Maximum Mean Discrepancy Gradient Flow

Michael Arbel¹ Anna Korba¹ Adil Salim² Arthur Gretton¹

¹Gatsby Computational Neuroscience Unit, UCL, London

²Visual Computing Center, KAUST, Saudi Arabia

Fields Institute September 2020

Problem and Outline

Problem:

- Transport mass from a starting probability distribution to a target distribution
- How? By finding a *continuous* path on the space of distributions, decreasing some loss (Wasserstein gradient flows)
- This work: Minimize the Maximum Mean Discrepancy (MMD) on the space of probability distributions.

Application : Insights on the theoretical properties of some large neural networks and alteration of the dynamics to improve convergence.

Outline

Background and motivation

Maximum Mean Discrepancy (Wasserstein) Gradient Flow

Convergence properties of the MMD gradient flow

A noise-injection algorithm for better convergence

Setting

Let $\mathcal P$ the set of probability measures on $\mathcal Z\subset \mathbb R^d$ with finite second moment :

$$\mathcal{P} = \{\mu \in \mathcal{P}(\mathcal{Z}), \ \int \|z\|^2 d\mu(z) < \infty\}$$

Setting

Let $\mathcal P$ the set of probability measures on $\mathcal Z \subset \mathbb R^d$ with finite second moment :

$$\mathcal{P} = \{\mu \in \mathcal{P}(\mathcal{Z}), \ \int \|z\|^2 d\mu(z) < \infty\}$$

The space \mathcal{P} is endowed with the Wassertein-2 distance from **Optimal transport** :

$$W_2^2(\nu,\mu) = \inf_{\pi \in \Pi(\nu,\mu)} \int_{\mathcal{Z} \times \mathcal{Z}} \left\| z - z' \right\|^2 d\pi(z,z') \qquad \forall
u,\mu \in \mathcal{P}$$

where $\Pi(\nu, \mu)$ is the set of possible couplings between ν and μ .

In other words $\Pi(\nu, \mu)$ contains all possible distributions π on $\mathcal{Z} \times \mathcal{Z}$ such that if $(Z, Z') \sim \pi$ then $Z \sim \nu$ and $Z' \sim \mu$.

Maximum Mean Discrepancy

• Let $k : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$k(z,z') = \langle \phi(z), \phi(z')
angle_{\mathcal{H}}, \quad \phi : \mathcal{Z} \to \mathcal{H}$$

▶ \mathcal{H} its RKHS (Reproducing Kernel Hilbert Space). *Recall:* \mathcal{H} is a Hilbert space with inner product $\langle ., . \rangle_{\mathcal{H}}$ and norm $\|.\|_{\mathcal{H}}$. It satisfies the reproducing property:

$$\forall \quad f \in \mathcal{H}, \ z \in \mathcal{Z}, \quad f(z) = \langle f, k(z, .) \rangle_{\mathcal{H}}$$

Assume $\mu \mapsto \int k(z, .) d\mu(z)$ injective (characteristic k).

Maximum Mean Discrepancy

• Let $k : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$k(z,z') = \langle \phi(z), \phi(z')
angle_{\mathcal{H}}, \quad \phi : \mathcal{Z} \to \mathcal{H}$$

▶ \mathcal{H} its RKHS (Reproducing Kernel Hilbert Space). *Recall:* \mathcal{H} is a Hilbert space with inner product $\langle ., . \rangle_{\mathcal{H}}$ and norm $\|.\|_{\mathcal{H}}$. It satisfies the reproducing property:

$$\forall \quad f \in \mathcal{H}, \ z \in \mathcal{Z}, \quad f(z) = \langle f, k(z, .) \rangle_{\mathcal{H}}$$

Assume $\mu \mapsto \int k(z, .) d\mu(z)$ injective (characteristic *k*).

