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Quantization problem

Problem : approximate a target distribution = € P(R9) by a
finite set of n points xy, ..., xn, €.9. to compute functionals

Jga f(x)d7(x).

The quality of the set can be measured by the integral
approximation error:

err(Xe, ... Xn) = ‘:7 > 16~ | #60dn(x)
i=1

Several approaches, among which :
» MCMC methods : generate a Markov chain whose law
converges to 7, err(xq,..., X,) = O(n~1/2)

» deterministic particle systems, err(xq,...,x5)?



Bayesian inference

Let D = (w;, y;)[", a dataset of labelled examples (w;, y;) Hg- Paata-
Assume an underlying model parametrized by w, e.g. :

y:g(W,X)+E, 6N'/V.(O?l)
Goal: learn the best distribution over parameter x to fit the data.
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Bayesian inference

Let D = (w;, y;)[", a dataset of labelled examples (W,,y,) rd " Pyata.
Assume an underlying model parametrized by w, e.g.

y:g(W,X)+E, 6N'/\/(O?l)
Goal: learn the best distribution over parameter x to fit the data.

1. Compute the Likelihood:

p(D|x) = Hp Yilx, w;) 0<exP<Z||YI g(wi, x )

2. Choose a prior distribution on the parameter:

. X
~p, eg.p(x)xexp 5 )
3. Bayes’ rule yields:

7(x) == p(x|D) = L z- /pD\x

2
e. m(x) oc exp (—V(x)). le% g(wi, )| + Hz”'



« is needed both for
» prediction for a new input w:

Yorea = | 6w x)d(x)

"Bayesian model averaging”
» measure uncertainty on the prediction.



« is needed both for
» prediction for a new input w:

Yprea = / g(w, x)dr(x)
Rd
"Bayesian model averaging”
» measure uncertainty on the prediction.
n
Given a discrete approximation p, = 15 > Ox of m:
j=1
1 n
Ypred = ZQ(Wan)-
j=1

Question: how can we approximate 7?
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Sampling as optimization over distributions

3 algorithms/particle systems at study:
» Maximum Mean Discrepancy Descent
» Kernel Stein Discrepancy Descent
» Stein Variational Gradient Descent

These particle systems are designed to minimize a loss.
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Sampling as optimization over distributions

3 algorithms/particle systems at study:
» Maximum Mean Discrepancy Descent
» Kernel Stein Discrepancy Descent
» Stein Variational Gradient Descent
These particle systems are designed to minimize a loss.

Assume that € P2(R?) = {p € P(RY), [ ||x|2du(x) < co}.
The sampling task can be recast as an optimization problem:

7= argmin F(u), F(1) = D(slr).
HEP2(RY)

where D is a dissimilarity functional and 7 "a loss".

Starting from an initial distribution 1o € P2(R?), one can then consider
the Wasserstein gradient flow of 7 over P»(RY) to transport i to 7.



Euclidean gradient flow and continuity equation

Let V : RY — R and consider minimizing V. The gradient flow of V
can be written

ax,
7; =-VV(x)

and assume xp random with density 1.



Euclidean gradient flow and continuity equation

Let V : RY — R and consider minimizing V. The gradient flow of V
can be written

ax,
7; = —VV(x)

and assume xp random with density 1.
What are the dynamics of the density j; of x; ? Let ¢ € Ccoo(RY).

o(Xp)) / o(x 3#t

and applying the chain rule and using I.P.P.,

E000) = = [(7600. V(o = [ 600V-(ul)V V).

Therefore,

Our
a1 = V- (uVV).
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Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on RY with finite
second moments, i.e.

Pa(R) = (€ PRY), [ |x|du(x) < oc)

Po(RY) is endowed with the Wasserstein-2 distance from Optimal
transport :

WE(v,p) = inf Ix — y|?ds(x.y) Vv, e Po(RY)
sel(v,u) RA xRI

where I'(v, 1) is the set of possible couplings between v and p (joint
distributions on R? x RY with first marginals v and p).

