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Sampling problem: Sample (=generate new examples) from a
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Sampling

Sampling problem: Sample (=generate new examples) from a
target distribution = over RY, given some information on .

Two different settings:

1. «’s density w.r.t. Lebesgue measure is known up to an
intractable normalisation constant Z :

m(x) = W(ZX), 7 known, Z unknown.

Example: Bayesian inference.
2. one has access to a set of samples of 7 : Xxy,...,Xp ~ 7.

Example: (some) Neural networks, generative modelling
(GANS...).

We'll focus on the first setting.
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Bayesian inference

Let D = (w;, y;)[", a dataset of labelled examples (W,,y,) e " Pyata-
Assume an underlying model parametrized by 69, e.g.

y=9(w,0)+e e~N(0,I)
Goal: learn the best distribution over ¢ to fit the data.

1. Compute the Likelihood:

p(D|0) = Hp yilo, wy) 0<exP<Z||YI g(w;, 0 >

2. Choose a prior distribution on the parameter:

_lieg?
60 ~p, eg.p(f)xexp 5 )
3. Bayes’ rule yields:

a(0) = plop) = PEPPEL z— [ poioypieyas

2
ie. m(0) o exp (— V(9)), ZZHJ’I g(wi, )| + ||92H'



7 is needed both for
» prediction for a new input w:

Ypred = /Rd g(w,0)dr(0)

» measure uncertainty on the prediction.



7 is needed both for
» prediction for a new input w:

Ypred = /Rd g(w,0)dr(0)

» measure uncertainty on the prediction.

n
Given a discrete approximation i, = 1 3" &y, of
=1

10
Ypred = n Z;Q(Wa 0;)-
j:

Question: how can we build ;.,?
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Figure: Ensembling on deep neural networks.
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Sampling as optimisation
Notice that

| log (7(x)) du(x) if p<m
- KL KL(ufr) = { Jro o8 (%
= argmin KL(ulr), - KLlr) = { ! else.

(does not depend on the normalisation constant Z in =(x) = #(x)/Z )



Sampling as optimisation
Notice that

m = argmin KL(p|7),

REP(RY)

KL(p|m) = { {_R(;log (%(X)) du(x) g|§e_<< T

(does not depend on the normalisation constant Z in =(x) = #(x)/Z )
Two ways to produce an approximation p:

1. Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain whose law converges to m « exp(— V)

Example: discretize an overdamped Langevin diffusion
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Sampling as optimisation
Notice that

m = argmin KL(p|7),

REP(RY)

KL(p|m) = { {_R(;log (%(X)) du(x) g|§e_<< T

(does not depend on the normalisation constant Z in =(x) = #(x)/Z )
Two ways to produce an approximation p:

1. Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain whose law converges to m « exp(— V)

Example: discretize an overdamped Langevin diffusion

di; = =V V(0;)+V2dB; = 041 = 0,—yV V(0))++/27e1, e ~ N (0, Iy)

Its law corresponds to a Wasserstein gradient flow of the KL

2. Interacting particle systems, e.g. by considering other metrics or
functionals



Difficult cases (in practice and in theory)
Recall that

7(6) o exp (— V(6)). Zny,— g(w; 0) 2+ 101

5

loss

» if Vis convex (e.g. g(w,0) = (w, §)) many sampling methods
are known to work quite well

> but if its not (e.g. g(w, ) is a neural network), the situation is
much more delicate

A highly nonconvex loss surface, as is common in deep neural nets.
From https://www.telesens.co/2019/01/16/
neural-network-loss-visualization.


https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.

Sampling as optimization over distributions

Assume that 7 € Po(RY) = {u € P(RY), [ |Ix|2du(x) < oo}

The sampling task can be recast as an optimization problem:

m = argmin D(u|r) := F(u),
peP2(RY)

where D is a dissimilarity functional.

Starting from an initial distribution 19 € P2(R?), one can then
consider the Wasserstein gradient flow of F over P,(RY) to
transport 1o to 7.
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Wasserstein Gradient Flows
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Euclidean gradient flow and continuity equation
Let V : RY — R. Consider the gradient flow
X'(t) = =V V(x(t))

and assume x(0) random with density 1. What is the dynamics
of the density s of x(t) ? Let ¢ : R? — R a test function.

