Wasserstein Gradient Flows for Machine Learning

Anna Korba¹ Adil Salim²

¹CREST, ENSAE, Paris, France

²VCC, KAUST, Saudi Arabia

Second Symposium on Machine Learning and Dynamical Systems Fields Institute September 2020 **Problem:** Transport an initial probability distribution $\mu_0 \in \mathcal{P}$ to a target distribution $\mu^* \in \mathcal{P}$.

Applications : sampling for Bayesian inference, optimizing wide neural networks

Can be written as an optimization problem on \mathcal{P} , e.g.

$$\min_{\mu \in \mathcal{P}} KL(\mu|\mu^*) \tag{1}$$

 \implies Wasserstein GF find a *continuous* path on the space of distributions (equipped with the Wasserstein geometry).

Different algorithms result from different time-space discretizations and dynamical systems.

Outline

Motivations

From $\mu_0 \in \mathcal{P}$ to $\mu^* \in \mathcal{P}$

Preliminaries on gradient flows

 $\frac{\partial \mu_t}{\partial t} = \textit{div}(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}) \text{ where } \mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$

Maximum Mean Discrepancy Gradient flow (Neurips 2019)

M. Arbel, A. Korba, A. Salim, A. Gretton

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \frac{1}{2} MMD^2(\mu, \mu^*)$

Primal Dual interpretation of the Proximal Gradient Langevin algorithm (submitted)

A. Salim, P. Richtarik

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = KL(\mu|\mu^*)$

Conclusion and Research directions

Example 1 : Regression with infinite width NN

Minimization of the MMD : the well-specified case

We have $(x, y) \sim data$.

Assume
$$\exists \mu^* \in \mathcal{P}$$
 , $\mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \mu^*}[\phi_Z(x)].$

Then:

$$\min_{\mu \in \mathcal{P}} \mathbb{E}[\|y - \mathbb{E}_{Z \sim \mu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\mu \in \mathcal{P}} \mathbb{E}[\|\mathbb{E}_{Z \sim \mu^{*}}[\phi_{Z}(x)] - \mathbb{E}_{Z \sim \mu}[\phi_{Z}(x)]\|^{2}]$$

$$\lim_{\mu \in \mathcal{P}} \mathbb{E}_{Z \sim \mu^{*}}[k(Z, Z')] + \mathbb{E}_{Z \sim \mu}[k(Z, Z')] - 2\mathbb{E}_{Z \sim \mu^{*}}[k(Z, Z')]$$

$$\lim_{Z' \sim \mu} k(Z, Z') = \mathbb{E}_{x \sim data}[\phi_{Z}(x)^{T}\phi_{Z'}(x)]$$

$$\lim_{\mu \in \mathcal{P}} MMD^{2}(\mu, \mu^{*})$$

Example 2 : Bayesian statistics

• Let $\mathcal{D} = (x_i, y_i)_{i=1,...,N}$ observed data.

 Assume an underlying model parametrized by θ (e.g. p(y|x, θ) gaussian)

 \implies Likelihood: $p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(y_i|\theta, x_i)$

• The parameter $\theta \sim p$ the prior distribution.

Bayes' rule :
$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{Z}$$
 where $Z = \int_{\mathbb{R}^d} p(D|\theta)p(\theta)d\theta$.

How to sample from $\theta \mapsto p(\theta|\mathcal{D})$? (Z unknown).

1. MCMC methods (LMC, HMC...)

[Chopin et al., 2012], [Dalalyan, 2017]

2. Sampling as optimization of the KL:

[Wibisono, 2018], [Alquier and Ridgway, 2017], [Zhang et al., 2018]

$$\min_{\mu \in \mathcal{P}} KL(\mu | \underbrace{\mathcal{P}(\theta | \mathcal{D})}_{\mu^*}))$$

Outline

Motivations

From $\mu_0 \in \mathcal{P}$ to $\mu^* \in \mathcal{P}$

Preliminaries on gradient flows

 $\frac{\partial \mu_t}{\partial t} = \textit{div}(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}) \text{ where } \mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$

Maximum Mean Discrepancy Gradient flow (Neurips 2019)

M. Arbel, A. Korba, A. Salim, A. Gretton

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \frac{1}{2} MMD^2(\mu, \mu^*)$

Primal Dual interpretation of the Proximal Gradient Langevin algorithm (submitted)

A. Salim, P. Richtarik

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = KL(\mu|\mu^*)$

Conclusion and Research directions

Euclidean Gradient Flows

Let $V : \mathbb{R}^d \to \mathbb{R}$ smooth. The (Euclidean) Gradient Flow (GF) of *V* is given by the solution to

$$x'(t) = -\nabla V(x(t))$$

Continuous time version of gradient descent:

$$\frac{x_{n+1}-x_n}{\gamma}=-\nabla V(x_n)$$

Lyapunov functions for the GF

The GF tends to minimize *V*. Let x^* a minimizer of *V*. Denote $\mathcal{L}(t) = V(x(t)) - V(x^*)$.

$$\mathcal{L}'(t) = \langle x'(t),
abla V(x(t))
angle = - \|
abla V(x(t)) \|^2 \leq 0,$$

therefore $V(x(t)) \searrow$. Moreover,

$$rac{1}{T}\int_0^T \|
abla V(x(t))\|^2 dt \leq rac{V(x(0))-V(x^*)}{T}$$

Lyapunov functions for the GF

Denote $\mathcal{L}_c(t) = ||x(t) - x^*||^2$. Assume V convex.

$$\mathcal{L}_{c}'(t) \leq -2(V(x(t)) - V(x^{*})) \leq 0,$$

therefore $||x(t) - x^*||^2 \searrow$. Moreover,

$$V(x(T)) - V(x^*) \leq \frac{1}{T} \int_0^T (V(x(t)) - V(x^*)) dt \leq \frac{\|x(0) - x^*\|^2}{2T}.$$

Further use of these two Lyapunov functions

- 1. Discrete versions \mathcal{L}_n , $\mathcal{L}_{c,n}$ of $\mathcal{L}(t)$, $\mathcal{L}_c(t)$ can be used to prove $\mathcal{O}(1/n)$ convergence rates of gradient descent
- £\$\mathcal{L}_{c,n}\$, \$\mathcal{L}(t)\$, \$\mathcal{L}_{c}(t)\$ can be used to prove linear convergence (exponentially fast convergence) of gradient descent/ the gradient flow if \$\mathcal{V}\$ is strongly convex.