Can also be written (Benamou-Brenier formula):

9]
W2(v, 1) mf {/ ||Vt||L2 p,)dt X) : pf =V - (ptVt),po = v, p1 = /J}~

(pt;Vt)tep0.1]



Wasserstein gradient flows (WGF)

The first var|at|on of u — F(u) evaluated at . € P(R) is the unique
function 2 ( ):RY 5 Rs. t. forany p,v € P(RY), v — u € P(RY):

im 1(f(u selv =)= 7) = [ (e - .

e—0 € au



Wasserstein gradient flows (WGF)
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Wasserstein gradient flows (WGF)

The first variation of u — F(u) evaluated at . € P(R) is the unique

function 2 ( ). RY 5 Rs. t. forany p,v € P(RY), v — pu € P(RY):
lim }(f(u selv =)= 7) = [ (e - .

The family 4 : [0, 00] — P2(RY), t + u; satisfies a Wasserstein
gradient flow of F if:

O

ot =V. (,LLIVW?F(MT)) )

where Vy, F(u) := Vag—ff) denotes the Wasserstein gradient of 7.
It can be implemented by the deterministic process:

ax t

o =V, F (i) (X:), where x; ~



Particle system approximating the WGF

Euler time-discretization : in RY, move particles as:

X1 = XX — YV, F () (Xp) ~ pis1,  Xo ~ po-
But y; is unknown.

Space discretization/particle system : Introduce a particle
system xJ,..., x§ ~ uo, and at each step:

X1 =X =V F()(x) fori=1,....n,

L1y
where ji = 21: Oy
1=



Background on kernels and RKHS

> Let k: RY x RY — R a positive, semi-definite kernel
((k(xi, X)) is a p.s.d. matrix for all x1,..., X, € RY)

v

examples:
> i — _lx=yI?
the Gaussian kernel k(x,y) = exp -
> the Laplace kernel k(x, y) = exp(—w)

v

Hy its corresponding RKHS (Reproducing Kernel Hilbert Space):

’Hk—{Za, (v x); meN; a1,...,am€R;X1,...,xm€IRd}

v

Hy is a Hilbert space with inner product (., )3, and norm ||. ||,

v

It satisfies the reproducing property:

Vo ofeMk, xeRI F(x) = (f,k(X,.))n,.



Maximum Mean Discrepancy
Assume p — [ k(x,.)du(x) injective.

Maximum Mean Discrepancy defines a distance on P,(RY):

/ fay — / fd7r

= [lmy — me 3,

// K(x, y)du(x)du(y //kxydw )dr(y)
-2 f / k() du(x)dn(y),

by the reproducing property (f, k(x,.))s, = f(x) for f € Hy.

MMD?(p, ) = sup
fEH K |[fll 2, <1




Maximum Mean Discrepancy
Assume p — [ k(x,.)du(x) injective.

Maximum Mean Discrepancy defines a distance on P,(RY):

/ fay — / fd7r

= [lmy — me 3,

/ Kk(x,y)du(x)du(y / k(x,y)dr(x)dn(y)

_ 2//Rd k(x, y)du(x)dn(y),

by the reproducing property (f, k(x,.))s, = f(x) for f € Hy.

MMD?(p, ) = sup
fEH K |[fll 2, <1

The differential of 1 — 3 MMD?(., 7) evaluated at 1 € P2(R7) is:

/k(x,. /k Jdn(x) : R = R.

Hence, for k regular enough, Vw, 3 MMD?(y, ) is:

/ng /vgk Jdr(x) : RY = R.



Kernel Stein Discrepancy

If one does not have access to samples of 7 but only to its score, it is
still possible to compute the KSD:

KSD?(p|m) = / k= (X, y)du(x)dpu(y),

where k, : RY x RY — R is the Stein kernel, defined through
» the score function s(x) = V log 7(x),
» ap.s.d. kernel k : RY x RY — R, k € C?(RY)!
For x,y € RY,
ke(X,y) = 8(x)7s(y) k(x,y) + s(x)7 Vak(x,y)
+ Vik(x,¥)" s(y) + V -1 Vak(x,y)

eR.

Te.g. : k(x,y) = exp(—|x — y|P/h), 7(x)x e s(x) = —x



KSD vs MMD

Under mild assumptions on k and =, the Stein kernel k; is p.s.d. and
satisfies a Stein identity

/ k-(x,.)dr(x) = 0.
Rd

Consequently, KSD is an MMD with kernel k., since:
MMD(ujr) = [ s () dn(0du(y) + [ ka(x.y)n(x)din(y)
-2 [ k(. y)du(0d(y)

:/kw(x,y)du(x)dﬂ(}/)
= KSD?(ulr)



MMD and KSD Descent
Let 7(u) = D(u|w) where D is the MMD or KSD.