;E((Z)(X(t))) /<V¢ VV)ui(x)dx = /(b (1 VV)(x)ax,

8
/¢ Mt
Opt

ot V- (uVV).

and

Therefore,
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Setting - The Wasserstein space
Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.

Pa(B) = (€ PR, [ |xdu(x) < oc)

P2(RY) is endowed with the Wasserstein-2 distance from Optimal
transport :

W)= inf [ - yIPdstey) Ve Pa(R?)
sel(v,u) JRd xRd

where I'(v, 1) is the set of possible couplings between v and p (joint
distributions on R? x RY with first marginals v and p).

Can also be written:

0
Wz (v, 1) 'nf {/ IVe(x) 13, () - pt V- (ptvi), po = v, p1 = M}

(pt;vt) tefo,1]
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Definition : Let u € Po(RY), T: R? — RY. The pushforward
measure T4 is characterized by:

> Vv B meas. set, Tuu(B) = u(T~1(B))

> X~ p, T(X) ~ Typ
(Brenier’s theorem): Let i, v € P»(RY) s.t. 4 < Leb. Then, there
exists T : RY — R such that

> TV Ll =V

> Wi(p,v) = I1 =TI, = [ Ix = T (x)IPdu(x)

W, geodesics?

p(0) = p, p(1) = v. Y

p(t) = (1 =)+ 1T )p

#p(t)=(1—-Hu+tv

mixture



Wasserstein gradient flows (WGF) (ambrosio et al. 200¢)

The first variation of . — F(u) evaluated at i € P, if it exists, is

the unique function ‘d’;/(f) :RY - Rs. t. forany u, i/ € P:

e—0 €

ou

i 7+ o’ =) = 7] = [ 22 )~ )
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Wasserstein gradient flows (WGF)

The family u : [0,00] — P, t — u; satisfies a Wasserstein
gradient flow of F if distributionally:

0

% =V (utVw,F(ur))

where Vy, F(u) := Vag—l(j‘) € L?(u) denotes the Wasserstein
gradient of F.



WGF of Free energies

In particular, if the functional 7 is a free energy:

P00 = [ Hut)ax+ [ Vixdutx /Wx y)du(x)du(y)

internal energy potential energy interaction energy
. 8/“ o /
Then : =V wVH (i) +V+Wsp) . (1)
VW}(/’)

For instance, if H = 0 then (1) rules the density u; of particles
x; € RY driven by :

ax,
7; =-VV(x)— | VW(x, x)dus(x)
Rd

Mt = Law(xt).



(Some) unbiased time discretizations

For a step-size v > 0:
1. Backward (expensive)

pi+1 = JKO,#(1)

1
where JKO,z(py) = argmin {F(u) + sz(u,u/)} .
HEPa () 2



(Some) unbiased time discretizations

For a step-size v > 0:
1. Backward (expensive)

pi+1 = JKO,#(1)

1
where JKO,z(py) = argmin {F(u) + WZZ(M,M/)} .
HEPa () 2

2. Forward (cheap) :
it = €5 (—y VW, F () = (1= YV o F (1)) o

where exp, : L2(1) — P, ¢ = (I + ¢)pp,
and which corresponds in R? to:

Xiv1 = Xi = AV F()(X) ~ priger, 1 X~ puy.
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Space discretization - Interacting particle system

Problem: the vector field depends on the unknown g, the
density of the particle at time /.

Idea: replace it by the empirical measure of a system of n
interacting particles:

X3, X5~ o
andforj=1,...,n:
Xl =X - szfm,)(xf)
1

_x/_; vV(X) + va X!, X))
i=1

~ n
where /i, = 137 | O



Outline

Part | - Stein Variational Gradient Descent
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Goal: Sample from a target distribution 7, whose density w.r.t.
Lebesgue measure is known up to an intractable normalisation
constant Z :

(x) = > 7 known, Z unknown.
Remember that
m = argmin KL(p|7), KL(p|7) = /Iog(ﬁ)d,u ifp<m
and that we can consider the Forward time discretisation:
X141 = X — YV, KL(|m)(X1), X1~

where Vi, KL(|m) = VZEHUID — G log(L(.)).

