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The Ranking Aggregation Problem

Framework

• n items: {1, . . . , n}.
• N rankings on the n items (from most preferred to last):

i1 � i2 � · · · � in.

• i1 � · · · � in ⇐⇒ permutation σ on {1, . . . , n} s.t. σ(ij) = j .

Suppose we have a dataset of rankings/permutations (σ1, . . . , σN) ∈ SN
n .

Consensus Ranking

We want to find a global order (”consensus”) σ∗ on the n items that

best represents the dataset.
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Methods for Ranking Aggregation

Copeland Rule.

Sort the items according to their Copeland score, defined for each item i

by:

sC (i) =
1

N

N∑
t=1

n∑
j=1
j 6=i

I[σt(i) < σt(j)]

Kemeny’s rule (1959).

Find the solution of :

minσ∈Sn

N∑
i=1

d(σ, σt) (1)

where d is the Kendall’s tau distance:

dτ (σ, σ′) =
∑
i<j

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

Kemeny’s consensus has a lot of interesting properties, but it is NP-hard

to compute, even for n = 4 (see Dwork et al., 2001).
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Statistical Reformulation

Suppose the dataset is composed of N i.i.d. copies Σ1, . . . ,ΣN of a r.v.

Σ ∼ P. A (Kemeny) median of P w.r.t. d is solution of:

min
σ∈Sn

EΣ∼P [d(Σ, σ)],

where L(σ) = EΣ∼P [d(Σ, σ)] is the risk of σ.

Let L̂N(σ) = 1
N

∑N
t=1 d(Σt , σ).

Goal of our analysis:

Study the performance of Kemeny empirical medians, i.e. solutions σ̂N
of:

min
σ∈Sn

L̂N(σ),

through the excess of risk L(σ̂N)− L∗.

⇒ We establish links with Copeland method.
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Risk of Ranking Aggregation

The risk of a median σ is L(σ) = EΣ∼P [d(Σ, σ)], where d is the

Kendall’s tau distance:

d(σ, σ′) =
∑

{i,j}⊂JnK

{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0}

Let pi,j = P[Σ(i) < Σ(j)] the probability that item i is preferred to item j .

The risk can be rewritten:

L(σ) =
∑
i<j

pi,jI{σ(i) > σ(j)} +
∑
i<j

(1 − pi,j)I{σ(i) < σ(j)}.

So if there exists a permutation σ verifying: ∀i < j s.t. pi,j 6= 1/2,

(σ(j)− σ(i)) · (pi,j − 1/2) > 0, (2)

it would be necessary of median for P.
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Preference cycles

1

2 3

p 1,
2
>

1/
2

p2,3 > 1/2

p
3,1 >

1/2

→ No permutation can satisfy this condition for each pair of items!

Definition

P on Sn is stochastically transitive if : ∀(i , j , k) ∈ JnK3,

pi,j ≥ 1/2 and pj,k ≥ 1/2⇒ pi,k ≥ 1/2.

Moreover, if pi,j 6= 1/2 for all i < j , P is strictly stochastically

transitive.
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Results



Optimality

Theorem

• If P is stochastically transitive, there exists σ∗ ∈ Sn verifying:

∀i < j s.t. pi,j 6= 1/2,

(σ(j)− σ(i)) · (pi,j − 1/2) > 0,

is verified.

• The Copeland score of an item i , that is:

s∗(i) = 1 +
∑
k 6=i

I{pi,k <
1

2
}

defines a permutation s∗ ∈ Sn and is the unique median of P iff P

is strictly stochastically transitive.
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Universal Rates

The excess risk of σ̂N is upper bounded:

(i) In expectation by

E [L(σ̂N)− L∗] ≤ n(n − 1)

2
√
N

(ii) With probability higher than 1− δ for any δ ∈ (0, 1) by

L(σ̂N)− L∗ ≤ n(n − 1)

2

√
2 log(n(n − 1)/δ)

N
.
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Conditions for Fast Rates

Suppose that P verifies:

• the Stochastic Transitivity condition:

pi,j ≥ 1/2 and pj,k ≥ 1/2⇒ pi,k ≥ 1/2.

• the Low-Noise condition NA(h) for some h > 0:

min
i<j
|pi,j − 1/2| ≥ h.

⇒ Introduced for binary classification (see Koltchinskii and Beznosova,

2005).

⇒ Used for estimation of matrix of pairwise probabilities (see Shah et al.,

2016).
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Fast rates

Let αh = 1
2 log

(
1/(1− 4h2)

)
.

Assume that P satisfies the previous conditions.

(i) For any empirical Kemeny median σ̂N , we have:

E [L(σ̂N)− L∗] ≤ n2(n − 1)2

8
e−αhN .

(ii) With probability at least 1− (n(n − 1)/4)e−αhN , the empirical

Copeland score

ŝN(i) = 1 +
∑
k 6=i

I{p̂i,k <
1

2
}

for 1 ≤ i ≤ n belongs to Sn and is the unique solution of Kemeny

empirical minimization.

⇒ In practice: under the needed conditions, Copeland method

(O(N
(
n
2

)
)) outputs the Kemeny consensus (NP-hard) with high prob.
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Conclusion and future directions

• We introduced a general statistical framework for ranking

aggregation and established rates of convergence.

• We can write the empirical risk when one observe pairwise

comparisons only instead of full rankings

• Conditions for fast rates have good chance to be satisfied in a

homogeneous population so Copeland method could be useful for

local methods
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