For discrete measures = 1377 L 5y, let F(XT, ..., X™) := F(p).
Then, fori=1,...,n,

. . o ) 12
X1 =X =YV F(u)(x), = n Z 5x;‘
i=1
(3

i i 1 n
X1 =X —’YVXIF(X/,...7X/ )



MMD and KSD Descent
Let 7(u) = D(u|w) where D is the MMD or KSD.
For discrete measures = 1377 L 5y, let F(XT, ..., X™) := F(p).

Then, fori=1,...,n,
, . 1
Xy =X = VW F () (), fi= >0
i=1
X/i+1 :X/_’YVXIF(X/1)"'7X/n)'

» If Dis the MMD, the gradient of F is:
1 o .
VF(x',. .. x") = - Z;ng(x’,x/) — /ng(x’,x)dw(x).
iz
» In contrast, if D is the KSD, it is:

1 o
VXfF(X1,... ,Xn) = EZVZKTF(XI?X/)'
j=1



Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =
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Remarks

» The MMD/KSD/their W, gradient write as sums of integrals
of pand =

» Hence they can be evaluated in closed form for discrete p
and m = use L-BFGS to automatically select the best
step-size

» depending on the information on 7, choose the KSD
(unnormalized density) or MMD (samples)

» The MMD upper bounds the integral approximation error
for functions in the RKHS, since by the reproducing
property and Cauchy-Schwartz:

< [1ll3, MMD (s, ).

f(X)d?T(X)—/ f(x)du(x)
Rd R

Similarly for the KSD with Hy_.




Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) performs gradient
descent in P(RY) of the Kullback-Leibler (KL) divergence :

KL(p|m) = { Jralog (£(x)) du(x) ifp<

400 otherwise.

with respect to a "kernelized Wassersteln distance" depending on a
kernel k

Wf(uo,m)— inf {/ Ivell?. -am V'(MtVt)}~

(kt;Vi)repo,1)



Stein Variational Gradient Descent
In continuous time, SVGD flow is defined by the continuity equation

Ot 1223
W—i—V ( tVH,)—O V/J,[—S,u,ka’g( )

where
> Viog (£) = Vw, KL(u|r),
> S,k L2(u) = Hi, Fr—= [k(x,.)f(x)du(x),

and one can write v, = k x (1tV log ) — VK * fiz.



Stein Variational Gradient Descent

In continuous time, SVGD flow is defined by the continuity equation

Ot Mt
ot + V. (,uth) =0, Vy = “,ka log ( )

ra
where
> Viog (£) = Vi, KL(ulr),

> S,k L2(n) = He, Fr= [ k(x,.)f(x)du(x),

and one can write v, = k x (1tV log ) — VK * fiz.

Let v > 0 be a fixed step-size. Starting from x{,..., xJ ~ po, SVGD
algorithm updates the n particles as follows at each iteration :

n
X=X + - E {V log (X)) k(x], x]) — VX{k(x,’,x/)} ;
=1



Remarks

» for discrete measures, the KL is not defined

» SVGD does not minimize a well-defined functional for
discrete measures, it is only a discrete approximation of
the KL flow

» cannot be used with L-BFGS (or not straightforwardly)

> how to measure the quantization, i.e. the quality of the
particles obtained?
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MMD and KSD Quantization
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Motivation - Final states for a Gaussian target

(a) iid. (b) MMD kg (C) KsD kg (d) sveD kg (€) svaD k.

Figure: Final states of the algorithms for 1000 particles, kernel bandwidth =
1. kg is the Gaussian kernel and k. is the Laplace kernel.

We run MMD/KSD descent with Gaussian kernel only, since

(1) V,i MMD?(pup, 1) = Z Vak(x', X') — /ngx x)dn(x),
(2) Vi KSD?(ptn, 7) = ZVzk (x', x),
(3) Vyi svc-;D_1 Z Vlogn(x k(X' x) + V,ik(x', x)

(1) available in closed form for = and k Gaussian, (2) involves high order
derivatives of the kernel, (3) can be run with any kernel including k;



We are interested in establishing bounds on the quantization
error

Xn=X1,...,Xn

. 1o
Q,= inf  D(m, pn), foru,= - 21: x5
=
where D is the MMD or KSD.

