is a p.s.d. matrix for all x1, . . . , xn ∈ Rd )

I examples:
I the Gaussian kernel k(x , y) = exp

(
−‖x−y‖2

h

)
I the Laplace kernel k(x , y) = exp

(
−‖x−y‖

h

)
I the inverse multiquadratic kernel

k(x , y) = (c + ‖x − y‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}

I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .
I assume

∫
Rd×Rd k(x , x)dµ(x) <∞ for any µ ∈ P(Rd ),=⇒ Hk ⊂ L2(µ).

I It satisfies the reproducing property:

∀ f ∈ Hk , x ∈ Rd , f (x) = 〈f , k(x , .)〉Hk .
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Stein Variational Gradient Descent [Liu and Wang, 2016]

Consider the following metric depending on k

W 2
k (µ0, µ1) = inf

µ,v

{∫ 1

0
‖vt (x)‖2Hd

k
dt(x) :

∂µt

∂t
=∇ · (µtvt )

}
.

Then, the Wk gradient flow of the KL writes as the PDE
[Liu, 2017], [Duncan et al., 2019]:

∂µt

∂t
+∇·

(
µtPµt∇ log

(µt

π

))
= 0, Pµ : f 7→

∫
k(x , .)f (x)dµ(x).

It converges to π ∝ exp(−V ) under mild conditions on k and if
V grows at most polynomially [Lu et al., 2019].
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SVGD algorithm
SVGD trick: applying the kernel integral operator to the W2 gradient
of KL(·|π) leads to

Pµ∇ log
(µ
π

)
(·) =

∫
∇ log

(µ
π

)
(x)k(x , .)dµ(x)

=

∫
−∇ log(π(x))k(x , .)dµ(x) +

∫
∇(µ(x))k(x , .)dx

I.P.P.
= −

∫
[∇ log π(x)k(x , ·) +∇xk(x , ·)]dµ(x),

under appropriate boundary conditions on k and π, e.g.
lim‖x‖→∞ k(x , ·)π(x)→ 0.

Algorithm : Starting from n i.i.d. samples (X i
0)i=1,...,n ∼ µ0, SVGD

algorithm updates the n particles as follows :

X i
l+1 = X i

l − γ

1
n

n∑
j=1

k(X i
l ,X

j
l )∇X j

l
log π(X j

l ) +∇X j
l
k(X j

l ,X
i
l )


= X i

l − γPµn
l
∇ log

(
µn

l
π

)
(X i

l ), with µn
l =

1
n

n∑
j=1

δX j
l
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SVGD in practice
I more than 600 citations for [Liu and Wang, 2016]

I Relative empirical success in Bayesian inference and more
recently deep ensembles

I It can suffer for multimodal distributions
[Wenliang and Kanagawa, 2020], underestimate the target variance
[Ba et al., 2021], but still can be very efficient on difficult sampling
problems.

From Repulsive Deep Ensembles are Bayesian. F. D’angelo, V. Fortuin. Conference on Neural Information
Processing Systems (NeurIPS 2021). 23/ 49



Continuous-time dynamics of SVGD

∂µt

∂t
+∇ ·

(
µtPµt∇ log

(µt

π

))
= 0, Pµ : f 7→

∫
k(x , .)f (x)dµ(x).

How fast the KL decreases along SVGD dynamics? Apply the chain
rule in the Wasserstein space:

d KL(µt |π)

dt
=
〈

Vt ,∇ log
(µt

π

)〉
L2(µt )

= −
∥∥∥Pµt∇ log

(µt

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µt |π)

≤ 0.

On the r.h.s. we have the squared Kernel Stein discrepancy (KSD)
[Chwialkowski et al., 2016] or Stein Fisher information of µt relative to π:∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

= 〈Pµ,k∇ log
(µ
π

)
,Pµ,k∇ log

(µ
π

)
〉Hk

=

∫∫
∇ log

(µ
π

(x)
)
∇ log

(µ
π

(y)
)

k(x , y)dµ(x)dµ(y).

Recall that the Fisher divergence is defined as ‖∇ log
(
µ
π

)
‖2

L2(µ).
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Exponential decay?