Maximum Mean Discrepancy ([Gretton et al., 2012]) defines a distance on \mathcal{P} (probability distributions on \mathcal{Z}):

$$MMD(\mu,\nu) = \|f_{\mu,\nu}\|_{\mathcal{H}}, \text{ where}$$

$$\underbrace{f_{\mu,\nu}(.) = \int k(z,.)d\mu(z) - \int k(z,.)d\nu(z)}_{\text{"witness function"}}$$

MMD functional

For a target distribution ν^* (fixed), for any $\nu \in \mathcal{P}$:

$$\begin{aligned} \mathcal{F}(\nu) &= \frac{1}{2} MMD^{2}(\nu, \nu^{*}) \\ &= \frac{1}{2} \|f_{\nu, \nu^{*}}\|_{\mathcal{H}}^{2} \\ &= \frac{1}{2} \int k(z, z') d\nu(z) d\nu(z') + \frac{1}{2} \int k(z, z') d\nu^{*}(z) d\nu^{*}(z') \\ &- \int k(z, z') d\nu(z) d\nu^{*}(z') \end{aligned}$$

Proof : use the reproducing property with $f_{\nu,\nu^*}(.) = \int k(z,.)d\nu(z) - \int k(z,.)d\nu^*(z)$

Appear as a loss when optimizing some large neural networks.

Consider the following regression problem:

 $(x, y) \sim data$

Consider the following regression problem:

► $\phi_{Z_i}(x) = w_i g(x, \theta_i),$ $Z_i = (w_i, \theta_i) \in \mathbb{R} \times \mathbb{R}^d$ ϕ_{Z_i} : non linearity

Example:

$$\phi_Z(x) = wg(ax + b)$$

where $g : \mathbb{R} \to \mathbb{R}$ (sigmoid $g(z) = 1/(1 + e^{-z})$, RelU (g(z) = max(0, z)...)

Finite dimensional non-convex optimization (regression setting):

$$\min_{Z_1,...,Z_N\in\mathcal{Z}} \mathcal{F}\left(\frac{1}{N}\sum_{i=1}^N \delta_{Z_i}\right)$$

Finite dimensional non-convex optimization (regression setting):

$$\min_{Z_1,...,Z_N\in\mathcal{Z}} \mathcal{F}\left(\frac{1}{N}\sum_{i=1}^N \delta_{Z_i}\right)$$

 $(x, y) \sim data$ ϕ_{Z_N} x_4 x_3 ŵ ϕ_{Z_1} x_2 $\left(\phi_{Z_{2}} \right)$ x_1 ϕ_{Z_1} $\min_{Z_1,\ldots,Z_N} \mathbb{E}_{data}[\|y - \frac{1}{N}\sum^N \phi_{Z_i}(x)\|^2]$

 Optimization using gradient descent (GD):

$$Z_{i}^{t+1} = Z_{i}^{t} - \gamma \nabla_{Z_{i}} \mathcal{F} \left(\frac{1}{N} \sum_{i=1}^{N} \delta_{Z_{i}^{t}} \right)$$

Finite dimensional non-convex optimization (regression setting):

$$\min_{Z_1,...,Z_N\in\mathcal{Z}} \mathcal{F}\left(\frac{1}{N}\sum_{i=1}^N \delta_{Z_i}\right)$$

 $(x, y) \sim data$ ϕ_{Z_N} x_4 x_3 ŵ ϕ_{Z_1} x_2 $\left(\phi_{Z_{2}} \right)$ x_1 ϕ_{Z_1} $\min_{Z_1,\ldots,Z_N} \mathbb{E}_{data}[\|y - \frac{1}{N}\sum^N \phi_{Z_i}(x)\|^2]$

 Optimization using gradient descent (GD):

$$Z_{i}^{t+1} = Z_{i}^{t} - \gamma \nabla_{Z_{i}} \mathcal{F} \left(\frac{1}{N} \sum_{i=1}^{N} \delta_{Z_{i}^{t}} \right)$$

 Hard to describe the dynamics of GD!