A dual point of view

Consider the gradient flow

$$\mathbf{x}'(t) = -\nabla \mathbf{V}(\mathbf{x}(t))$$

and assume x(0) random with density μ_0 . What is the dynamics of the density μ_t of x(t)? Let $\phi : \mathbb{R}^d \to \mathbb{R}$ a test function.

$$\frac{d}{dt}\mathbb{E}(\phi(\mathbf{x}(t))) = -\int \langle \nabla\phi, \nabla V \rangle \mu_t(\mathbf{x}) d\mathbf{x} = \int \phi(\mathbf{x}) d\mathbf{i} \mathbf{v}(\mu_t \nabla V)(\mathbf{x}) d\mathbf{x},$$

and

$$\frac{d}{dt}\mathbb{E}(\phi(x(t))) = \int \phi(x) \frac{\partial \mu_t}{\partial t}(x) dx.$$

Therefore,

$$rac{\partial \mu_t}{\partial t} = \operatorname{div}(\mu_t
abla \operatorname{V}).$$

Wasserstein gradient flows

Let $\mathcal{P} = \{\mu \in \mathcal{P}(\mathcal{X}), \int ||x||^2 d\mu(x) < \infty\}^1$ and $\mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ a regular functional.

Then $\mu : [0, \infty] \to \mathcal{P}, t \mapsto \mu_t$ satisfies a Wasserstein gradient flow of \mathcal{F} if distributionnally:

$$\frac{\partial \mu_t}{\partial t} = \operatorname{div}\left(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu_t}\right),$$

where $\frac{\partial \mathcal{F}(\mu)}{\partial \mu} : \mathcal{X} \to \mathbb{R}$ is the differential of $\mu \mapsto \mathcal{F}(\mu)$ at μ and $\nabla_W \mathcal{F}(\mu) := \nabla \frac{\partial \mathcal{F}(\mu)}{\partial \mu} \in L^2(\mu)^2$ is called the Wasserstein gradient of \mathcal{F} .

 $^{1}\mathcal{X} = \mathbb{R}^{d}$

²Denote $L^2(\mu) = \{f : \mathcal{X} \to \mathcal{X}, \int ||f(x)||^2 d\mu(x) < \infty\}$ and $\langle f, g \rangle_{\mu}$ (resp. $||f||_{\mu}$) the associated inner product (resp. norm).

Free energies

In particular, if the functional \mathcal{F} is a free energy:

$$\mathcal{F}(\mu) = \underbrace{\int U(\mu(x))\mu(x)dx}_{\text{internal potential }\mathcal{U}} + \underbrace{\int V(x)\mu(x)dx}_{\text{external potential }\mathcal{E}_{V}} + \underbrace{\int W(x,y)\mu(x)\mu(y)dxdy}_{\text{interaction energy }\mathcal{W}}$$

Then : $\frac{\partial\mu_{t}}{\partial t} = div(\mu_{t}\nabla(U'(\mu_{t}) + V + W * \mu_{t})).$

We recover the Euclidean GF if $U \equiv 0$, $W \equiv 0$.

The **relative entropy** $\mathcal{F}(\mu) = KL(\mu|\mu^*)$ can be written:

$$\mathcal{F}(\mu) = \underbrace{\int U(\mu(x))dx}_{\mathcal{U}} + \underbrace{\int V(x)\mu(x)dx}_{\mathcal{E}_{V}} - C,$$

 $U(s) = s \log(s), V(x) = -log(\mu^*(x)), C = U(\mu^*) + \mathcal{E}_V(\mu^*).$

The **relative entropy** $\mathcal{F}(\mu) = \mathcal{KL}(\mu|\mu^*)$ can be written:

$$\mathcal{F}(\mu) = \underbrace{\int U(\mu(x))dx}_{\mathcal{U}} + \underbrace{\int V(x)\mu(x)dx}_{\mathcal{E}_{V}} - C,$$

 $U(s) = s \log(s), V(x) = -log(\mu^*(x)), C = \mathcal{U}(\mu^*) + \mathcal{E}_V(\mu^*).$

Application : sampling from a posterior distribution $\mu^* \propto \exp(-V)$ in Bayesian inference.

The **relative entropy** $\mathcal{F}(\mu) = KL(\mu|\mu^*)$ can be written:

$$\mathcal{F}(\mu) = \underbrace{\int U(\mu(x))dx}_{\mathcal{U}} + \underbrace{\int V(x)\mu(x)dx}_{\mathcal{E}_{V}} - C_{\mathcal{E}_{V}}$$

 $U(s) = s \log(s), V(x) = -log(\mu^*(x)), C = U(\mu^*) + \mathcal{E}_V(\mu^*).$

Application : sampling from a posterior distribution $\mu^* \propto \exp(-V)$ in Bayesian inference.