Assume π satisfies the Stein log-Sobolev inequality [Duncan et al., 2019]
with constant λ > 0 if for any µ:

KL(µ|π) ≤ 1
2λ

KSD2(µ|π).

If it holds, we can conclude with Gronwall’s lemma:

d KL(µt |π)

dt
= −KSD2(µt |π) ≤ −2λKL(µt |π) =⇒ KL(µt |π) ≤ e−2λt KL(µ0|π).

When is Stein log-Sobolev satisfied? not so well understood
[Duncan et al., 2019]:

I it fails to hold if k is too regular with respect to π (e.g. k
bounded, π Gaussian)

I some working examples in dimension 1, open question in
greater dimensions...
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A descent lemma in discrete time for SVGD [Korba et al., 2020]

Idea: in optimisation, descent lemmas can be shown if the objective
function has a bounded Hessian.

Assume that π ∝ exp(−V ) where ‖HV (x)‖ ≤ M.
The Hessian of the KL at µ is an operator on L2(µ):

〈f ,HessKL(.|π)(µ)f 〉L2(µ) = EX∼µ
[
〈f (X ),HV (X )f (X )〉+ ‖Jf (X )‖2

HS
]

and yet, this operator is not bounded due to the Jacobian term.

However: In the case of SVGD, the descent directions f are
restricted to Hk (bounded functions for bounded k ).

Proposition: Assume (boundedness of k and ∇k , HV and moments
on the trajectory), then for γ small enough:

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Pµl∇ log

(µl

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µl |π)

.
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Rates in KSD
Consequence of the descent lemma: for γ small enough,

min
l=1,...,L

KSD2(µl |π) ≤ 1
L

L∑
l=1

KSD2(µl |π) ≤ KL(µ0|π)

cγL
.

This result does not rely on:
I convexity of V
I nor on Stein log Sobolev inequality
I only on smoothness of V .

in contrast with many convergence results on LMC.

The KSD metrizes convergence for instance when
[Gorham and Mackey, 2017]:
I π is distantly dissipative (log concave at infinity, e.g. mixture of

Gaussians)
I k is the IMQ kernel defined by k(x , y) = (c2 + ‖x − y‖2

2)β for
c > 0 and β ∈ (−1,0).
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Open question 1: Rates in terms of the KL objective?
To obtain rates, one may combine a descent lemma (1) of the
form

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Sµn∇ log

(µl

π

)∥∥∥2

Hk

and the Stein log-Sobolev inequality (2) with constant λ:

KL(µl+1|π)−KL(µl |π) ≤︸︷︷︸
(1)

−cγ
∥∥∥Pµl∇ log

(µn

π

)∥∥∥2

Hk

≤︸︷︷︸
(2)

−cγ2λKL(µn|π).

Iterating this inequality yields KL(µl |π) ≤ (1− 2cγλ)l KL(µ0|π).

"Classic" approach in optimization [Karimi et al., 2016] or in the
analysis of LMC.

Problem: not possible to combine both.
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First Experiments
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD2(k ? µn

l |π),KL(k ? µn
l |π) to 0.
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Not possible to combine both....
Given that both the kernel and its derivative are bounded, the
equation

∫ d∑
i=1

[(∂iV (x))2k(x , x)

− ∂iV (x)(∂1
i k(x , x) + ∂2

i k(x , x)) + ∂1
i ∂

2
i k(x , x)]dπ(x) <∞ (2)

reduces to a property on V which, as far as we can tell, always holds
on Rd ...

and this implies that Stein LSI does not hold [Duncan et al., 2019].

Remark : Equation (2) does not hold for :

I k polynomial of order ≥ 3, and

I π with exploding β moments with β ≥ 3 (ex: a student
distribution, which belongs to P2 the set of distributions with
bounded second moment).
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Open question 2: SVGD quantisation
The quality of a set of points (x1, . . . , xn) can be measured by
the integral approximation error:

E(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (x i)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ . (3)

(a) i.i.d. (b) SVGD Gaussian k (c) SVGD Laplace k

For i.i.d. points or MCMC iterates, (3) is of order n−
1
2 . Can we

bound (3) for SVGD final states?