Finite dimensional non-convex optimization (regression setting):

$$\min_{Z_1,...,Z_N\in\mathcal{Z}} \mathcal{F}\left(\frac{1}{N}\sum_{i=1}^N \delta_{Z_i}\right)$$

 Optimization using gradient descent (GD):

$$Z_{i}^{t+1} = Z_{i}^{t} - \gamma \nabla_{Z_{i}} \mathcal{F}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{Z_{i}^{t}}\right)$$

- Hard to describe the dynamics of GD!
- Idea: look at the distribution of the Z_i's

Infinite width regime

Infinite dimensional convex optimization [Chizat and Bach, 2018],

[Mei et al., 2018]

Minimization of the MMD : the well-specified case

Assume
$$\exists \nu^* \in \mathcal{P}$$
, $\mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \nu^*}[\phi_Z(x)]$.

Minimization of the MMD : the well-specified case

Assume
$$\exists \nu^* \in \mathcal{P}$$
, $\mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \nu^*}[\phi_Z(x)]$.

Then:

$$\min_{\nu \in \mathcal{P}} \mathbb{E}[\|y - \mathbb{E}_{Z \sim \nu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\nu \in \mathcal{P}} \mathbb{E}[\|\mathbb{E}_{Z \sim \nu^{*}}[\phi_{Z}(x)] - \mathbb{E}_{Z \sim \nu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\nu \in \mathcal{P}} \mathbb{E}_{Z \sim \nu^{*}}[k(Z, Z')] + \mathbb{E}_{Z \sim \nu}[k(Z, Z')] - 2\mathbb{E}_{Z \sim \nu^{*}}[k(Z, Z')]$$

$$\lim_{Z' \sim \nu} with \ k(Z, Z') = \mathbb{E}_{x \sim data}[\phi_{Z}(x)^{T}\phi_{Z'}(x)]$$

$$\lim_{\nu \in \mathcal{P}} MMD^{2}(\nu, \nu^{*})$$

Minimization of the MMD : the well-specified case

Assume
$$\exists \nu^* \in \mathcal{P}$$
, $\mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \nu^*}[\phi_Z(x)]$.

Then:

$$\min_{\nu \in \mathcal{P}} \mathbb{E}[\|y - \mathbb{E}_{Z \sim \nu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\nu \in \mathcal{P}} \mathbb{E}[\|\mathbb{E}_{Z \sim \nu^{*}}[\phi_{Z}(x)] - \mathbb{E}_{Z \sim \nu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\nu \in \mathcal{P}} \mathbb{E}_{Z \sim \nu^{*}}[k(Z, Z')] + \mathbb{E}_{Z \sim \nu}[k(Z, Z')] - 2\mathbb{E}_{Z \sim \nu^{*}}[k(Z, Z')]$$

$$\lim_{Z' \sim \nu} with \ k(Z, Z') = \mathbb{E}_{x \sim data}[\phi_{Z}(x)^{T}\phi_{Z'}(x)]$$

$$\lim_{\nu \in \mathcal{P}} MMD^{2}(\nu, \nu^{*})$$

Optimizing the parameters of a NN \Leftrightarrow minimization of the MMD on \mathcal{P} in the population limit ($N \to \infty$).

Background and motivation

Maximum Mean Discrepancy (Wasserstein) Gradient Flow

Convergence properties of the MMD gradient flow

A noise-injection algorithm for better convergence

We consider

$$\min_{\nu \in \mathcal{P}} \mathcal{F}(\nu) \text{ where } \mathcal{F}(\nu) = \frac{1}{2} \textit{MMD}^2(\nu, \nu^*)$$

 Gradient descent dynamics in this setting takes the form of a PDE (gradient flow on P)

$$rac{\partial
u_t}{\partial t} = \textit{div}(
u_t
abla rac{\partial \mathcal{F}(
u_t)}{\partial t}) = \textit{div}(
u_t
abla f_{
u_t,
u^*})$$

Can be obtained as the limit when $\tau \rightarrow 0$ of the **JKO** scheme [Jordan et al., 1998] :

$$\nu(n+1) = \operatorname*{argmin}_{\nu \in \mathcal{P}} \mathcal{F}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \nu(n))$$