Problem: ., hence V log(u,) is unknown and has to be
estimated from a set of particles.
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Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—w

> the Laplace kernel k(x,y) = eXP(—w)

» the inverse multiquadratic kernel
k(x.y) = (c+ [x = yll)~" with 3 €]0, 1]
Hy its corresponding RKHS (Reproducing Kernel Hilbert Space):

v

m
Hy = {Zaik(-,x,'); meN; ay,...,am € R, X1,...,Xm€]Rd}

i=1

v

Hy is a Hilbert space with inner product (., .)3;, and norm ||. ||,
assume [gq, gs K(X, X)du(x) < oo for any p € P(RY),=> Hy C L3(p).
It satisfies the reproducing property:

Vo ofeHk, xeRI F(x) = (f,k(X,.))n,-

vy



Stein Variational Gradient Descent

Consider the following metric depending on k

. 1 0
W2 (uo, p11) = Lnj {/O ‘|Vt(x)’|2Hfjdt(X) : % =V (uvr) o

Then, the W, gradient flow of the KL writes as the PDE

Oput e\ _
9 (P iog (1)) =0, P,,.fH/k(x,.)f(x)du(x).

It converges to 7 o exp(— V) under mild conditions on k and if
V grows at most polynomially



SVGD algorithm

SVGD trick: applying the kernel integral operator to the W, gradient
of KL(:|7) leads to

P 1og (4) () = [ Viog (%) Gok(x. )u(x)
- / ¥ log(m(x))K(x, ) du(x) + / V(u(x))k(x, .)dx

@f_/wmmuMUA+VMWJWMﬁ

under appropriate boundary conditions on k and =, e.g.
lim|x||—o0 K(X, -)m(x) — 0.



SVGD algorithm

SVGD trick: applying the kernel integral operator to the W, gradient
of KL(~|7r) leads to

PHV|og /Vlog Yk(x,.)du(x)
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SVGD in practice

» more than 600 citations for

> Relative empirical success in Bayesian inference and more

recently deep ensembles

» It can suffer for multimodal distributions
, underestimate the target variance
, but still can be very efficient on difficult sampling

problems.
AUROC(H) AUROCMD) Accuracy H,/H, MD,/MD; ECE NLL

Deep ensemble [38] 0.958+0.001 0.97540.001 91.12240.013  6.25740.005 6.394:0.001  0.012+0.001  0.129+0.001
= SVGD [46] 0.960+0.001  0.973+0.001 91.13440.024 6.315+0.019 6.395+£0.018  0.014+0.001  0.127+0.001
v f-SVGD [67] 0.956+0.001  0.975+0.001 89.88440.015  5.65240.009 6.531£0.005 0.013+0.001 0.15040.001
Z kde-WGD (ours) 0.9604+0.001  0.970+0.001 91.2384+0.019  6.5874+0.019 6.3794+0.018 0.01440.001  0.12840.001
% sge-WGD (ours) 0.960+0.001  0.970+0.001 91.31240.016  6.5624+0.007 6.3634+0.009  0.0124+0.001  0.12840.001
-_g ssge-WGD (ours) 0.968+0.001  0.979+0.001 91.1984+0.024  6.52240.009 6.6104+0.012  0.0124+0.001  0.13040.001
% kde-fWGD (ours) 0.971+0.001  0.980+0.001 91.2604+0.011  7.0794+0.016  6.8874+0.015 0.01540.001  0.125+0.001
= sge-fWGD (ours) 0.969+0.001  0.978+0.001 91.19240.013  7.07640.004 6.9004+0.005 0.0154+0.001  0.125+0.001

ssge-fWGD (ours) 0.971+0.001  0.980+0.001 91.240+0.022  7.129+0.006 6.951:£0.005 0.016+0.001  0.124+0.001

Deep ensemble [38]  0.843+0.004 0.736+0.005 85.5524+0.076  2.2444+0.006 1.667+0.008 0.0494+0.001 0.27740.001

