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e 11 items:

e /\V rankings on the n items (from most preferred to last):

o <> permutation o on {1,...,n} s.t.

Suppose we have a dataset of rankings/permutations

Consensus Ranking

We want to find a global order ("consensus”) o* on the n items that
best represents the dataset.
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Methods for Ranking Aggregation

Copeland Rule.
Sort the items according to their Copeland score, defined for each item i

by:
1 N n
sc(i) = N ZZH[Ut(i) < a:(j)]
t=1 j=1
J#
Kemeny’s rule (1959).
Find the solution of :
N
Mminyce, Z d(o,0¢) (1)

i=1
where d is the Kendall's tau distance:
dr(0,0") = > {(o(i) — o (j))(o’ (i) — o'(j)) < 0},
i<j
Kemeny's consensus has a lot of interesting properties, but it is NP-hard
to compute, even for n = 4 (see Dwork et al., 2001). 3
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Suppose the dataset is composed of N i.i.d. copies £1,...,Xy of a r.v.
¥ ~ P. A (Kemeny) median of P w.r.t. d is solution of:

min Es~pld(X,0)],

where L(0) = Esp[d(X,0)] is the risk of o.
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Statistical Reformulation

Suppose the dataset is composed of N i.i.d. copies £1,...,Xy of a r.v.
¥ ~ P. A (Kemeny) median of P w.r.t. d is solution of:

min Es~pld(X,0)],

where L(0) = Esp[d(X,0)] is the risk of o.

Let Ly(0) = & SN d(Z+,0).

Goal of our analysis:

Study the performance of Kemeny empirical medians, i.e. solutions oy
of:

J28, )

through the excess of risk L(oy) — L*.

= We establish links with Copeland method.
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Let p;; = P[X(/) < 2(j)] the probability that item / is preferred to item j.
J
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Risk of Ranking Aggregation

The risk of a median ¢ is L(c) = Es..p[d(Z, 0)], where d is the
Kendall's tau distance:

= Y o) =)' () - o'()) <0}
{igrclnl

Let p;; = P[X(/) < X(j)] the probability that item i is preferred to item j.
The risk can be rewritten:
2) = Yoplo() > o)} + (1~ p)lo() < o()).
i<j i<j
So if there exists a permutation o verifying: Vi < js.t. p;j # 1/2,

(e() —o() - (pij —1/2) > ()

it would be necessary of median for P.
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Preference cycles

P23 >1/2

— No permutation can satisfy this condition for each pair of items!
Definition
P on &, is stochastically transitive if : V(i,j, k) € [n]3,

pij = 1/2 and Pjk = 1/2=pjx>1/2.

Moreover, if pij # 1/2 for all i < j, P is strictly stochastically
transitive.
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Optimality

Theorem

o If P is stochastically transitive, there exists o* € &, verifying:
Vi<jst pij #1/2,

(0() —o() - (pij — 1/2) > 0,

is verified.

e The Copeland score of an item /, that is:
S*(i) =1l +Zﬂ{p,’k < 1}
ki 7 2

defines a permutation s* € &, and is the unique median of P iff P
is strictly stochastically transitive.
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Universal Rates

The excess risk of oy is upper bounded:
(i) In expectation by

N . n(n—1)
E[L(on) — L] < BN

(i) With probability higher than 1 — ¢ for any § € (0,1) by

. . _ n(n—1) /[2log(n(n—1)/0)
L(JN) —L S 5 \/ N o




Conditions for Fast Rates

Suppose that P verifies:

e the condition:
pij>1/2 and pjx > 1/2 = pix > 1/2.
e the condition for some h > 0:

min |p;; —1/2| > h.
1<J



Conditions for Fast Rates

Suppose that P verifies:

e the condition:
pij>1/2 and pjx > 1/2 = pix > 1/2.
e the condition for some h > 0:

min |p;; —1/2| > h.
1<J

= Introduced for binary classification (see Koltchinskii and Beznosova,
2005).

= Used for estimation of matrix of pairwise probabilities (see Shah et al.,
2016).



Let oy = L log (1/(1 — 4h?)).

Assume that P satisfies the previous conditions.

(i) For any empirical Kemeny median Gy, we have:

E[L(Gn) — L] < Me‘““'\’.
(i) With probability at least 1 — (n(n — 1)/4)e=*N, the empirical
Copeland score .
sn(i) =1 +§H{P:,k <3}
for 1 </ < n belongs to &, and is the unique solution of Kemeny
empirical minimization.

= In practice: under the needed conditions, Copeland method
(O(N(3))) outputs the Kemeny consensus (NP-hard) with high prob.
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aggregation and established rates of convergence.
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