Density of particles following a Mc-Kean Vlasov dynamic :

$$\frac{dZ_t}{dt} = -\nabla_{Z_t} f_{\nu_t,\nu^*}(Z_t), \qquad Z_t \sim \nu_t$$

where $\nabla_{Z_t} f_{\nu_t,\nu^*} = \int \nabla k(Z,Z_t) d\nu_t(Z) - \int \nabla k(Z,Z_t) d\nu^*(Z).$

Example : Student-Teacher network

Satisfies the "well-specified" assumption ! $(\exists \nu^*, \mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \nu^*}[\phi_Z(x)])$

- ► the output of the Teacher network is deterministic and given by $y = \int \phi_Z(x) d\nu^*(Z)$ where $\nu^* = \frac{1}{M} \sum_{m=1}^M \delta_{U^m}$
- ► Student network parametrized by $\nu_0 = \frac{1}{N} \sum_{n=1}^{N} \delta_{Z_0^n}$ tries to learn the mapping $x \mapsto \int \phi_Z(x) d\nu^*(Z)$.

Gradient descent on each parameter $n \in \{1, ..., N\}$:

$$z_{t+1}^n = z_t^n - \gamma \mathbb{E}_{x \sim data} \left[\left(\frac{1}{N} \sum_{n'=1}^N \phi_{z_t^{n'}}(x) - \frac{1}{M} \sum_{m=1}^M \phi_{u^m}(x) \right) \nabla_{z_t^n} \phi_{z_t^n}(x) \right],$$

Re-arranging terms and recalling that $k(Z, U) = \mathbb{E}_{x \sim data}[\phi_Z(x)^T \phi_U(x)]$, the update becomes:

$$z_{t+1}^{n} = z_{t}^{n} - \gamma \underbrace{\left(\frac{1}{N} \sum_{n'=1}^{N} \nabla_{2} k(z_{t}^{n'}, z_{t}^{n}) - \frac{1}{M} \sum_{m=1}^{M} \nabla_{2} k(u^{m}, z_{t}^{n})\right)}_{\nabla f_{\nu^{\star}, \nu_{t}}(z_{t}^{n})}$$

The above equation is a time-discretized version of the gradient flow of the MMD.

Background and motivation

Maximum Mean Discrepancy (Wasserstein) Gradient Flow

Convergence properties of the MMD gradient flow

A noise-injection algorithm for better convergence

 $\mathcal{F}(\nu_t)$ along the MMD flow $\frac{\partial \nu_t}{\partial t} = div(\nu_t \nabla \frac{\partial \mathcal{F}(\nu_t)}{\partial t})$?

 $\mathcal{F}(\nu_t)$ along the MMD flow $\frac{\partial \nu_t}{\partial t} = div(\nu_t \nabla \frac{\partial \mathcal{F}(\nu_t)}{\partial t})$?

A functional *F* is (λ)-geodesically convex if it is convex along W₂ geodesics, i.e. if for any t ∈ [0, 1]:

 $\mathcal{F}(\rho(t)) \le (1-t)\mathcal{F}(\rho(0)) + t\mathcal{F}(\rho(1)) - t(1-t)\frac{\lambda}{2}W_2^2(\rho(0),\rho(1))^2$

where $\rho(t) = ((1 - t)I + tT^{\rho(1)}_{\rho(0)})_{\#}\rho(0)$

 $\mathcal{F}(\nu_t)$ along the MMD flow $\frac{\partial \nu_t}{\partial t} = div(\nu_t \nabla \frac{\partial \mathcal{F}(\nu_t)}{\partial t})$?

A functional *F* is (λ)-geodesically convex if it is convex along W₂ geodesics, i.e. if for any t ∈ [0, 1]:

 $\mathcal{F}(\rho(t)) \le (1-t)\mathcal{F}(\rho(0)) + t\mathcal{F}(\rho(1)) - t(1-t)\frac{\lambda}{2}W_2^2(\rho(0),\rho(1))^2$

where $\rho(t) = ((1 - t)I + tT^{\rho(1)}_{\rho(0)})_{\#}\rho(0)$

 $\mathcal{F}(\nu_t)$ along the MMD flow $\frac{\partial \nu_t}{\partial t} = div(\nu_t \nabla \frac{\partial \mathcal{F}(\nu_t)}{\partial t})$?