SVGD [46] 0.8254+0.001  0.71040.002 85.14240.017  2.1064+0.003 1.5674+0.004 0.05240.001 0.28740.001
. fSVGD [67] 0.7834+0.001  0.71240.001 84.5104+0.031  1.9684+0.004 1.62440.003 0.0494+0.001 0.29240.001
= kde-WGD (ours) 0.838+0.001  0.735+0.004 85.904+0.030 2.2054+0.003 1.6614+0.008 0.05340.001  0.276+0.001
< sge-WGD (ours) 0.8374+0.003  0.725+0.004 85.79240.035 2.21440.010 1.63440.004 0.05140.001  0.275+0.001
E ssge-WGD (ours) 0.832+0.003  0.73140.005 85.638+0.038  2.182+0.015 1.655+0.001 0.049+0.001  0.276+0.001

kde-fWGD (ours) 0.791+0.002  0.7581:0.002 84.888+0.030  1.970+0.004 1.749+0.005 0.044:£0.001 0.282+0.001

sge-fWGD (ours) 0.795+0.001  0.75440.002 84.766+0.060 1.984+0.003 1.729+0.002 0.047+0.001 0.288+0.001

ssge-fWGD (ours) 0.792+0.002  0.75240.002 84.76240.034  1.970£0.006 1.723+0.005 0.046+0.001 0.286+0.001

From Repulsive Deep Ensembles are Bayesian. F. D'angelo, V. Fortuin. Conference on Neural Information

Processing Systems (NeurlPS 2021).



Continuous-time dynamics of SVGD

Out Mt . .
StV (1P, V10g (;)) =0, P,:fe /k(x,.)f(x)du(x).
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Continuous-time dynamics of SVGD

%/;fW (utP/,Vlog (“’)) =0, P,: fl—)/k )f(x)dp(x).

How fast the KL decreases along SVGD dynamics? Apply the chain
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Continuous-time dynamics of SVGD

%/;tw (utP/,Vlog (“’)) =0, P,: fl—)/k )f(x)dp(x).

How fast the KL decreases along SVGD dynamics? Apply the chain
rule in the Wasserstein space:
& 2
(7))

dKLC(;tlw) <v Vk)g( )>Lz(m) _‘ )

On the r.h.s. we have the squared Kernel Stein discrepancy (KSD)
or Stein Fisher information of y; relative to =

H kVIog( ) i <PM7kV|og(%>,PmkVIog(%)mk

/ v log () v tog (2(1) ) k(x, y)di(x)du(y).

<o0.

KSD2(ju¢| )




Exponential decay?

Assume 7 satisfies the Stein log-Sobolev inequality
with constant A > 0 if for any u:

1 2
< — :
KL(ulm) < 55 KSD*(ulm)
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Exponential decay?

Assume 7 satisfies the Stein log-Sobolev inequality
with constant A > 0 if for any p:

1 e
< — .
KL(ulm) < 5y KSD(ul)

If it holds, we can conclude with Gronwall’s lemma:

d KL(pt|m)

A =~ KSDR(plr) < ~2AKL(pelr) = KL(palm) < € 2 KL(juol).

When is Stein log-Sobolev satisfied? not so well understood

» it fails to hold if k is too regular with respect to 7 (e.g. k
bounded, = Gaussian)

» some working examples in dimension 1, open question in
greater dimensions...
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A descent lemma in discrete time for SVGD

Idea: in optimisation, descent lemmas can be shown if the objective
function has a bounded Hessian.

Assume that = o exp(— V) where ||Hy(x)|| < M.
The Hessian of the KL at y is an operator on L2(y):
(f, HesskL(m) (1)F) 12 = Exepe [(F(X), Hu(X)F(X)) + [[JF(X)IIFss]

and yet, this operator is not bounded due to the Jacobian term.

However: In the case of SVGD, the descent directions f are
restricted to H, (bounded functions for bounded k).

Proposition: Assume (boundedness of k and Vk, Hy, and moments
on the trajectory), then for + small enough:

NG
KL(er+1m) = KL(ul) < ~c || PV log ()

'Hk.

