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Problem: Transport an initial probability distribution g € P to a
target distribution p* € P.

Applications : sampling for Bayesian inference, optimizing wide
neural networks

Can be written as an optimization problem on P, e.g.

min KL(ul") (1)

—> Wasserstein GF find a continuous path on the space of
distributions (equipped with the Wasserstein geometry).

Different algorithms result from different time-space
discretizations and dynamical systems.



Outline
Motivations

From pp € Pto u* € P
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Example 1 : Regression with infinite width NN

(x,y) ~ data

. 1 & . 2
Zm“} Egaallly — N Z ¢Z,.(x)||2] W :‘é‘; Euaral 1y = Bz [@p7(0111°]

N i=1
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Minimization of the MMD : the well-specified case
We have (x, y) ~ data.

Assume 3" € P, E[y|X = X] = Ez.,-[¢2(X)].

Then : Lneig E[ly — Ezuloz(X)]|?]
T

min Bl|[Ez..- [62(3)] = Ez~p[0z(0lI]
i

minEz_,« [k(Z, ZN] + Ez..lk(Z, ZN] - 2Ez. .+ [k(Z, ZN)
HEP  Z1 oy Z'~p Z'~p

with k(Z, Z') = Ex~aataldz(x) " ¢ 2/(X)]
T

min MMDZ(M, w)
HeP



Example 2 : Bayesian statistics
» Let D = (X;,¥i)i=1....n Observed data.

» Assume an underlying model parametrized by 6 (e.g.
p(y|x,0) gaussian)
— Likelihood: p(D|0) = [T~ p(yil6, x;)

» The parameter 6 ~ p the prior distribution.

77777

Bayes’ rule : p(0|D) = ,O(MHZ)pUO) where Z = / p(D|0)p(6)do.
Rd

How to sample from 6 — p(0|D)? (Z unknown).
1. MCMC methods (LMC, HMC...)

2. Sampling as optimization of the KL:

min KL (11| p(6]D))
neP ——
ILL*



Outline

Preliminaries on gradient flows

9t = dliv(juv 2210 ) where F : P — R U {+o0}
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Euclidean Gradient Flows

Let V : RY — R smooth. The (Euclidean) Gradient Flow (GF) of
V is given by the solution to

Continuous time version of gradient descent:

Xnt1 — Xn _ —VV(Xn)
v



Lyapunov functions for the GF
The GF tends to minimize V. Let x* a minimizer of V.
Denote L(t) = V(x(t)) — V(x¥).

L'(t) = (X' (1), VV(x(1)) = = IV V(x(D)]* <0,

therefore V(x(t)) “\,. Moreover,

) )
/ IV V(x(t)| Pt -




Lyapunov functions for the GF

Denote L¢(t) = ||x(t) — x*||2. Assume V convex.

Le(t) < —2(V(x(1)) - V(x7)) <0,

therefore ||x(t) — x*||? .. Moreover,

T |2
V(x(T)) - V(x*) < 1T (v - vy < ”X(O)ZTX”



Further use of these two Lyapunov functions

1. Discrete versions L, L¢ n of L(t), Lc(t) can be used to
prove O(1/n) convergence rates of gradient descent

2. Ln,L¢n, L(1), Lc(t) can be used to prove linear
convergence (exponentially fast convergence) of gradient
descent/ the gradient flow if V is strongly convex.



A dual point of view
Consider the gradient flow
X'(t) = -V V(x(1))

and assume x(0) random with density 1. What is the dynamics
of the density s of x(t) ? Let ¢ : R? — R a test function.

S E(o(x(1)) = / (V0.9 Vi) = [ ox)aiv(¥ V)(x)dx,
and

) = [ o) 2 (0e
Therefore,

Opt
W = dIV(,LLtV V)



Wasserstein gradient flows

Let P = {u € P(X), [|x|[2du(x) < oo}' and
F : P — RU{+o0} aregular functional.

Then p: [0,00] — P, t — u; satisfies a Wasserstein gradient
flow of F if distributionnally:

3/11 OF (put)
T d/v< VTM ,

where af(“) - X — R is the differential of 1 — F(u) at  and

VwF(u ) Vaf(“) € L2(u)? is called the Wasserstein gradient
of F.