The Maximum Mean Discrepancy $\mathcal{F}(\mu) = \frac{1}{2}MMD^2(\mu, \mu^*)$ also:

$$\mathcal{F}(\mu) = \underbrace{\int V(x)d\mu(x)}_{\mathcal{E}_{V}} + \underbrace{\frac{1}{2}\int W(x,y)d\mu(x)d\mu(y)}_{\mathcal{W}} + C,$$
$$W(x) = -\int k(x,x')d\mu^{*}(x'), \quad W(x,x') = k(x,x'), \quad C = \mathcal{W}(\mu^{*}).$$

The **relative entropy** $\mathcal{F}(\mu) = \mathcal{KL}(\mu|\mu^*)$ can be written:

$$\mathcal{F}(\mu) = \underbrace{\int U(\mu(x))dx}_{\mathcal{U}} + \underbrace{\int V(x)\mu(x)dx}_{\mathcal{E}_{V}} - C,$$

 $U(s) = s \log(s), V(x) = -log(\mu^*(x)), C = \mathcal{U}(\mu^*) + \mathcal{E}_V(\mu^*).$

Application : sampling from a posterior distribution $\mu^* \propto \exp(-V)$ in Bayesian inference.

The Maximum Mean Discrepancy $\mathcal{F}(\mu) = \frac{1}{2}MMD^2(\mu, \mu^*)$ also:

$$\mathcal{F}(\mu) = \underbrace{\int V(x)d\mu(x)}_{\mathcal{E}_{V}} + \underbrace{\frac{1}{2}\int W(x,y)d\mu(x)d\mu(y)}_{\mathcal{W}} + C,$$

 $V(x) = -\int k(x, x') d\mu^*(x'), \ W(x, x') = k(x, x'), \ C = W(\mu^*).$

Application : optimizing infinite-width 1 hidden layer NN where μ^{\ast} is the optimal distribution.

Underlying structure

2-Wasserstein distance:

$$W_{2}^{2}(\nu,\mu) = \inf_{\boldsymbol{s}\in \Gamma(\nu,\mu)} \int_{\mathcal{X}\times\mathcal{X}} \|\boldsymbol{x}-\boldsymbol{y}\|^{2} d\boldsymbol{s}(\boldsymbol{x},\boldsymbol{y}) \qquad \forall \nu,\mu\in\mathcal{P}$$

where $\Gamma(\nu, \mu)$ is the set of possible couplings between ν and μ .

Lyapunov functions for the Wasserstein GF

The Wasserstein GF tends to minimize \mathcal{F} . Let μ^* a minimizer of \mathcal{F} .

Denote $\mathcal{L}(t) = \mathcal{F}(\mu_t) - \mathcal{F}(\mu^*)$.

$$\mathcal{L}'(t) = \langle V_t, \nabla_W \mathcal{F}(\mu_t) \rangle_{\mu_t} = - \|\nabla_W \mathcal{F}(\mu_t)\|_{\mu_t}^2 \leq 0,$$

therefore $\mathcal{F}(\mu_t) \searrow$. Moreover,

$$\frac{1}{T}\int_0^T \|\nabla_W \mathcal{F}(\mu_t)\|_{\mu_t}^2 dt \leq \frac{\mathcal{F}(\mu_0) - \mathcal{F}(\mu^*)}{T}.$$

Lyapunov functions for the Wasserstein GF

Denote $\mathcal{L}_{c}(t) = W_{2}^{2}(\mu_{t}, \mu^{*})$. Assume \mathcal{F} geodesically convex.

$$\mathcal{L}_{c}'(t) \leq -2(\mathcal{F}(\mu_{t}) - \mathcal{F}(\mu^{*})) \leq 0,$$

therefore $W_2^2(\mu_t, \mu^*) \searrow$. Moreover,

$$\mathcal{F}(\mu_t) - \mathcal{F}(\mu^*) \leq rac{1}{T} \int_0^T \mathcal{F}(\mu_t) - \mathcal{F}(\mu^*) dt \leq rac{W_2^2(\mu_0,\mu^*)}{2T}.$$

Our approach

Similarly to the transition

Euclidean gradient flow \longrightarrow gradient descent,

we shall use the Wasserstein gradient flow point of view to analyze algorithms that can be seen as time *discretized Wasserstein gradient flows*.

If convexity is involved, we shall use the Lyapunov function \mathcal{L}_c , otherwise we use \mathcal{L} .

Outline

Motivations

From $\mu_0 \in \mathcal{P}$ to $\mu^* \in \mathcal{P}$

Preliminaries on gradient flows

 $\frac{\partial \mu_t}{\partial t} = \operatorname{div}(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}) \text{ where } \mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$

Maximum Mean Discrepancy Gradient flow (Neurips 2019)

M. Arbel, A. Korba, A. Salim, A. Gretton

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \frac{1}{2} MMD^2(\mu, \mu^*)$

Primal Dual interpretation of the Proximal Gradient Langevin algorithm (submitted)

A. Salim, P. Richtarik

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = KL(\mu|\mu^*)$

Conclusion and Research directions

Maximum Mean Discrepancy

• Let $k : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$k(z,z') = \langle \phi(z), \phi(z')
angle_{\mathcal{H}}, \quad \phi : \mathcal{Z} \to \mathcal{H}$$

• \mathcal{H} its RKHS (Reproducing Kernel Hilbert Space). *Recall:* \mathcal{H} is a Hilbert space with inner product $\langle ., . \rangle_{\mathcal{H}}$ and norm $\|.\|_{\mathcal{H}}$. It satisfies the reproducing property:

$$\forall \quad f \in \mathcal{H}, \ z \in \mathcal{Z}, \quad f(z) = \langle f, k(z, .) \rangle_{\mathcal{H}}$$

Assume $\mu \mapsto \int k(z, .) d\mu(z)$ injective (characteristic k).