Remark: For x1,.... X i'é’rd', the rate is known to be O(n—1/2)



We are interested in establishing bounds on the quantization
error

Xn=X1,...,Xn

. 1
Q,= inf  D(m, pn), foru,= - 21: x5
1=
where D is the MMD or KSD.
Remark: For x1,..., X, "5 the rate is known to be O(n=1/2)
Assumption A1: Assume that the kernel is d-times
continuously differentiable. Assume also that any mixed partial

derivative of the kernel of order smaller than d has a RKHS
norm bounded by a constant Cx 4 > 0.



First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) = is the
Lebesgue measure or (i) a probability measure on [0, 1]¢.
Then, there exists a constant Cy, such that for all n > 2,

» if (i): there exist points xq, ..., X, such that
| ad—1
MMD(r, un) < CdM

» if (ii): there exist points xq, ..., X, such that
(log n)*%"
MMD(7, pn) < Cdf

24/34



Proof: We use the well-known Koksma-Hlawka inequality
(Th1):

1 n
/[071]d Fx)dn(x) — ; f(xi)| < D(Xn, ) V(F),

> D(Xn,m) = sup_nn (a6 IT(/) — 1a(/)| is the discrepancy of the
point set X, can be bounded by C, 49(n)

» The variation of a function f : [0,1]¢ — R with continuous mixed
partial derivatives is defined as

vin= Z /[0,1]a

aC{1,..., d}

1 f(Xy, 1)
00X,

' ax,.

Then, use the reproducing property on partial derivatives with
Cauchy-Schwarz inequality, and A1:

f < Ck.g-
o il WU



Result for non compactly supported distributions =

Proposition 1: Suppose A1 holds and that k is bounded.
Assume 7 is a light-tailed distribution on R (i.e. which has a
thinner tail than an exponential distribution). Then, for n > 2
there exist points Xy, ..., X, such that

5d-+1

MMD(r, pin) < CdM
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Result for non compactly supported distributions =

Proposition 1: Suppose A1 holds and that k is bounded.
Assume 7 is a light-tailed distribution on R (i.e. which has a
thinner tail than an exponential distribution). Then, for n > 2
there exist points Xy, ..., X, such that

5d-+1

MMD(r, un) < CdM

Proof: Decompose MMD(, 11n) < MMD(7, p) + MMD(p, un), choosing
compactly supported on A, = [— log n, log n]d.

As 7 is light-tailed, | — «||7v < Ci/n distance, and we first get
MMD(r, p1) < Ckl[p — l[7v < C/n.

Then, we can take a discrete u, supported on A, and bound MMD(, f4n)
using similar arguments as in the previous Theorem.



Result for the KSD

Theorem: Assume that k is Gaussian and that © o exp(—U) with
U € C>(RY). Assume furthermore that U(x) > c¢;||x|| for large
enough x, and that there exists a real-valued polynomial V of degree

m > 0, such that for any multi-index 4, | 2% | < V(x) for all
Jooo i

1 < |B| < d+ 1. Then there exist points X1, ..., X, such that

(lo n) Bd+§m+1
KSD(un|7) < cdgf

Satisfied for gaussian mixtures .
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Result for the KSD

Theorem: Assume that k is Gaussian and that © o exp(—U) with
U € C>(RY). Assume furthermore that U(x) > c¢;||x|| for large
enough x, and that there exists a real-valued polynomial V of degree

m > 0, such that for any multi-index 4, | 2% | < V(x) for all
Jooo i

1 < |B| < d+ 1. Then there exist points xi, ..., X, such that

(lo n) 6d+2m+1
KSD(un|7) < cdgf

Satisfied for gaussian mixtures .

Proof: The proof relies on bounding the first and last term of the

KSD(un, ) = 2 [ [ ¥ 1og(m)(:0)7 ¥ yk(x, y)du(x)du(y)

+ [ 7 10a(m0 T torm)k(x, () + [[ 7 x Tykto Aux)duly),

Q) 2

© = pp — 7, as the cross terms can be upper bounded by the former ones by CS and reproducing property.
(1) MMD(pep, ), with ky(x, y) = s(x)Ts(y)k(x, ), bounded by controlling ||V log 7| ;a
(2) MMD(pp, ), with ka(x, y) = V -x Vk(x, y), bounded by Prop 1 for bounded kernels.
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Algorithms

we investigate numerically the quantization properties of :
» SVGD
» MMD descent
» KSD Descent
» Kernel Herding (KH) : greedy minimization of the MMD
» Stein points (SP) : greedy minimization of the KSD