1X — Rd
2Denote L2(u) = {f: X — X, [|f(X)|Pdu(x) < oo} and (f, g),. (resp.
|If]|.) the associated inner product (resp. norm).



Free energies

In particular, if the functional F is a free energy:

F(u) —/U(u( dx+/V x)dx+/W X, y)pu(x)u(y)dxdy

internal potential 2/ external potential £y interaction energy W

0 .
Then: % = div(uV (U () + V + W ).

We recover the Euclidean GF if U =0, W = 0.



Some free energies in Machine Learning
The relative entropy (1) = KL(i|p*) can be written:

) = [ Utut)ax+ [ Viuxax—c.
u gy

U(s) = slog(s), V(x) = —log(p*(x)), C=U(u") + Ev(p®).
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Underlying structure

2-Wasserstein distance:

W)= inf [ x-ylPdstxy)  eueP
XxX

sel(v,u)

where I'(v, 1) is the set of possible couplings between v and .



Lyapunov functions for the Wasserstein GF

The Wasserstein GF tends to minimize F. Let p* a minimizer of
F.

Denote L(t) = F(ut) — F(u*).

L'(t) = (Ve, ViwF (ut)) py = —HVW}—(M)HiI <0,

therefore F(ut) .. Moreover,

17 2 oy - Flio) = F(r)
7 [ 1w e < ZHOLT),



Lyapunov functions for the Wasserstein GF

Denote Lq(t) = W2(ut, u*). Assume F geodesically convex.

Lo(t) < =2(F () = F(u")) <0,
therefore W2 (ut, u*) \.. Moreover,

W2 *
Fp 7)< 4 [ F o Py < HEUI),



Our approach

Similarly to the transition
Euclidean gradient flow —> gradient descent,

we shall use the Wasserstein gradient flow point of view to
analyze algorithms that can be seen as time discretized
Wasserstein gradient flows.

If convexity is involved, we shall use the Lyapunov function L,
otherwise we use L.



Outline

Maximum Mean Discrepancy Gradient flow (Neurips 2019)
M. Arbel, A. Korba, A. Salim, A. Gretton

min,cp F(p), with F(u) = %MMDZ([L,/.L*)
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Maximum Mean Discrepancy
> Let k: Z x Z — R a positive, semi-definite kernel
k(z,2') = ($(2),0(Z), d:Z—H
» 7 its RKHS (Reproducing Kernel Hilbert Space).

Recall: H is a Hilbert space with inner product (., .)» and norm
Il It satisfies the reproducing property:

V feH,zeZ, f(z)={fk(z,))n
Assume p — [ k(z,.)du(z) injective (characteristic k).



Maximum Mean Discrepancy
> Let k: Z x Z — R a positive, semi-definite kernel
k(z,2') = ($(2),0(Z), d:Z—H
» 7 its RKHS (Reproducing Kernel Hilbert Space).

Recall: H is a Hilbert space with inner product (., .); and norm
Il It satisfies the reproducing property:

V feH,zeZ, f(z)={fk(z,))n
Assume p — [ k(z,.)du(z) injective (characteristic k).

Maximum Mean Discrepancy ( ) defines a
distance on P (probability distributions on Z):

MMD(y1, V) = ||, ||, where

/k Jdu(z /k Jdv(z

"witness function”




MMD functional

For a target distribution p* (fixed), for any u € P:

= (g, i)

Fp) =3

= el
/kzzdu()du /kzzdu()du()
- / K(z,2)du(z)du*(2)

Proof : use the reproducing property with
)= [k(z,.)d — [ k(z,.)du*(z)

Appear as a loss when optimizing some large neural
networks.