Ongoing work with L. Xu and D. Slepcev.
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Outline

Problem and Motivation

Wasserstein Gradient Flows

Part I - Stein Variational Gradient Descent

Part II : Sampling as optimization of the KSD/MMD
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A lot of problems previously came from the fact that the KL is not
defined for discrete measures µn. Can we consider functionals that
are well-defined for µn?

Remember the Kernel Stein discrepancy of µ relative to π:

KSD2(µ|π) =
∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

, Pµ,k : f 7→
∫

f (x)k(x , .)dµ(x).

With several integration by parts we have:

KSD2(µ|π) =
∥∥∥Pµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫ ∫
∇ log

(µ
π

(x)
)
∇ log

(µ
π

(y)
)

k(x , y)dµ(x)dµ(y)

=

∫∫
∇ log π(x)T∇ log π(y)k(x , y) +∇ log π(x)T∇2k(x , y)

+∇1k(x , y)T∇ log π(y) +∇ ·1 ∇2k(x , y)dµ(x)dµ(y)

:=

∫∫
kπ(x , y)dµ(x)dµ(y).

can be written in closed-form for discrete measures µ.
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A lot of problems previously came from the fact that the KL is not
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KSD Descent - algorithms
We propose two ways to implement KSD Descent:

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!
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L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xn+1 = xn − γnB−1
n ∇L(xn) := xn + γndn (4)

where B−1
n is a p.s.d. matrix approximating the inverse Hessian at xn.

Step1. (requires ∇L) It computes a cheap version of dn based on
BFGS recursion:

B−1
n+1 =

(
I − ∆xnyT

n

yT
n ∆xn

)
B−1

n

(
I − yn∆xT

n

yT
n ∆xn

)
+

∆xn∆xT
n

yT
n ∆xn

where ∆xn = xn+1 − xn

yn = ∇L(xn+1)−∇L(xn)

Step2. (requires L and ∇L) A line-search is performed to find the best
step-size in (4) :

L(xn + γndn) ≤ L(xn) + c1γn∇L(xn)T dn

∇L(xn + γndn)T dn ≥ c2∇L(xn)T dn
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Toy experiments - 2D standard gaussian

SVGD KSD Grad KSD L-BFGS

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size

0.0 0.1 0.2

Time (s.)

10−1

K
L

(µ
,π

)

0.0 0.1 0.2

Time (s.)

101

K
S

D
(µ
,π

)

KSD SVGD, small step SVGD, good step SVGD, big step

Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 particles.
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2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions
the blue ones are the final positions
The light red arrows correspond to the score directions.
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More initializations

Var\Init on the s.a. close to s.a.
Gaussian i.i.d.

init

0.1

0.3

2

Green crosses : initial particle positions
Blue crosses : final positions
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable β : πβ(x) ∝ exp(−βV (x)) ,
with 0 < β ≤ 1 (i.e. multiply the score by β.)

β = 1 β = 0.1 β = 0.1→ 1

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed [Lee et al., 2018].
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Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ≈ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.

Random KSD SVGD
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100
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Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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Theoretical properties

Stationary measures:

I we show that if a stationary measure µ∞ is full support, then
F(µ∞) = 0.

I however, we also show that if supp(µ0) ⊂M, whereM is a
plane of symmetry of π, then for any time t it remains true for µt :
supp(µt ) ⊂M.

Explain convergence in the log-concave case? again an open
question:

I the KSD is not geodesically convex

I it is not strongly geo convex near the global optimum π

I convergence of the continuous dynamics can be shown with a
functional inequality, but which does not hold for discrete
measures
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First strategy : obtain a functional inequality
How fast F(µt ) decreases along its WGF ?