Hyperparameters:
» kernel: Gaussian, Laplace...
» bandwith of the kernel
> step-size



Quantization rates of the algorithms, = = N(0, 1/aly)

\ . Lnr:?;fbfgs o mmd-lbfgs o mmd-ibfgs
sc-lbfgs N ksd-lbfgs
S N ksd-lbfgs
-2 1%%, o svGD IPYANN o svGD RN « svep
1 {3\\ o NSVGD Q !\\‘\\ o NSVGD -2 N g «  NSVGD
\ ‘\\\ o mmd herding \ \§‘ = mmd herding N A & _mmd herding
Qo ¢ stein point X ¥\ ¢ stein point 3, .
N \ iid:
—4 1 W e iid N a4 N N e ia
\. N 4 \, | A \
— N, -4 AN
° h
E 6
£ 1
-6
-
o N R
8 ¢ . N
= L \\
-10{ N
~104 '\\\
-10 e
—121 \
T T T
2 4 6 2 6 2 4 6

|04g(n)

Averaged over 3 runs of each algorithm, run for 1e4 iterations, where the
initial particles are i.i.d. samples of 7. MMD/KSD Descent use bandwidth 1;
the same bandwith is used for evaluation.



d Eval. SVGD MMD-Ibfgs KSD-lbfgs KH SP
2 KSD -0.98 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.60 -1.54 -0.93 -0.77
3 KSD -0.91 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -1.51 -1.49 -0.92 -0.75
4 KSD -0.91 -1.35 -1.39 -0.89 -
MMD -0.94 -1.46 -1.40 -0.95 -
8 KSD -0.84 -1.14 -1.16 - -
MMD -0.77 -1.25 -1.13 - -

Some remarks:

» The slopes remain much steeper than the Monte Carlo
rate (-0.5), even when the dimension increases

» The slopes are better than our theoretical upper bounds



Robustness to evaluation discrepancy

AR
SR
-
\\ B
= N
°
1S \\
1S v
> o mmd-bfgs
o ksd-Ibfgs
e SVGD
® NSVGD
o mmd herding
o stein point
e iid.
: : T T : T T T
25 5.0 7.5 2.5 5.0 7.5 2.5 5.0 7.5
log(n)

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

> if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

> likely reason : Samples of MMD and KSD with Gaussian kernel have

internal structures which can affect the discrepancy at lower
bandwidths.



For v, u € Pp(RY) , the Sliced p-Wasserstein (SW) distance is defined
as:

Asw,p(v, 1) = /d 1 Wpo(Poyv, Poyp)dl, Py:x— x-0.
-

4d

—— mmd-ibfgs
KsdIblgs

log(sw)

H 6 7 2 3 4 5 6 7

2 3 4 5 6 7 2 3

i
log(n)

Figure: Quantization rates measured in SW distance of the algorithms
7 = N(0,/aly). We use p = 1 and 50 random directions drawn uniformly on
S to discretize the integration.

The rates for SVGD are approximately n=%72 n=0-85 =08 for d = 2,3, and
4. We note that these are quite close to the rate we theoretically predict for
the distance between the measure on a grid in [0, 1]¢, and the Lebesgue

1 1 . . _ — —
measure: dsy1 ~ N2 24, which is n=%7 n=%5" n=062 for g — 2 3, and 4.



Conclusion

» MMD/ KSD descent, SVGD can create "super samples”
that approximate = at fast rates

Open questions/future work:

» improve our quantization bounds for MMD/KSD
(dependence in dimension, Laplace kernel?)

» obtain quantization bounds for SVGD
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Alternative assumption for the MMD bound:

A2. Let k(x,y) = n(x — y) a translation invariant kernel on RY.
Assume that € C(R9) N L'(RY), and that its Fourier transform
verifies : 3Cx ¢ > 0 such that (1 + [¢]2)9 < Cy 4|7(&)|~" for any
£ e RY.

A2 includes kernels which are not smooth, such as Matern
kernels that can be defined through their Fourier transform
(&) x (1+II1W/ > d whose RKHS correspond to Sobolev

spaces of order j, and which are not smooth at z = 0.