We consider

1
min 7 (1) where F (1) = 5 MMD® (1, ")

» Gradient descent dynamics in this setting takes the form of a
PDE (gradient flow on P)

OF (1)
ot

One _ giy (MV

ot ) = diV(1itV fup, e )

where V1, .+ = [ VK(Z,Z)du(Z) — [ VK(Z, Z;)dp* (Z).
» Density of particles following a Mc-Kean Vlasov dynamic :

dZ
7; = —Vzl . (Z4), Zt ~ it



lllustration : Student-Teacher network
Satisfies the "well-specified” assumption ! (3p*, E[y|X = x] = Ez. .+ [¢2(X)])
» the output of the Teacher network is deterministic and given by
y = [ ¢z(X)du*(Z) where 1 = 4 S0y dum
» Student network parametrized by 1o = 1N Zﬁﬂ dzp tries to learn
the mapping x — [ ¢z(x)du*(Z2).
(x,y) ~ data x

1 1 ¥
min Egullly; 2 Pun) =~ Zl el

Z,.



Gradient descent on each parameter ne {1,..., N} :

;N ;M
21 = 2 — VExdata [(N > O (X) =14 > ¢um(X)) Vzp¢zp(X)] ;
m=1

n'=1

Re-arranging terms and recalling that
k(Z,U) = Exqata[t7(x) T 0y(x)], the update becomes:

N M
1 / 1
=2~ <N > Vek(zf',zf) - Vi > ng(um,z,”)>
m=1

n'=1

Ve (20)

The above equation is a time-discretized version of the
gradient flow of the MMD.



Convergence of the MMD GF
F(ur) along the MMD flow 2t = (1 V25 {£1))?
We know that df(“f = —|IVwF(u)||,- Do we have

dF(ut) _
dt

—IVwF(u)lI3, < —CF(ur)??

Yes if ||t — M*HH71(M) < C for all t, where || - HFH(M) is the
weighted negative Sobolev distance (linearizes W)

st = 1l g1y = sp [Ezeul9(2)] — Euvyelo(U)])
9, Bz~ [IIVa(2)|7]<1

This results in F(u¢) = (9(}) (also true in discrete time)

Problem: Depends on the whole sequence u¢; Hard to verify in
general ; and we’ve seen failure cases in practice.



Convergence issues

» The condition we exhibited for global convergence may not
hold and (F(u:)): might be stuck at a local minima.

aF (put)
at

= — / [V £, (X) |2 dpue(x) at equilibrium

— [ 19 (0] = 0
If 1> positive everywhere this implies £, ,- = cte = 03
But 1°° might be singular...

» ldea : Evaluate Vf,, ,~ outside of the support of i+ to get a
better signal!

3as soon as the RKHS 7 does not contain non-zero constant functions.



Noise Injection
At each iteration n, sample &, ~ NV(0,1) and 3, is the noise
level:

Zny1 = Zn — YV My 1 (Zn + Bnén)
Different from adding noise outside ("diffusion")
Znp1 = 2Zn— ’YVfun,u* (Zn) + Bnén

which corresponds to an entropic regularization of the loss.

Test error per epoch

— SGD
—— SGD + noise
—— SGD + diffusion

107t —— KSD flow

102 =
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Contributions and openings

» Provided a convergence criterion for the Wasserstein
gradient flow of the MMD.

» Proposed a pertubation of the dynamics with a noise
injection and showed it effectiveness on simple examples.

» new insights for training large neural networks.
Openings:
» Control of the weighted negative Sobolev norm?

» Stronger guarantees for the convergence for the noise
injection algorithm.



Outline

Primal Dual interpretation of the Proximal Gradient Langevin
algorithm (submitted)

A. Salim, P. Richtarik

min,ep F (), with F(u) = KL(plp")
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Sampling as optimization of the KL
Problem : sampling from a distribution p* « exp(— V) where

V: X — R convex®.

min 7 (1)

where F(u) = KL(p|p")

L) = [ 1og (00 ) a0 = v + e

dp

if p < p* with density 77

, and KL(u|p*) = +oo else.

4X:Rd



Sampling as optimization of the KL
Problem : sampling from a distribution x* « exp(— V) where

V: X — R convex®.

min 7 (1)

where F(u) = KL(p|p")

L) = [ 1og (00 ) a0 = v + e

dp
dp*?

if © < p* with density
Assume V smooth.
Langevin Monte Carlo (LMC) is a sampling algorithm:

Xnt1 = Xn — YV V(Xn) + /27041,

where v > 0 and (&), i.i.d. r.v. with standard Gaussian

distribution
4X — Rd

and KL(p|p*) = +oo else.