Maximum Mean Discrepancy

• Let $k : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$k(z,z') = \langle \phi(z), \phi(z')
angle_{\mathcal{H}}, \quad \phi : \mathcal{Z} \to \mathcal{H}$$

▶ \mathcal{H} its RKHS (Reproducing Kernel Hilbert Space). *Recall:* \mathcal{H} is a Hilbert space with inner product $\langle ., . \rangle_{\mathcal{H}}$ and norm $\|.\|_{\mathcal{H}}$. It satisfies the reproducing property:

$$\forall \quad f \in \mathcal{H}, \ z \in \mathcal{Z}, \quad f(z) = \langle f, k(z, .) \rangle_{\mathcal{H}}$$

Assume $\mu \mapsto \int k(z, .) d\mu(z)$ injective (characteristic *k*).

Maximum Mean Discrepancy ([Gretton et al., 2012]) defines a distance on \mathcal{P} (probability distributions on \mathcal{Z}):

$$MMD(\mu,\nu) = \|f_{\mu,\nu}\|_{\mathcal{H}}, \text{ where}$$

$$\underbrace{f_{\mu,\nu}(.) = \int k(z,.)d\mu(z) - \int k(z,.)d\nu(z)}_{\text{"witness function"}}$$

MMD functional

For a target distribution μ^* (fixed), for any $\mu \in \mathcal{P}$:

$$\begin{split} \mathcal{F}(\mu) &= \frac{1}{2} MMD^2(\mu, \mu^*) \\ &= \frac{1}{2} \|f_{\mu,\mu^*}\|_{\mathcal{H}}^2 \\ &= \frac{1}{2} \int k(z,z') d\mu(z) d\mu(z') + \frac{1}{2} \int k(z,z') d\mu^*(z) d\mu^*(z') \\ &- \int k(z,z') d\mu(z) d\mu^*(z') \end{split}$$

Proof : use the reproducing property with $f_{\mu,\mu^*}(.) = \int k(z,.)d\mu(z) - \int k(z,.)d\mu^*(z)$

Appear as a loss when optimizing some large neural networks.

We consider

$$\min_{
u \in \mathcal{P}} \mathcal{F}(\mu)$$
 where $\mathcal{F}(\mu) = rac{1}{2} MMD^2(\mu, \mu^*)$

 Gradient descent dynamics in this setting takes the form of a PDE (gradient flow on P)

$$\frac{\partial \mu_t}{\partial t} = \operatorname{div}\left(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial t}\right) = \operatorname{div}(\mu_t \nabla f_{\mu_t,\mu^*})$$

where $\nabla_{Z_t} f_{\mu_t,\mu^*} = \int \nabla k(Z,Z_t) d\mu_t(Z) - \int \nabla k(Z,Z_t) d\mu^*(Z)$.

Density of particles following a Mc-Kean Vlasov dynamic :

$$\frac{dZ_t}{dt} = -\nabla_{Z_t} f_{\mu_t,\mu^*}(Z_t), \qquad Z_t \sim \mu_t$$

Illustration : Student-Teacher network

Satisfies the "well-specified" assumption ! $(\exists \mu^*, \mathbb{E}[y|X = x] = \mathbb{E}_{Z \sim \mu^*}[\phi_Z(x)])$

- ► the output of the Teacher network is deterministic and given by $y = \int \phi_Z(x) d\mu^*(Z)$ where $\mu^* = \frac{1}{M} \sum_{m=1}^M \delta_{U^m}$
- Student network parametrized by $\mu_0 = \frac{1}{N} \sum_{n=1}^{N} \delta_{Z_0^n}$ tries to learn the mapping $x \mapsto \int \phi_Z(x) d\mu^*(Z)$.

Gradient descent on each parameter $n \in \{1, ..., N\}$:

$$Z_{t+1}^n = Z_t^n - \gamma \mathbb{E}_{x \sim data} \left[\left(\frac{1}{N} \sum_{n'=1}^N \phi_{Z_t^{n'}}(x) - \frac{1}{M} \sum_{m=1}^M \phi_{u^m}(x) \right) \nabla_{Z_t^n} \phi_{Z_t^n}(x) \right],$$

Re-arranging terms and recalling that $k(Z, U) = \mathbb{E}_{x \sim data}[\phi_Z(x)^T \phi_U(x)]$, the update becomes:

$$z_{t+1}^{n} = z_{t}^{n} - \gamma \underbrace{\left(\frac{1}{N} \sum_{n'=1}^{N} \nabla_{2} k(z_{t}^{n'}, z_{t}^{n}) - \frac{1}{M} \sum_{m=1}^{M} \nabla_{2} k(u^{m}, z_{t}^{n})\right)}_{\nabla f_{\mu^{*}, \mu_{t}}(z_{t}^{n})}$$

The above equation is a time-discretized version of the gradient flow of the MMD.

Convergence of the MMD GF

$$\mathcal{F}(\mu_t)$$
 along the MMD flow $\frac{\partial \mu_t}{\partial t} = div(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu})$?
We know that $\frac{d\mathcal{F}(\mu_t)}{dt} = -\|\nabla_W \mathcal{F}(\mu_t)\|_{\mu_t}^2$. Do we have

$$\frac{d\mathcal{F}(\mu_t)}{dt} = -\|\nabla_{W}\mathcal{F}(\mu_t)\|_{\mu_t}^2 \leq -C\mathcal{F}(\mu_t)^2?$$

Yes if $\|\mu_t - \mu^*\|_{\dot{H}^{-1}(\mu_t)} \leq C$ for all *t*, where $\|\cdot\|_{\dot{H}^{-1}(\mu_t)}$ is the weighted negative Sobolev distance (linearizes W_2)

$$\|\mu_t - \mu^*\|_{\dot{H}^{-1}(\mu_t)} = \sup_{g, \ \mathbb{E}_{Z \sim \mu_t}[\|\nabla g(Z)\|^2] \le 1} |\mathbb{E}_{Z \sim \mu_t}[g(Z)] - \mathbb{E}_{U \sim \mu^*}[g(U)]|$$

This results in $\mathcal{F}(\mu_t) = \mathcal{O}(\frac{1}{t})$ (also true in discrete time)

Problem: Depends on the whole sequence μ_t ; Hard to verify in general [Peyre, 2018]; and we've seen failure cases in practice.