KSD2(yu|)



Rates in KSD

Consequence of the descent lemma: for v small enough,

ZL _ KL(go)
2 0

This result does not rely on:
» convexity of V
» nor on Stein log Sobolev inequality
» only on smoothness of V.
in contrast with many convergence results on LMC.

The KSD metrizes convergence for instance when

» 1 is distantly dissipative (log concave at infinity, e.g. mixture of
Gaussians)

> kis the IMQ kernel defined by k(x, y) = (¢® + ||x — y|3)? for
c>0andpge(-1,0).



Open question 1: Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the
form

KL(pr1m) — KL(pu|m) < CWHSMVIog (M)‘

s

Hy

and the Stein log-Sobolev inequality (2) with constant A:

B |12

KL —KL < _ HP log (17 <
(i) —KLuim) < ~¢, [PV iog (2) [ <
a ©

— ¢ 2A KL (tn|7).

—

lterating this inequality yields KL(zy[7) < (1 —2¢,\)/ KL(uo|7).

"Classic" approach in optimization orin the
analysis of LMC.

Problem: not possible to combine both.



First Experiments

Probability of the positi

Itein between current iterate and pi

Initial distribution

Evolution of Istein

100 100 10
Number of iterations

500" iteration

3

Probability of the position

KL between current iterate and pi

15 10 5 o H 10 15
Position of particles
Evolution of KL
0.99~{n}
0 25 50 75 100 125 150 175 200

Number of iterations

Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD?(k x u7'|r), KL(k % uJ'|r) to 0.



Not possible to combine both....

Given that both the kernel and its derivative are bounded, the
equation

d
[ >o1@ve)ree
i=1
— O V(x)(0 k(x, X) + 02k(x, X)) + 8} ?k(x, x)]dr(X) < 00 (2)

reduces to a property on V which, as far as we can tell, always holds
onRY...



Not possible to combine both....

Given that both the kernel and its derivative are bounded, the
equation

d
[ >o1@ve)ree
i=1
— 0 V(x)(9'k(x, X) + 02k(x, X)) + 0] 92k(x, x)]dn(x) < 00 (2)
reduces to a property on V which, as far as we can tell, always holds
onRY...
and this implies that Stein LS| does not hold
Remark : Equation (2) does not hold for :
» k polynomial of order > 3, and

» 7 with exploding § moments with g > 3 (ex: a student
distribution, which belongs to P, the set of distributions with
bounded second moment).



Open question 2: SVGD quantisation

The quality of a set of points (x', ..., x") can be measured by
the integral approximation error:

Zf(x / F(x)dr(x)] .

E(X1,..., (3)

(a) iid. (b) svab Gaussian k (c) sveD Laplace k

For i.i.d. points or MCMC iterates, (3) is of order n=2. Can we
bound (8) for SVGD final states?

Ongoing work with L. Xu and D. Slepcev.
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Outline

Part Il : Sampling as optimization of the KSD/MMD
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A lot of problems previously came from the fact that the KL is not
defined for discrete measures u,. Can we consider functionals that
are well-defined for p,?



A lot of problems previously came from the fact that the KL is not

defined for discrete measures u,. Can we consider functionals that
are well-defined for p,?

Remember the Kernel Stein discrepancy of y relative to 7:

KSD?(u|m) fHP/,kag( )H Py f»—)/f ().

With several integration by parts we have:

KSD () = HPMV os(2)[,

= [ [ v10e(£00) 7 tog(£1) ) (x 1) dux)luty)
= / / Vlog m(x) TV log n(y)k(x,y) + Vlog m(x)V2k(x, y)
+ Vik(x,y) Vlogm(y) + V +1 V2K(X, y)du(x)du(y)

- / / ke (x, y)du(x)du(y).

can be written in closed-form for discrete measures ;..




KSD Descent - algorithms

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles (z{)Y ; ~ jo, number of itera-
tions M, step-size y
forn =1to M do

[E:zi»l]é\;l = i\l Z[Vzk n) i=1»
end for

Return: [asM] il

Algorithm 2 KSD Descent L-BFGS

Input: initial particles (z)X¥.; ~ o, tolerance tol

Return: [zi]Y | = L-BFGS(L, VL, [z}] ¥ ,, tol).