Proximal Gradient Langevin Algorithm

Assume V = F + G where F is smooth \-strongly convex
and G nonsmooth convex®.

Proximal Gradient Langevin Algorithm (PGLA) is a sampling
algorithm:

Xnt1 = Prox, g (Xn —YVF(xn) + @fnﬂ) )

where v > 0, (£5), i.i.d. r.v. with standard Gaussian distribution
and

1
prox(x) := argmin E”X —y|2+ G(y). (2)
yex
If G = 1c® where C convex set, proxg(x) = proj(x).

More generally, prox;(x) € dom(G), hence xp;1 € dom(G).

Si.e. G convex, |.s.c., proper
fie. G(x) =0if x € Cand G(x) = +oc else.



Non-asymptotic analysis of PGLA

1. Constrained sampling: G = (¢ where C convex
body .
In this case, Supp(y*) = dom(G) = C.

PGLA is called Projected Langevin algorithm:
Xn41 = Projo (Xn — vV F(xn) + \/Zgnﬂ)-

Complexity: n = O(1/<'?) in Total Variation distance’.
2. @G Lipschitz continuous
In this case, Supp(p*) = &.

Complexity: n = O(1/<?) in 2-Wasserstein distance.
3. Gl.s.c. proper and p* locally Sobolev 1,1 (This work).
In this case, Supp(p*) = dom(G).

Complexity: n = O(1/£2) in 2-Wasserstein distance.
"This result also holds if A = 0.




Proximal Gradient algorithm

1. Consider the problem

min F(x) + G(X). (3)

xeX

2. The Forward Backward (FB) Euler discretization of GF is
Xpi1 = prox,yG(Xn —vVF(xn)), n=>0. (4)

3. The FB discretization satisfies (for v small enough):
X* € argmin V,V¥n > 0,

X=X [P=I1xr—X"[2 < =2 (V(Xn11) = V(X)) =M xo—x" 2

4. The FB solves (3): ||xn — x*[|2 < (1 — y\)"||x0 — x*||2.



Proximal Gradient algorithm, Revisited
1. Consider the problem
min F(x)+ G(x).
2. The Forward Backward (FB) Euler discretization of GF is
Xpiq = proxWG(Xn —vVF(xn), n=>0. (5)

3. The FB discretization satisfies (for v small enough):
x* € argmin V, y* € 0G(x*),Vn > 0,
Xn1 = X7 = [x0 = X*|[2 < = 29 (L(Xng1, ¥*) = L(X, Ynr1))

= M0 — x*|?,

where L(x,y) = F(x) — G*(y) + (x, y).
4. The FB solves (3): ||xp — x*[|2 < (1 — y\)"||xo — x*||2.



Proximal Gradient Langevin algorithm
1. Consider the problem

min F (i) = Ev(p) + Up) = Er(p) + Ealu) + Up)- - ()

2. The Forward Flow Backward (FFB) discretization of
GF is

Xni1 = proxWG(Xn —vyVF(xn) + \/277‘5n+1), n>0. (7)

3. The FFB discretization satisfies (v small
enough) (assumes G Lipschitz): vn > 0,

W2 (it 11%)— WE (pny 1*) < —2yKL(fin|11*)— Ay WE (1, 1*)+~2C.

4. WE(pn, 1) < (1 = yA)"WE(po, 1*) +~C.
5. Complexity to obtain W(un, u*) < e: n= O(1/2).



Proximal Gradient Langevin algorithm, Revisited

1.

A

Consider the problem
min F(p) = Ev(p) +U(n) = Er(p) + Ea(p) + U(p).  (8)
The Forward Flow Backward (FFB) discretization of GF is

Xpnyi1 = prOX,YG(Xn - ’YVF(Xn) + 2’)/ Wn+1), n> 0. (9)
The FFB discretization satisfies (v small enough) (This
work) (does not assume G Lipschitz): Vn > 0,

WE (gt 17) = W5 (i, 1%) < = 29 (L (tin, ¥*) = L (1", Y1)
>0
— My WE(pn, ™) +72C,
where Z(u,y) = Er(pn) + H(p) — Ea- (1) + E(x, y), and
x = Th(x*).