Convergence issues

► The condition we exhibited for global convergence may not hold and (F(µ_t))_t might be stuck at a local minima.

$$egin{aligned} rac{d\mathcal{F}(\mu_t)}{dt} &= -\int \|
abla f_{\mu_t,\mu^*}(x)\|^2 d\mu_t(x) ext{ at equilibrium} \ & \Longrightarrow \int \|
abla f_{\mu^\infty,\mu^*}(x)\|^2 d\mu^\infty(x) = 0 \end{aligned}$$

If μ^{∞} positive everywhere this implies $f_{\mu^{\infty},\mu^*} = cte = 0^3$ But μ^{∞} might be singular...

Idea : Evaluate ∇f_{µt,µ*} outside of the support of µt to get a better signal!

³as soon as the RKHS \mathcal{H} does not contain non-zero constant functions.

Noise Injection

At each iteration *n*, sample $\xi_n \sim \mathcal{N}(0, 1)$ and β_n is the noise level:

$$Z_{n+1} = Z_n - \gamma \nabla f_{\mu_n,\mu^*} (Z_n + \beta_n \xi_n)$$

Different from adding noise outside ("diffusion")

$$Z_{n+1} = Z_n - \gamma \nabla f_{\mu_n,\mu^*}(Z_n) + \beta_n \xi_n$$

which corresponds to an entropic regularization of the loss.

Contributions and openings

- Provided a convergence criterion for the Wasserstein gradient flow of the MMD.
- Proposed a pertubation of the dynamics with a noise injection and showed it effectiveness on simple examples.
- new insights for training large neural networks.

Openings:

- Control of the weighted negative Sobolev norm?
- Stronger guarantees for the convergence for the noise injection algorithm.

Outline

Motivations

From $\mu_0 \in \mathcal{P}$ to $\mu^* \in \mathcal{P}$

Preliminaries on gradient flows

 $\frac{\partial \mu_t}{\partial t} = \textit{div}(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}) \text{ where } \mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$

Maximum Mean Discrepancy Gradient flow (Neurips 2019)

M. Arbel, A. Korba, A. Salim, A. Gretton

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \frac{1}{2} MMD^2(\mu, \mu^*)$

Primal Dual interpretation of the Proximal Gradient Langevin algorithm (submitted)

A. Salim, P. Richtarik

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \mathit{KL}(\mu | \mu^*)$

Conclusion and Research directions

Sampling as optimization of the KL

Problem : sampling from a distribution $\mu^* \propto exp(-V)$ where $V : \mathcal{X} \to \mathbb{R}$ convex⁴.

 $\min_{\mu\in\mathcal{P}}\mathcal{F}(\mu)$

where $\mathcal{F}(\mu) = \textit{KL}(\mu|\mu^*)$

$$\mathit{KL}(\mu|\mu^*) = \int \log\left(rac{d\mu}{d\mu^*}(x)
ight) d\mu(x) = \mathcal{E}_V(\mu) + \mathcal{U}(\mu),$$

if $\mu \ll \mu^*$ with density $\frac{d\mu}{d\mu^*}$, and $\textit{KL}(\mu|\mu^*) = +\infty$ else.

Sampling as optimization of the KL

Problem : sampling from a distribution $\mu^* \propto exp(-V)$ where $V : \mathcal{X} \to \mathbb{R}$ convex⁴.

 $\min_{\mu\in\mathcal{P}}\mathcal{F}(\mu)$

where $\mathcal{F}(\mu) = \textit{KL}(\mu|\mu^*)$

$$\mathit{KL}(\mu|\mu^*) = \int \log\left(rac{d\mu}{d\mu^*}(x)
ight) d\mu(x) = \mathcal{E}_V(\mu) + \mathcal{U}(\mu),$$

if $\mu \ll \mu^*$ with density $\frac{d\mu}{d\mu^*}$, and $KL(\mu|\mu^*) = +\infty$ else. Assume *V* smooth. Langevin Monte Carlo (LMC) is a sampling algorithm:

$$x_{n+1} = x_n - \gamma \nabla V(x_n) + \sqrt{2\gamma} \xi_{n+1},$$

where $\gamma > 0$ and $(\xi_n)_n$ i.i.d. r.v. with standard Gaussian <u>distribution [Dalalyan, 2017, Durmus</u> et al., 2019, Wibisono, 2018, Bernton, 2018]. ${}^{4}\mathcal{X} = \mathbb{R}^{d}$

Proximal Gradient Langevin Algorithm

Assume V = F + G where F is smooth λ -strongly convex and G nonsmooth convex⁵.

Proximal Gradient Langevin Algorithm (PGLA) is a sampling algorithm:

$$x_{n+1} = \operatorname{prox}_{\gamma G} \left(x_n - \gamma \nabla F(x_n) + \sqrt{2\gamma} \xi_{n+1} \right),$$

where $\gamma > 0$, $(\xi_n)_n$ i.i.d. r.v. with standard Gaussian distribution and

$$\operatorname{prox}_{G}(x) := \underset{y \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{2} \|x - y\|^{2} + G(y). \tag{2}$$

If $G = \iota_C^6$ where *C* convex set, $\operatorname{pros}_G(x) = \operatorname{proj}_C(x)$.