L-BFGS is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!



L-BFGS

L-BFGS ( Limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm ) is a quasi-Newton method:

Xny1 = Xn — ’VnB;1VL(Xn) = Xp + YnCh (4)
where B; ' is a p.s.d. matrix approximating the inverse Hessian at x,.

Step1. (requires VL) It computes a cheap version of d, based on
BFGS recursion:

B —(/— AXny,y B-1(/— ynlAx] Ax,AxT
i yIAX, ) " yT Axy yTAx,

where  AX, = Xpi1 — Xp
Yn = VL(Xn11) = VL(xn)
Step2. (requires L and VL) A line-search is performed to find the best
step-size in (4) :
L(xn 4+ vndn) < L(Xn) + ¢4 ’YnVL(Xn)Tdn
VL(Xn + vndn) " dh > 2V L(x,) "y



Toy experiments - 2D standard gaussian

. SDGmdQS
L

~ N

LN

Y — ~ N \
’ -
C KSD L: B.FGS \

The green points represent the initial positions of the particles.

The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size

== KSD ==SVGD, small step SVGD, good step ==SVGD, big step

€ 10711 5 10' -
= 2
3
N
M Y — x —_—
T T T -1
0.0 0.1 0.2 0.0 0.1 0.2
Time (s.) Time (s.)

Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 patrticles.
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2D mixture of (isolated) Gaussians - failure cases

T ~ =7~ SS NPT ~S_="_-- =~_ N

PRl PN P ‘_--_‘\\\ e —— ~o-” ’_--_‘\\\
- - - e -

AP \\'r’ -~ ”\\\\ P JAT T~ ~o7 f‘--~\\\\

L N -—— - e’

) 7 SW T SNONE AT N s DAV
’ \ 4 7 v / o« e NTL el e v
S E SO S EREES SRS

! °f Lo AR

N\ A S AN A AR AR N o/
~ S’ 0N Sea=" 4 ~ Se_2l 0N Sl 4

&N PRESEN PR SN A g

\\‘~-_—"/"\\\~-_—’ Pl S Rttt S’ 7

P S P ~--—”," Po S~m—m= PrantS \‘—-—”,’

N \\ - ™ - 4‘ nd \\ - ™ \~ Ll

The green crosses indicate the initial particle positions
the blue ones are the final positions
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More initializations

Van\Init

0.1

0.3

Gaussian i.i.d.

on the s.a. close to s.a.

Green crosses : initial particle positions
Blue crosses : final positions
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable 3 : 7°(x) « exp(—8V(x)) ,
with 0 < 8 < 1 (i.e. multiply the score by £.)

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed



Real world experiments (10 particles)

KSD Descent

Amari distance

%
L

>
f

0.6 0.8 1.0
SVGD

10° 4

1071 4

i

Random KSD SVGD

Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ~ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Bayesian ICA.

Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d < 8).

KSD is not better than random.



So.. when does it work?

. KSDD Stein points /
AN\ ~ z ya /

Comparison of KSD Descent and Stein poinis on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.



Theoretical properties

Stationary measures:

» we show that if a stationary measure . is full support, then
F(poo) = 0.

> however, we also show that if supp(uo) € M, where M is a
plane of symmetry of =, then for any time t it remains true for 1:
supp(pt) € M.



Theoretical properties

Stationary measures:

» we show that if a stationary measure . is full support, then
F(poo) = 0.

> however, we also show that if supp(uo) € M, where M is a
plane of symmetry of =, then for any time t it remains true for 1:
supp(pt) € M.

Explain convergence in the log-concave case? again an open
question:

» the KSD is not geodesically convex
» it is not strongly geo convex near the global optimum =

» convergence of the continuous dynamics can be shown with a
functional inequality, but which does not hold for discrete
measures



First strategy : obtain a functional inequality
How fast F(u:) decreases along its WGF ?