∂µt

∂t
=∇ · (µtVt ), Vt = ∇W2F(µt )

dF(µt )

dt
=
〈
Vt ,∇W2F(µt )

〉
L2(µt )

= −
∥∥∇W2F(µt )

∥∥2
L2(µt )

= −‖Ex∼µt [∇2k(x , y)]− Ex∼π[∇2k(x , y)]‖2L2(µt )

= −‖∇fµt ,π‖
2
L2(µt )︸ ︷︷ ︸

‖fµt ,π‖Ḣ−1(µt )

where fµt ,π = Ex∼µt [k(x , .)]− Ex∼π[k(x , .)].

It can be shown that:

‖fµt ,π‖2Hk
≤ ‖fµt ,π‖Ḣ(µt )

‖µt − π‖Ḣ−1(µt )︸ ︷︷ ︸
sup‖g‖2

Ḣ(µt )
≤1 |

∫
gdµt−

∫
gdπ|
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Ḣ(µt )
≤1 |

∫
gdµt−

∫
gdπ|

44/ 49



Hence, if ‖µt − π‖Ḣ−1(µt )
≤ C for all t ≥ 0, we have

dF(νt )

dt
≤ −CF(νt )

2, hence

F(µt ) ≤
1

F(µ0) + 4C−1t

where F(µ0) = 1
2 MMD2(µt , π).

Problems:
I depends on the whole sequence (µt )t≥0 (not only π)
I hard to verify in practice
I we observed convergence issues in practice (more for the

MMD than the KSD)
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Second strategy : geodesic convexity of the KSD?

Let ψ ∈ C∞c (Rd ) and the path ρt = (I + t∇ψ)#µ for t ∈ [0,1].

Define the quadratic form HessµF(ψ,ψ) := d2

dt2

∣∣∣
t=0
F(ρt ),

which is related to the W2 Hessian of F at µ.

For ψ ∈ C∞c (Rd ), we have

HessµF(ψ,ψ) = Ex ,y∼µ

[
∇ψ(x)T∇1∇2kπ(x , y)∇ψ(y)

]
+ Ex ,y∼µ

[
∇ψ(x)T H1kπ(x , y)∇ψ(x)

]
.

The first term is always positive but not the second one.

=⇒ the KSD is not convex w.r.t. W2 geodesics.
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Third strategy : curvature near equilibrium?
What happens near equilibrium π? the second term vanishes
due to the Stein property of kπ and :

Hessπ F(ψ,ψ) = ‖Sπ,kπLπψ‖2Hkπ
≥ 0

where

Lπ : f 7→ −∆f − 〈∇ log π,∇f 〉Rd

Sµ,kπ : f 7→
∫

kπ(x , .)f (x)dµ(x) ∈ Hkπ =
{

kπ(x , .), x ∈ Rd
}

Question: can we bound from below the Hessian at π by a
quadratic form on the tangent space of P2(Rd ) at π (⊂ L2(π))?

‖Sπ,kπLπψ‖2Hkπ
= Hessπ F(ψ,ψ) ≥ λ‖∇ψ‖2L2(π) ?

That would imply exponential decay of F near π.
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Curvature near equilibrium - negative result
The previous inequality

‖Sπ,kπLπψ‖2Hkπ
≥ λ‖∇ψ‖2L2(π)

I can be seen as a kernelized version of the Poincaré
inequality for π :

‖Lπψ‖2L2(π) ≥ λπ‖∇ψ‖
2
L2(π).

I can be written:

〈ψ,Pπ,kπψ〉L2(π) ≥ λ〈ψ,L−1
π ψ〉L2(π),

where Pπ,kπ : L2(π)→ L2(π), f 7→
∫

kπ(x , .)f (x)dπ(x).

Theorem : Let π ∝ e−V . Assume that V ∈ C2(Rd ), ∇V is
Lipschitz and Lπ has discrete spectrum. Then exponential
decay near equilibium does not hold.
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Conclusion
I Mixing kernels and Wasserstein gradient flows enable to design

deterministic interacting particle systems

I They can provide a better approximation of the target for a finite
number of particles

I Theory does not match practice yet
I Numerics can be improved, via perturbed dynamics, change of

geometry...
I Python package to try KSD descent:

pip install ksddescent
website: pierreablin.github.io/ksddescent/
It also features pytorch/numpy code for SVGD.

Thank you!
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