More generally, $prox_G(x) \in dom(G)$, hence $x_{n+1} \in dom(G)$.

⁵*i.e. G* convex, l.s.c., proper

⁶*i.e.* G(x) = 0 if $x \in C$ and $G(x) = +\infty$ else.

Non-asymptotic analysis of PGLA

1. Constrained sampling: $G = \iota_C$ where C convex

body [Bubeck et al., 2018].

In this case, $\operatorname{Supp}(\mu^*) = \operatorname{dom}(G) = C$.

PGLA is called Projected Langevin algorithm: $x_{n+1} = \operatorname{proj}_{C} (x_{n} - \gamma \nabla F(x_{n}) + \sqrt{2\gamma} \xi_{n+1}).$

Complexity: $n = O(1/\varepsilon^{12})$ in Total Variation distance⁷.

2. *G* Lipschitz continuous [Durmus et al., 2019]. In this case, $\text{Supp}(\mu^*) = \mathcal{X}$.

Complexity: $n = O(1/\varepsilon^2)$ in 2-Wasserstein distance.

3. *G* l.s.c. proper and μ^* locally Sobolev 1,1 (**This work**). In this case, Supp(μ^*) = dom(*G*).

Complexity: $n = O(1/\varepsilon^2)$ in 2-Wasserstein distance.

⁷This result also holds if $\lambda = 0$.

Proximal Gradient algorithm

1. Consider the problem

$$\min_{x\in\mathcal{X}}F(x)+G(x). \tag{3}$$

2. The Forward Backward (FB) Euler discretization of GF is

$$x_{n+1} = \operatorname{prox}_{\gamma G}(x_n - \gamma \nabla F(x_n)), \quad n \ge 0.$$
(4)

3. The FB discretization satisfies (for γ small enough): $x^* \in \operatorname{argmin} V, \forall n \ge 0$,

 $\|x_{n+1}-x^*\|^2 - \|x_n-x^*\|^2 \le -2\gamma \left(V(x_{n+1})-V(x^*)\right) - \lambda\gamma \|x_n-x^*\|^2.$

4. The FB solves (3): $||x_n - x^*||^2 \le (1 - \gamma \lambda)^n ||x_0 - x^*||^2$.

Proximal Gradient algorithm, Revisited

1. Consider the problem

 $\min_{x\in\mathcal{X}}F(x)+G(x).$

2. The Forward Backward (FB) Euler discretization of GF is

$$x_{n+1} = \operatorname{prox}_{\gamma G}(x_n - \gamma \nabla F(x_n)), \quad n \ge 0.$$
 (5)

3. The FB discretization satisfies (for γ small enough): $x^* \in \operatorname{argmin} V, y^* \in \partial G(x^*), \forall n \ge 0,$

 $\begin{aligned} \|x_{n+1} - x^*\|^2 - \|x_n - x^*\|^2 &\leq -2\gamma \left(\mathcal{L}(x_{n+1}, y^*) - \mathcal{L}(x^*, y_{n+1})\right) \\ &- \lambda\gamma \|x_n - x^*\|^2, \end{aligned}$

where $\mathcal{L}(x, y) = F(x) - G^*(y) + \langle x, y \rangle$. 4. The FB solves (3): $||x_n - x^*||^2 \le (1 - \gamma \lambda)^n ||x_0 - x^*||^2$.

Proximal Gradient Langevin algorithm

1. Consider the problem

$$\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu) = \mathcal{E}_{V}(\mu) + \mathcal{U}(\mu) = \mathcal{E}_{F}(\mu) + \mathcal{E}_{G}(\mu) + \mathcal{U}(\mu).$$
(6)

 The Forward Flow Backward (FFB) discretization of GF [Wibisono, 2018] is

$$x_{n+1} = \operatorname{prox}_{\gamma G}(x_n - \gamma \nabla F(x_n) + \sqrt{2\gamma}\xi_{n+1}), \quad n \ge 0.$$
 (7)

 The FFB discretization satisfies (γ small enough) [Durmus et al., 2018] (assumes G Lipschitz): ∀n ≥ 0,

 $W_{2}^{2}(\mu_{n+1},\mu^{*}) - W_{2}^{2}(\mu_{n},\mu^{*}) \leq -2\gamma KL(\tilde{\mu_{n}}|\mu^{*}) - \lambda\gamma W_{2}^{2}(\mu_{n},\mu^{*}) + \gamma^{2}C.$

- 4. $W_2^2(\mu_n, \mu^*) \leq (1 \gamma \lambda)^n W_2^2(\mu_0, \mu^*) + \gamma C.$
- 5. Complexity to obtain $W(\mu_n, \mu^*) \leq \varepsilon$: $n = \mathcal{O}(1/\varepsilon^2)$.

Proximal Gradient Langevin algorithm, Revisited

1. Consider the problem

$$\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu) = \mathcal{E}_{V}(\mu) + \mathcal{U}(\mu) = \mathcal{E}_{F}(\mu) + \mathcal{E}_{G}(\mu) + \mathcal{U}(\mu).$$
(8)

2. The Forward Flow Backward (FFB) discretization of GF is

$$x_{n+1} = \operatorname{prox}_{\gamma G}(x_n - \gamma \nabla F(x_n) + \sqrt{2\gamma} W_{n+1}), \quad n \ge 0.$$
 (9)

The FFB discretization satisfies (γ small enough) (This work) (does not assume *G* Lipschitz): ∀n ≥ 0,

$$\begin{split} W_2^2(\mu_{n+1},\mu^*) - W_2^2(\mu_n,\mu^*) &\leq -2\gamma \underbrace{(\mathscr{L}(\tilde{\mu_n},y^*) - \mathscr{L}(\mu^*,y_{n+1}))}_{\geq 0} \\ &-\lambda\gamma W_2^2(\mu_n,\mu^*) + \gamma^2 \mathcal{C}, \end{split}$$

where $\mathscr{L}(\mu, y) = \mathcal{E}_{F}(\mu) + \mathcal{H}(\mu) - \mathcal{E}_{G^{*}}(\mu) + \mathbb{E}\langle x, y \rangle$, and $x = T^{\mu}_{\mu^{*}}(x^{*})$.