A functional *F* is (λ)-geodesically convex if it is convex along W₂ geodesics, i.e. if for any t ∈ [0, 1]:

 $\mathcal{F}(\rho(t)) \le (1-t)\mathcal{F}(\rho(0)) + t\mathcal{F}(\rho(1)) - t(1-t)\frac{\lambda}{2}W_2^2(\rho(0),\rho(1))^2$

where
$$\rho(t) = ((1 - t)I + tT^{\rho(1)}_{\rho(0)})_{\#}\rho(0)$$

If F is λ-convex with λ > 0, all gradient flows of F converge to the unique minimizer of F [Carrillo et al., 2006]

 $\mathcal{F}(\nu_t)$ along the MMD flow $\frac{\partial \nu_t}{\partial t} = div(\nu_t \nabla \frac{\partial \mathcal{F}(\nu_t)}{\partial t})$?

A functional *F* is (λ)-geodesically convex if it is convex along W₂ geodesics, i.e. if for any t ∈ [0, 1]:

 $\mathcal{F}(\rho(t)) \le (1-t)\mathcal{F}(\rho(0)) + t\mathcal{F}(\rho(1)) - t(1-t)\frac{\lambda}{2}W_2^2(\rho(0),\rho(1))^2$

where
$$\rho(t) = ((1 - t)I + tT^{\rho(1)}_{\rho(0)})_{\#}\rho(0)$$

If F is λ-convex with λ > 0, all gradient flows of F converge to the unique minimizer of F [Carrillo et al., 2006]

Our finding: The MMD is not λ -convex with $\lambda > 0$ in general.

Convergence of the MMD GF - a Lojasiewicz inequality

$$\frac{d\mathcal{F}(\nu_t)}{dt} \leq -\mathcal{CF}(\nu_t)^2$$

Applying Gronwall's lemma results in: $\mathcal{F}(\nu_t) = \mathcal{O}(\frac{1}{t})$.

Convergence of the MMD GF - a Lojasiewicz inequality

$$rac{{\mathsf d} {\mathcal F}(
u_t)}{{\mathsf d} t} \leq - {old C} {\mathcal F}(
u_t)^2$$

Applying Gronwall's lemma results in: $\mathcal{F}(\nu_t) = \mathcal{O}(\frac{1}{t})$.

on the right, it's the RKHS norm:

$$\mathcal{F}(\nu_t) = rac{1}{2} \|f_{\nu_t, \nu^*}\|_{\mathcal{H}}^2$$

on the left we have the weighted Sobolev semi-norm:

$$\frac{d\mathcal{F}(\nu_t)}{dt} = -\int \|\nabla f_{\nu_t,\nu^*}(x)\|^2 d\nu_t(x) = -\|f_{\nu_t,\nu^*}\|^2_{\dot{H}(\nu_t)}$$

Since:

$$rac{\partial
u_t}{\partial t} = \textit{div}(
u_t
abla \textit{f}_{
u_t,
u^*})$$

(dissipation of the MMD along the MMD flow)

It can be shown that:

$$\|f_{\nu_t,\nu^*}\|_{\mathcal{H}}^2 \le \|f_{\nu_t,\nu^*}\|_{\dot{H}(\nu_t)}\|\nu^* - \nu_t\|_{\dot{H}^{-1}(\nu_t)}$$

where on the r.h.s. we have the dual norm of $H(\nu_t)$:

$$\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} = \sup_{g, \ \mathbb{E}_{Z \sim \nu_t}[\|\nabla g(Z)\|^2] \le 1} |\mathbb{E}_{Z \sim \nu_t}[g(Z)] - \mathbb{E}_{U \sim \nu^*}[g(U)]|$$

