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Problem : Sample from a target distribution π over X = Rd ,
whose density w.r.t. Lebesgue is written :

π(x) ∝ exp(−V (x))

where V : X → R is the potential function.

Motivation : Bayesian statistics.
I Let D = (xi , yi)i=1,...,N observed data.

I Assume an underlying model parametrized by θ (e.g.
p(y |x , θ) gaussian)
=⇒ Likelihood: p(D|θ) =

∏N
i=1 p(yi |θ, xi)

I The parameter θ ∼ p the prior distribution.

Bayes’ rule : p(θ|D) =
p(D|θ)p(θ)

Z
where Z =

∫
Rd

p(D|θ)p(θ)dθ.

How to sample from θ 7→ p(θ|D)? (Z unknown).
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Sampling as optimization of the KL

Assume π ∈ P2(X ) = {µ,
∫
‖x‖2dµ(x) <∞}, hence π is

solution of :
min

ν∈P2(X )
KL(ν|π) (1)

1. Langevin Monte Carlo (LMC)
[Dalalyan, 2017], [Durmus and Moulines, 2016], [Durmus et al., 2019]

I generates a Markov chain whose law converges to π
I corresponds to a time-discretization of the gradient flow of the KL
I rates of convergence deteriorates quickly in high dimensions

2. Variational Inference (VI):
[Alquier and Ridgway, 2017], [Zhang et al., 2018]

I restrict the search space in (1) to a parametric family
I tractable in the large scale setting
I only returns an approximation of π
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Stein Variational Gradient Descent (SVGD)
[Liu and Wang, 2016]

I "non parametric" VI, only depends on the choice of some
kernel k

I corresponds to a time-discretization of the gradient flow of
the KL under a metric depending on k

I uses a set of interacting particles to approximate π

https://chi-feng.github.io/mcmc-demo/app.html?
algorithm=HamiltonianMC&target=banana
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SVGD in the ML literature

I Empirical performance demonstrated in various tasks
such as:
I Bayesian inference [Liu and Wang, 2016, Feng et al., 2017,

Liu and Zhu, 2018, Detommaso et al., 2018]
I learning deep probabilistic models

[Wang and Liu, 2016, Pu et al., 2017]
I reinforcement learning [Liu et al., 2017]

I Theoretical guarantees : known to converge
asymptotically to π [Lu et al., 2019] when V grows at most
polynomially (in continuous time, infinite number of
particles), but no rates of convergence.

This work : non asymptotic analysis of SVGD in the infinite
particle regime but discrete time + finite sample approximation.
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The Wasserstein space
The space P = {µ ∈ P(X ),

∫
‖x‖2dµ(x) <∞} is endowed

with the Wassertein-2 distance from Optimal transport :

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

∫
X×X

‖x − y‖2 ds(x , y) ∀ν, µ ∈ P

where Γ(ν, µ) is the set of possible couplings between ν and µ.

Def (pushforward) : Let µ ∈ P, T : X → X . The pushforward
measure T#µ is characterized by:
I ∀ B meas. set, T#µ(B) = µ(T−1(B))
I x ∼ µ, T (x) ∼ T#µ
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Continuity equations

For µ ∈ P, L2(µ) = {f : X → X ,
∫

f 2(x)dµ(x) <∞}.
It is a Hilbert space equipped with 〈·, ·〉L2(µ) and ‖ · ‖L2(µ).

Consider a family µ : [0,∞]→ P, t 7→ µt . It satisfies a continuity
equation if there exists V such that Vt ∈ L2(µt ) and :

∂µt

∂t
+ div(µtVt ) = 0

Density µt of particles xt ∈ X driven by a vector field Vt :

dxt

dt
= Vt (xt )

Riemannian interpretation [Otto, 2001] : tangent space of P at µt
TµtP ⊂ L2(µt ).
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The KL defined over the Wasserstein space

For any µ, π ∈ P, the Kullback-Leibler divergence of µ w.r.t. π is
defined by

KL(µ|π) =

∫
X

log

(
dµ
dπ

(x)

)
dµ(x) if µ� π

and is +∞ otherwise.

We consider the functional KL(·|π) : P → [0,+∞].

10/ 33



Wasserstein gradient flows [Ambrosio et al., 2008]

The Wasserstein gradient flow of the functional KL(·|π) is a
curve µ : [0,∞]→ P, t 7→ µt that satisfies:

∂µt

∂t
= “−∇W2KL(µt |π)”

Can be obtained as the limit when τ → 0 of the JKO scheme
[Jordan et al., 1998] :

µ(n + 1) = argmin
µ∈P

KL(µ|π) +
1
2τ

W 2
2 (µ, µ(n))
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Wassertein gradient flows

The Wassertein GF of KL(·|π) is written :

∂µt

∂t
− div(µt ∇

∂KL(µt |π)

∂µ︸ ︷︷ ︸
∇ log

(
dµt
dπ

)
) = 0

where ∂KL(µ|π)
∂µ : X → R is the differential of µ 7→ KL(µ|π), evaluated

at µ.

It is the unique function s. t. for any µ, µ′ ∈ P, µ′ − µ ∈ P:

lim
ε→0

1
ε

(KL(µ+ ε(µ′−µ)|π)−KL(µ|π)) =

∫
X

∂KL(µ|π)

∂µ
(x)(dµ′−dµ)(x).
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Wasserstein Gradient descent
Let µ0 ∈ P. Gradient descent on (P,W2) is written:

µn+1 =

(
I − γ∇∂KL(µn|π)

∂µ

)
#

µn

where γ > 0 is a step-size.
I (Particle version) i.e. given X0 ∈ X ,

Xn+1 = Xn − γ∇
∂KL(µn|π)

∂µ
(Xn)

I Can be seen as RGD where φ→ (I + φ)#µ (defined on
L2(µ)) is the exp. map at µ.