- 4. $W_2^2(\mu_n, \mu^*) \leq (1 \gamma \lambda)^n W_2^2(\mu_0, \mu^*) + \gamma C.$
- 5. Complexity to obtain $W(\mu_n, \nu^*) \leq \varepsilon$: $n = O(1/\varepsilon^2)$.

Outline

Motivations

From $\mu_0 \in \mathcal{P}$ to $\mu^* \in \mathcal{P}$

Preliminaries on gradient flows

 $\frac{\partial \mu_t}{\partial t} = \operatorname{div}(\mu_t \nabla \frac{\partial \mathcal{F}(\mu_t)}{\partial \mu}) \text{ where } \mathcal{F} : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$

Maximum Mean Discrepancy Gradient flow (Neurips 2019)

M. Arbel, A. Korba, A. Salim, A. Gretton

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = \frac{1}{2} MMD^2(\mu, \mu^*)$

Primal Dual interpretation of the Proximal Gradient Langevin algorithm (submitted)

A. Salim, P. Richtarik

 $\min_{\mu \in \mathcal{P}} \mathcal{F}(\mu)$, with $\mathcal{F}(\mu) = KL(\mu|\mu^*)$

Conclusion and Research directions

Advertisement

- 1. Non asymptotic analysis of SVGD: A sampling algorithm that iteratively transports a set of particles to a target distribution [Korba et al., 2020].
- 2. Non asymptotic analysis of the Wasserstein proximal gradient algorithm: a proximal gradient algorithm to minimize $\mathcal{F}(\mu) = \mathcal{E}_F(\mu) + \mathcal{G}(\mu)$ where *F* smooth convex and *G* geodesically convex nonsmooth [Salim et al., 2020].

Conclusion and Research directions

Many problems in ML can be formulated as the minimization of a functional on probability distributions :

$$\min_{\mu\in\mathcal{P}}\mathcal{F}(\mu), \quad ext{where } \mathcal{F}(\mu) = \boldsymbol{d}(\mu,\mu^*)$$

sampling

optimizing wide NN

many others : generative modelling [Chu et al., 2019], online learning [Boursier and Perchet, 2019], barycenters of distributions [Cuturi and Doucet, 2014]...

Many ideas from optimization can be useful in this setting (perturbation of dynamics, adapted discretizations...)

Conclusion and Research directions

Many problems in ML can be formulated as the minimization of a functional on probability distributions :

$$\min_{\mu\in\mathcal{P}}\mathcal{F}(\mu), \quad ext{where } \mathcal{F}(\mu) = \boldsymbol{d}(\mu,\mu^*)$$

sampling

optimizing wide NN

many others : generative modelling [Chu et al., 2019], online learning [Boursier and Perchet, 2019], barycenters of distributions [Cuturi and Doucet, 2014]...

Many ideas from optimization can be useful in this setting (perturbation of dynamics, adapted discretizations...) Thank you!

References I

References II

 Bubeck, S., Eldan, R., and Lehec, J. (2018). Sampling from a log-concave distribution with projected langevin monte carlo. *Discrete & Computational Geometry*, 59(4):757–783.
 Chizat, L. and Bach, F. (2018).

On the global convergence of gradient descent for over-parameterized models using optimal transport. NIPS.

 Chopin, N., Lelièvre, T., and Stoltz, G. (2012).
 Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors. *Stat. Comput.*, 22(4):897–916.

References III

- Chu, C., Blanchet, J., and Glynn, P. (2019). Probability functional descent: A unifying perspective on gans, variational inference, and reinforcement learning. arXiv preprint arXiv:1901.10691.
- Cuturi, M. and Doucet, A. (2014). Fast computation of wasserstein barycenters.
- Dalalyan, A. S. (2017).

Further and stronger analogy between sampling and optimization: Langevin monte carlo and gradient descent. *arXiv preprint arXiv:1704.04752*.

Durmus, A., Eberle, A., Guillin, A., and Zimmer, R. (2018). An elementary approach to uniform in time propagation of chaos.

arXiv preprint arXiv:1805.11387.

References IV

- Durmus, A., Majewski, S., and Miasojedow, B. (2019). Analysis of langevin monte carlo via convex optimization. *Journal of Machine Learning Research*, 20(73):1–46.
- Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. J. (2012).
 A kernel two-sample test. *JMLR*, 13.
- Korba, A., Salim, A., Arbel, M., Luise, G., and Gretton, A. (2020).

A non-asymptotic analysis for stein variational gradient descent.

arXiv preprint arXiv:2006.09797.

References V

Peyre, R. (2018).

Comparison between w2 distance and h1 norm, and localization of wasserstein distance.

ESAIM: Control, Optimisation and Calculus of Variations, 24(4):1489–1501.

 Rotskoff, G., Jelassi, S., Bruna, J., and Vanden-Eijnden, E. (2019).
 Global convergence of neuron birth-death dynamics. In *ICML*.

 Salim, A., Korba, A., and Luise, G. (2020).
 Wasserstein proximal gradient. arXiv preprint arXiv:2002.03035.

References VI

Wibisono, A. (2018).

Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. *arXiv preprint arXiv:1802.08089*.

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. (2018).

Advances in variational inference.

IEEE transactions on pattern analysis and machine intelligence.

The sample-based approximate scheme

How can we simulate

$$Z_{n+1} = Z_n - \gamma \nabla f_{\mu,\mu_n} (Z_n + \beta_n U_n), \quad n \ge 0?$$

It depends on:

- the current distribution $\nu_n \implies$ approximate it by the empirical distribution of a system of *N* interacting particles
- ► the target distribution µ ⇒ replace it by the empirical distribution of the M samples that we have access to (µ)

The sample-based approximate scheme

How can we simulate

$$Z_{n+1} = Z_n - \gamma \nabla f_{\mu,\mu_n} (Z_n + \beta_n U_n), \quad n \ge 0?$$

It depends on:

- the current distribution $\nu_n \implies$ approximate it by the empirical distribution of a system of *N* interacting particles
- ► the target distribution µ ⇒ replace it by the empirical distribution of the M samples that we have access to (µ)
- \implies create a system of interacting particles

$$\widehat{\nu}_{n+1} \begin{cases} Z_{n+1}^1 = Z_n^1 - \gamma \nabla f_{\widehat{\mu},\widehat{\nu}_n}(Z_n^1 + \beta_n U_n^1) \\ \dots \\ Z_{n+1}^N = Z_n^N - \gamma \nabla f_{\widehat{\mu},\widehat{\nu}_n}(Z_n^N + \beta_n U_n^N) \end{cases}$$

Theoretical guarantees

(Propagation of chaos type of result)

Theorem

Let $n \ge 0$ and T > 0. Let ν_n and $\hat{\nu}_n$ defined by the (theoretical) Euler-scheme and the practical algorithm. Suppose $\|\nabla k\|_{Lip} = L$ and that $\beta_n < B$ for all n, for some B > 0. Then for any $\frac{T}{\gamma} \ge n$:

$$\mathbb{E}[W_2(\hat{\nu}_n,\nu_n)] \leq \frac{C_1(\nu_0,B,T,L)}{\sqrt{N}} + \frac{C_2(\mu,T,L)}{\sqrt{M}}$$

where N is the number of interacting particles and M is the number of samples from the target distribution.

MMD flow and related work

- [Rotskoff et al., 2019],[Chizat and Bach, 2018] identify the same pb that when the norm of the vector field is zero, i.e. for a fixed point of the GF, if the support of the density of the particles is too small, it might not be a global minimizer
- that's why [Chizat and Bach, 2018] needs the initial distribution to be supported everywhere; and gradient flow dynamics avoid spurious local minimas (ie they converge to the global minimizer) under appropriate conditions on the functions activations
- our global convergence criterion does not depend on the activation functions!
- ► also, we propose a perturbed dynamic (≠ [Rotskoff et al., 2019]) and a discrete-time analysis

Neural tangent kernel

- common point : NN in the infinite width regime
- ► $k(x, x') = \mathbb{E}_{Z \sim \nu} \left[\frac{\partial \phi(Z, x)}{\partial Z}^T \frac{\partial \phi(Z, x')}{\partial \partial Z} \right]$ kernel between data points
- the time varying kernel (ν(t)) is actually close to a deterministic one (NTK, ie the kernel at ν₀)
- A properly randomly initialized sufficiently wide deep neural network trained by gradient descent with infinitesimal step size (a.k.a. gradient flow) is equivalent to a kernel regression predictor with a deterministic kernel called neural tangent kernel (NTK).

Update for Student-teacher network

the gradient descent on the parameters can be written:

$$Z_{l+1}^{i} = Z_{l}^{i} - \gamma \mathbb{E}_{x \sim data}[(\frac{1}{N} \sum_{j=1}^{N} \phi(x, Z_{l}^{j}) - \frac{1}{M} \sum_{j=1}^{M} \phi(x, U^{j})) \nabla_{Z_{l}^{i}} \phi(x, Z_{l}^{i})],$$

$$\underbrace{\nabla_{T_{\nu_{l}, \nu^{*}}}(Z_{l}^{j})}$$

where $(Z_l^i)_{1 \le i \le N}$ are the particles at iteration *l* with distribution ν_l and $\nabla f_{\nu_l,\nu^*}(Z_l^i) = \left(\frac{1}{N}\sum_{j=1}^N \nabla_2 k(Z_l^j, Z_l^j) - \frac{1}{M}\sum_{j=1}^M \nabla_2 k(U^j, Z_l^j)\right).$

Proof for Wass. Proximal Gradient

Step 1 : identify the optimal transport maps between μ_n, ν_{n+1}, μ_{n+1}, show that ∀ n ≥ 0, ν_n, μ_n ≪ Leb. (requires γ < 1/L)</p>

Step 2: prove a descent lemma (due to smoothness of V)

$$\mathsf{KL}(\mu_{n+1}|\nu^*) \leq \mathsf{KL}(\mu_n|\nu^*) - \gamma \left(1 - \frac{L\gamma}{2}\right) \|\nabla F + \nabla_{W_2} \mathcal{U}(\mu_{n+1}) \circ X_{n+1}\|_{L_2(\mu_n)}^2,$$

where $X_{n+1} = T_{\nu_{n+1}}^{\mu_{n+1}} \circ (I - \gamma \nabla V)$

Step 3 : Discrete EVI for the entropy using its generalized geo. convexity (weaker than geo. convexity):

$$\mathcal{U}(((1-t)T_{\nu}^{\mu}+tT_{\nu}^{\pi})_{\#}\nu)\leq (1-t)\mathcal{U}(\mu)+t\mathcal{U}(\pi).$$

Step 4: Discrete EVI for the potential using strong convexity.