It can be shown that:

$$\|f_{\nu_t,\nu^*}\|_{\mathcal{H}}^2 \le \|f_{\nu_t,\nu^*}\|_{\dot{H}(\nu_t)}\|\nu^* - \nu_t\|_{\dot{H}^{-1}(\nu_t)}$$

where on the r.h.s. we have the dual norm of $H(\nu_t)$:

$$\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} = \sup_{g, \ \mathbb{E}_{Z \sim \nu_t}[\|\nabla g(Z)\|^2] \le 1} |\mathbb{E}_{Z \sim \nu_t}[g(Z)] - \mathbb{E}_{U \sim \nu^*}[g(U)]|$$

It can be shown that:

$$\|f_{\nu_t,\nu^*}\|_{\mathcal{H}}^2 \le \|f_{\nu_t,\nu^*}\|_{\dot{H}(\nu_t)}\|\nu^* - \nu_t\|_{\dot{H}^{-1}(\nu_t)}$$

where on the r.h.s. we have the dual norm of $H(\nu_t)$:

$$\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} = \sup_{g, \ \mathbb{E}_{Z \sim \nu_t}[\|\nabla g(Z)\|^2] \le 1} |\mathbb{E}_{Z \sim \nu_t}[g(Z)] - \mathbb{E}_{U \sim \nu^*}[g(U)]|$$

Assume that $\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} \leq C$ for all t, then

$$MMD^{2}(\nu_{t}, \nu^{*}) \leq rac{1}{MMD^{2}(\nu_{0}, \nu^{*}) + 4C^{-1}t}$$

It can be shown that:

$$\|f_{\nu_t,\nu^*}\|_{\mathcal{H}}^2 \le \|f_{\nu_t,\nu^*}\|_{\dot{H}(\nu_t)}\|\nu^* - \nu_t\|_{\dot{H}^{-1}(\nu_t)}$$

where on the r.h.s. we have the dual norm of $H(\nu_t)$:

$$\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} = \sup_{g, \ \mathbb{E}_{Z \sim \nu_t}[\|\nabla g(Z)\|^2] \le 1} |\mathbb{E}_{Z \sim \nu_t}[g(Z)] - \mathbb{E}_{U \sim \nu^*}[g(U)]|$$

Assume that $\|\nu_t - \nu^*\|_{\dot{H}^{-1}(\nu_t)} \leq C$ for all t, then

$$MMD^{2}(\nu_{t},\nu^{*}) \leq \frac{1}{MMD^{2}(\nu_{0},\nu^{*}) + 4C^{-1}t}$$

Problem: Depends on the whole sequence ν_t ; Hard to verify in general [Peyre, 2018]; and we've seen failure cases in practice.

Convergence issues

► The condition we exhibited for global convergence may not hold and (*F*(*v*_t))_t might be stuck at a local minima.

$$\begin{aligned} \frac{d\mathcal{F}(\nu_t)}{dt} &= -\int \|\nabla f_{\nu_t,\nu^*}(x)\|^2 d\nu_t(x) \text{ at equilibrium} \\ &\implies \int \|\nabla f_{\nu^{\infty},\nu^*}(x)\|^2 d\nu^{\infty}(x) = 0 \end{aligned}$$

If ν^{∞} positive everywhere this implies $f_{\nu^{\infty},\nu^*} = cte = 0^1$ But ν^{∞} might be singular...

Idea : Evaluate ∇f_{νt,ν*} outside of the support of νt to get a better signal!

 $^{^{1}\}text{as}$ soon as the RKHS $\mathcal H$ does not contain non-zero constant functions, e.g. for a gaussian kernel.

Background and motivation

Maximum Mean Discrepancy (Wasserstein) Gradient Flow

Convergence properties of the MMD gradient flow

A noise-injection algorithm for better convergence

Noise injection

At each iteration *n*, sample ξ_n ~ N(0, 1) and β_n is the noise level:

$$Z_{n+1} = Z_n - \gamma \nabla f_{\nu_n,\nu^*} (Z_n + \beta_n \xi_n)$$

²[Duchi et al., 2012] ³[Mei et al., 2018]

Noise injection

At each iteration n, sample ξ_n ~ N(0, 1) and β_n is the noise level:

$$Z_{n+1} = Z_n - \gamma \nabla f_{\nu_n,\nu^*} (Z_n + \beta_n \xi_n)$$

 Similar to randomized smoothing², but extended to interacting particles.