WE (pn, 1) < (1 = A)"WE (10, 1*) + 7 C.
Complexity to obtain W (un,v*) < e: n= O(1/£2).




Outline

Conclusion and Research directions
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Advertisement

1. Non asymptotic analysis of SVGD: A sampling algorithm
that iteratively transports a set of particles to a target
distribution

2. Non asymptotic analysis of the Wasserstein proximal
gradient algorithm: a proximal gradient algorithm to
minimize F(u) = E(u) + G(1) where F smooth convex
and G geodesically convex nonsmooth



Conclusion and Research directions

Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

min 7(p),  where F(u) = d(u, n*)
nEP

» sampling

» optimizing wide NN

> many others : generative modelling , online
learning , barycenters of distributions

Many ideas from optimization can be useful in this setting
(perturbation of dynamics, adapted discretizations...)
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The sample-based approximate scheme

How can we simulate
Zn+1 = Zn — fYVfIMMn(Zn + /BnUn), n> 07

It depends on:

» the current distribution v, = approximate it by the
empirical distribution of a system of N interacting particles

> —> replace it by the empirical
distribution of the IVl samples that we have access to (/)



The sample-based approximate scheme

How can we simulate
Znt1=2n— ’YVfu,un(Zn + BnUn), n>07?

It depends on:

» the current distribution v, = approximate it by the
empirical distribution of a system of N interacting particles

> —> replace it by the empirical
distribution of the IVl samples that we have access to (/)

—> create a system of interacting particles
Z) . =2Zy — Vi 528 + BaU))
/V\n+1

ZN V= ZN =V 5(ZN + BaUY)



Theoretical guarantees

(Propagation of chaos type of result)

Theorem

Letn>0and T > 0. Letv, and v, defined by the (theoretical)
Euler-scheme and the practical algorithm. Suppose

|VK||Lip = L and that B, < B for all n, for some B > 0. Then for
any L > n:

C1 (V07 B) T7 L) + CZ(/”‘? Ta L)
VN VM

where N is the number of interacting particles and M is the
number of samples from the target distribution.

E[Wa(n, vn)] <




MMD flow and related work

> identify the same pb
that when the norm of the vector field is zero, i.e. for a fixed
point of the GF, if the support of the density of the particles
is too small, it might not be a global minimizer

» that’'s why needs the initial distribution to
be supported everywhere; and gradient flow dynamics
avoid spurious local minimas (ie they converge to the
global minimizer) under appropriate conditions on the
functions activations

» our global convergence criterion does not depend on the
activation functions!

> also, we propose a perturbed dynamic (£ )
and a discrete-time analysis



Neural tangent kernel

» common point : NN in the infinite width regime

> k(x,x') = Ez.,[22ZX) 207 242X)] kernel between data
points

» the time varying kernel (v(t)) is actually close to a
deterministic one (NTK, ie the kernel at vy)

» A properly randomly initialized sufficiently wide deep
neural network trained by gradient descent with
infinitesimal step size (a.k.a. gradient flow) is equivalent to
a kernel regression predictor with a deterministic kernel
called neural tangent kernel (NTK).



Update for Student-teacher network

the gradient descent on the parameters can be written:

N
; 1
ZIl—i-1 Z/ ¥ Ex~datal( NZ¢ (x, Zj Z sz¢ (x Z/)]
j=1 j=1

Vfu/,u* (Z[I)

where (Z] )1<,<N are the particles at iteration / with distribution
v; and

Vi (Z) = (3 S Vok(Z]. Z)) - 4 S Vok(U, Z])).



Proof for Wass. Proximal Gradient

> Step 1 : identify the optimal transport maps between
Kns Vn+1y bn+1s ShOW that vn Z 0, Vn, Un < L6b
(requires v < 1/L)

» Step 2: prove a descent lemma (due to smoothness of V)

* * L
KLl < KLunl" )= (1= 5 ) IV 45 0ald X1

where X, 1 = T,™ o (I =4V V)

Vn1
» Step 3 : Discrete EVI for the entropy using its generalized
geo. convexity (weaker than geo. convexity):

U1 = OT) + 1T )yv) < (1 = (k) + U(7).

» Step 4: Discrete EVI for the potential using strong convexity.
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