Laplace kernel k(x, y) = exp(—||x — y||) corresponds to
f =: fracd + 12 and does not satisfy A2.



A1 is satisfied by the Gaussian kernel with Cx ¢ = (2d)!.

Proof. By the reproducing property, we have

91l K((Xa, 1), ")
I

B dloblolk((Xy, 1), (X, 1)) ‘
= olalx,olely, .

Consider the Gaussian kernel, i.e. for x,y € R, k(x, y) = e~ Ix-¥I*/h,
Hence, for any x, y € RY, the |a|-th partial derivative of the kernel in
both variables is equal to

6‘047‘04/(()(’ y) |a‘62|0“e—t2

— (— D SR R 1 —f?
8\a|xaa\a|ya - ) 92lalt =(-1)"e hz\a|(t)

where h,, u > 0 denotes the u-th Hermite polynomial. In particular for
X =y, i.e. t =0, evaluations of Hermite polynomials at zero

correspond to the well-known Hermite numbers (—1)l¢l212(2|a| — 1)11
with (2]a| = 1)1 =1x3x --- x (2|a] — 1). We conclude using |a| < d.



log(ksd)
log(mmd)

o mmd-ibfgs
ksd-Ibfgs

® SVGD

® NSVGD

©  mmd herding

©  stein point

e iid.

~104

log(n) log(n)
Figure: Quantization rates of the algorithms at study when the target
distribution is a 2D-Gaussian mixture distribution with variance 0.3,
centred at [1,0] and [-1,0]. We evaluate them using MMD and KSD
with bandwidth 1. We run algorithms under the same setting as the
2-4D experiments on Figure 30.



L-BFGS

L-BFGS ( Limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm ) is a quasi-Newton method:

Xit1 =X — B "VF(x) = X + 0| (1)

1

where B, is a p.s.d. matrix approximating the inverse Hessian at x;.

Step1. (requires VF) It computes a cheap version of d; based on
BFGS recursion:

g1 _ (] AxyT 51 (] vidx"\  AxAxT
=\ T ! T T T
Y/ Ax Y/ Ax Y Ax

where Ax;= X1 — X
¥i=VF(Xi1) — VF(x)

Step2. (requires F and VF) A line-search is performed to find the
best step-size in (1) :

F(xi +yid)) < F(xi) + cimVF(x) g
VF(X/ + ’y/d/)Td/ > CQVF(X/)Td/



Kernel Herding (KH) and Stein Points (SP)

They attempt to solve MMD or KSD quantization in a greedy manner,
i.e. by sequentially constructing 1., adding one new particle at each
iteration to minimize MMD/KSD.

Kernel Herding (KH) for the MMD

XM = argmax(Wp, K(X, .)) 2,
xeRd

Wit = Wp+ My — K(Xn11, )
obtain a linear rate of convergence O(e~?")

> if the mean embedding m, = Ex.-[k(X,.)] lies in the relative
interior of the marginal polytope convexhull({k(x,.), x € R%})
with distance b away from the boundary

» however for infinite-dimensional kernels b = 0 and the rate does
not hold.

Stein Points for the KSD greedily minimizes the KSD

similarly. The authors establish a O((log(n)/n)z) rate, which seem
slower than their empirical observations.



Forward method for the KL

Problem: Vy, KL(un|7) = V log(£2) where 1, is unknown.

While V log 7 is known, V log 11 has to be estimated from N particles
X1, ..., XN, e.g. with? :

1. Kernel Density Estimation (KDE):

Then,

SN V(. — X))
SN k(- — Xi)

Remark: it is not the W, gradient of some functional (see the next
slide)

—Vw, KL(pn|m)() = — (V V() +

2assume a symmetric, translation invariant kernel



2. Blob Method
Instead of

U() = / log(1(X)) (),
consider

Un(s) = / log(k » 1(x))dlu(x), where k x u(x) = / K(x — y)duly).

Then,

MU(p) [
aku () =k« (k*u> + log(K * 1)

— Vi, Uk(p) = = Vk = ( a > 4V log(k * )
K p ——

Vk*p

Kx

— Vi, KL(ualm)() = — (VV()+
N

Vk(.— Xi) SN, VK(. — xg‘))
E + -
=S k(X = Xmy S k(- XE)




	Problem and Motivation
	Background on Interacting Particle Systems
	MMD and KSD Quantization
	Experiments
	Appendix