²[Duchi et al., 2012] ³[Mei et al., 2018]

Noise injection

At each iteration n, sample ξ_n ~ N(0, 1) and β_n is the noise level:

$$Z_{n+1} = Z_n - \gamma \nabla f_{\nu_n,\nu^*} (Z_n + \beta_n \xi_n)$$

- Similar to randomized smoothing², but extended to interacting particles.
- Different from adding noise outside ("diffusion")

$$Z_{n+1} = Z_n - \gamma \nabla f_{\nu_n,\nu^*}(Z_n) + \beta_n \xi_n$$

which corresponds to an entropic regularization of the original loss ³.

²[Duchi et al., 2012]

³[Mei et al., 2018]

Noise Injection: Theory (discrete time)

Tradeoff for the level of noise β_n

• Too large β_n : ν_{n+1} not a descent direction anymore: $\mathcal{F}(\nu_{n+1}, \nu^*) > \mathcal{F}^2(\nu_n, \nu^*)$

$$\Longrightarrow \beta_n^2 \mathcal{F}^2(\nu_n) \le C_k \mathbb{E}_{\substack{Z_n \sim \nu_n \\ u_n \sim \mathcal{N}(0,1)}} [\|\nabla f_{\nu_n,\nu^*}(Z_n + \beta_n \xi_n)\|^2]$$
(1)

Noise Injection: Theory (discrete time)

Tradeoff for the level of noise β_n

• Too large β_n : ν_{n+1} not a descent direction anymore: $\mathcal{F}(\nu_{n+1}, \nu^*) > \mathcal{F}^2(\nu_n, \nu^*)$

$$\Longrightarrow \beta_n^2 \mathcal{F}^2(\nu_n) \le C_k \mathbb{E}_{\substack{Z_n \sim \nu_n \\ u_n \sim \mathcal{N}(0,1)}} [\|\nabla f_{\nu_n,\nu^*}(Z_n + \beta_n \xi_n)\|^2]$$
(1)

• Too small β_n : Back to the failure mode: $\nabla f_{\nu_n,\nu^*}(Z_n + \beta_n u_n) \simeq 0.$

$$\implies \sum_{n=1}^{N} \beta_n^2 \to \infty \tag{2}$$

Under (1) and (2) :

$$\mathcal{F}^2(\nu_N,\nu^*) \leq \mathcal{F}^2(\nu_0,\nu^*) \boldsymbol{e}^{-C_k\gamma(1-\gamma C'_k)\sum_{n=1}^N \beta_n^2}$$

Noise Injection: Experiments (Gaussians)

Noise Injection: Experiments (Student-Teacher)

Methods:

- SGD
- SGD + Noise injection
- SGD + diffusion
- KSD ⁴: SGD using a (regularized) Negative Sobolev distance as a loss function; also decreases the MMD.

⁴"Kernel Sobolev Descent" [Mroueh et al., 2019]

Noise Injection: Experiments

dimension = 50

Noise Injection: Experiments

Contributions and openings

- Provided a convergence criterion for the Wasserstein gradient flow of the MMD.
- Proposed a pertubation of the dynamics with a noise injection and showed it effectiveness on simple examples.
- new insights for training large neural networks.

Openings:

- Control of the weighted negative Sobolev norm?
- Stronger guarantees for the convergence for the noise injection algorithm.

Carrillo, J. A., McCann, R. J., and Villani, C. (2006). Contractions in the 2-wasserstein length space and thermalization of granular media. *Archive for Rational Mechanics and Analysis*, 179(2):217–263.

- Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for over-parameterized models using optimal transport. NIPS.
- Duchi, J. C., Bartlett, P. L., and Wainwright, M. J. (2012).
 Randomized smoothing for stochastic optimization.
 SIAM Journal on Optimization, 22(2):674–701.
- Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. J. (2012).
 A kernel two-sample test. *JMLR*, 13.
- Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the fokker–planck equation. ^{30/30}