0

SE =V V), Ve= Vi )
dF (pe)
gt = Ve VwF () 2,

2
= vazf(“t)HLZ(u,)
= — || Ex~p, [V2k(X, ¥)] — EX~7r[V2k(X7Y)]Hi2(M)
= - vaﬂtaﬂ'H%z(/M)
N—

||f//at,7fHH—1 ()

where f,, » = Ex,, [K(X,.)] — Ex~r[k(x,.)].



First strategy : obtain a functional inequality
How fast F(u:) decreases along its WGF ?

0
SE =V V), Ve= Vi )
dF (ut)
a <Vt’vW2]:(M)>L2(ur)

2
- Hv%f(”f)HLZ(u,)
= — B [V2k (X, )] = Bxr [V2k (6, Y22,
= - vaﬂtaﬂ'H%z(/M)
N —
||f//at,7fHH—1(Ht)
where f,, » = Ex,, [K(X,.)] — Ex~r[k(x,.)].
It can be shown that:
HfMtJTH’%-{k < ||fm77r||,i-,'(m) HNT - TFHH—1(W)
N ——

Sup”gHQ <1 |fgdll“1_f gdﬂ—‘
H(py) ™~



Hence, if ||t — 7r||H*1(m) < Cforallt > 0, we have

d};l(tyt) < —CF(1)?, hence

y
F(uo) +4C1t

where F(9) = 3 MMD?(yu4, 7).

Flue) <

Problems:
» depends on the whole sequence (1t)t>o (not only )
» hard to verify in practice

» we observed convergence issues in practice (more for the
MMD than the KSD)



Second strategy : geodesic convexity of the KSD?

Let i) € C3°(RY) and the path p; = (I + tvw)#ﬂ for t € [0,1].
.7 (Po);

Define the quadratic form Hess,, F (v, 1) := dt2
t=
which is related to the W, Hessian of 7 at L.

For ) € C(RY), we have
Hess, (1, 1) = Exymy | V(X)T V1 Vake (X, ) V0(y)]
+ By [V0(0)T Hike (X, y)VO()]

The first term is always positive but not the second one.
— the KSD is not convex w.r.t. W, geodesics.



Third strategy : curvature near equilibrium?
What happens near equilibrium 7? the second term vanishes
due to the Stein property of k. and :

Hess, F (v, ¢) = st,kﬁﬁﬂbng-tkﬂ >0
where

Lr:f— —Af—(Vlogm,Vf)gd

S,k f%/k Vf(X)du(x) € Hi, = {ke(X,.),x € R9}

Question: can we bound from below the Hessian at = by a
quadratic form on the tangent space of P»(RY) at 7 (C L3())?

1S ke LrtPl13,. = Hessz F(1,4) = MV T2y ?

That would imply exponential decay of F near =



Curvature near equilibrium - negative result

The previous inequality

1Sm ke L0113y, = MVIZ2 ()

» can be seen as a kernelized version of the Poincaré
inequality for 7 :

I£x1Z, () = AxlI VI, -
» can be written:
(W, Prgo W) 1p(m) = AW, L7 0) 15(m)
where P, x_: L?(1) — L3(n),f > / ke (x, .)f(x)dm(X).
Theorem : Let 7 o« V. Assume that V € C?(R9), VV is

Lipschitz and £, has discrete spectrum. Then exponential
decay near equilibium does not hold.



Conclusion

» Mixing kernels and Wasserstein gradient flows enable to design
deterministic interacting particle systems
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Conclusion

>

>

Mixing kernels and Wasserstein gradient flows enable to design
deterministic interacting particle systems

They can provide a better approximation of the target for a finite
number of particles

Theory does not match practice yet

Numerics can be improved, via perturbed dynamics, change of
geometry...

Python package to try KSD descent:
pip install ksddescent
website: pierreablin.github.io/ksddescent/

It also features pytorch/numpy code for SVGD.

import torch

from ksddescent import ksdd_lbfgs

n, p=250, 2

X0 = torch.rand(n, p) # start from uniform distribution
score = lambda x: x # simple score function

x = ksdd_lbfgs(x0, score) # run the algorithm


pierreablin.github.io/ksddescent/
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