Problem: the W2 gradient of KL(·|π) at µn is the function
∇ log(µn

π ). While ∇ log π is known, ∇ logµn has to be estimated
from samples.
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Recall on kernels and RKHS [Liu and Wang, 2016]

I Let k : X × X → R a positive, semi-definite kernel

k(x , x ′) = 〈φ(x), φ(x ′)〉H, φ : X → H

I H its corresponding RKHS (Reproducing Kernel Hilbert
Space).

H is a Hilbert space with inner product 〈., .〉H and norm ‖.‖H. It
satisfies the reproducing property:

∀ f ∈ H, x ∈ X , f (x) = 〈f , k(x , .)〉H

Let µ ∈ P. We assume H ⊂ L2(µ) which holds as soon as∫
X×X k(x , x)dµ(x) <∞.

15/ 33



The kernel integral operator

The inclusion from H to L2(µ) is denoted by ι and hence admits
an adjoint ι?.

The adjoint of ι is the kernel integral operator Sµ :
L2(µ)→ H defined by :

Sµf (·) =

∫
k(x , .)f (x)dµ(x)

We have for any f ,g ∈ L2(µ)×H [Steinwart and Christmann, 2008] :

〈f , ιg〉L2(µ) = 〈ι∗f ,g〉H = 〈Sµf ,g〉H.

We will denote Pµ = ιSµ.
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SVGD algorithm
SVGD trick: applying this operator to the W2 gradient of
KL(·|π) leads to

Pµ∇ log
(µ
π

)
(·) = −

∫
[∇ log π(x)k(x , ·) +∇xk(x , ·)]dµ(x),

under appropriate boundary conditions on k and π, e.g.
lim‖x‖→∞ k(x , ·)π(x)→ 0.

Algorithm : Starting from N i.i.d. samples (X i
0)i=1,...,N ∼ µ0,

SVGD algorithm updates the N particles as follows :

X i
n+1 = X i

n − γ

 1
N

N∑
j=1

k(X i
n,X

j
n)∇X j

n
log π(X j

n) +∇X j
n
k(X j

n,X
i
n)


︸ ︷︷ ︸

Pµ̂n∇ log( µ̂n
π )(X i

n)

where µ̂n = 1
N
∑N

j=1 δX j
n
.

This work : non asymptotic analysis of SVGD in the infinite
particle regime + finite sample approximation.
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Continuous-time dynamics of SVGD
SVGD gradient flow [Liu, 2017]:

∂µt

∂t
+ div(µtVt ) = 0, Vt := −Pµt∇ log

(µt

π

)

How fast the KL decreases along SVGD dynamics?

dKL(µt |π)

dt
=
〈

Vt ,∇ log
(µt

π

)〉
L2(µt )

=

∫
〈Vt (x),∇ log

(µt

π

)
(x)〉dµt (x)

= −
〈
ιSµt∇ log

(µt

π

)
,∇ log

(µt

π

)〉
L2(µt )

= −
∥∥∥Sµt∇ log

(µt

π

)∥∥∥2

H
since ι∗ = Sµt .

On the r.h.s. we have the Kernel Stein discrepancy
[Chwialkowski et al., 2016] or Stein Fisher information at µt .
Along the WGF of the KL we would have obtained the relative
Fisher information ‖∇ log

(µt
π

)
‖2L2(µt )

.
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Stein Fisher information

Stationary condition :
∥∥Sµt∇ log

(µt
π

)∥∥2
H = 0.

Implies weak convergence of µt to π if :
I π is distantly dissipative1 (e.g. gaussian mixtures)
I k is translation invariant with a non-vanishing Fourier

transform; or k is the IMQ kernel defined by
k(x , y) = (c2 + ‖x − y‖22)β for c > 0 and β ∈ [−1,0] (slow
decay rate) [Gorham and Mackey, 2017].

We show that if k is bounded, π ∝ exp(−V ) with HV bounded
above and if ∃C > 0,

∫
‖x‖2dµt (x) < C for all t > 0, then∥∥Sµt∇ log

(µt
π

)∥∥2
H → 0

1lim inf r→∞ κ(r) > 0 for
κ(r) = inf{−2〈∇ log π(x)−∇ log π(y), x − y〉/‖x − y‖2

2; ‖x − y‖2
2 = r}

20/ 33



Stein Fisher information

Stationary condition :
∥∥Sµt∇ log

(µt
π

)∥∥2
H = 0.

Implies weak convergence of µt to π if :
I π is distantly dissipative1 (e.g. gaussian mixtures)
I k is translation invariant with a non-vanishing Fourier

transform; or k is the IMQ kernel defined by
k(x , y) = (c2 + ‖x − y‖22)β for c > 0 and β ∈ [−1,0] (slow
decay rate) [Gorham and Mackey, 2017].

We show that if k is bounded, π ∝ exp(−V ) with HV bounded
above and if ∃C > 0,

∫
‖x‖2dµt (x) < C for all t > 0, then∥∥Sµt∇ log

(µt
π

)∥∥2
H → 0

1lim inf r→∞ κ(r) > 0 for
κ(r) = inf{−2〈∇ log π(x)−∇ log π(y), x − y〉/‖x − y‖2

2; ‖x − y‖2
2 = r}

20/ 33



Convergence of continuous-time dynamics
The convergence of the Stein Fisher information to 0 can be
slow. When do we have fast convergence of SVGD
dynamics?
π satisfies the Stein log-Sobolev inequality [Duncan et al., 2019] with
constant λ > 0 if for any µ:

KL(µ|π) ≤ 1
2λ

∥∥∥Sµ∇ log
(µ
π

)∥∥∥2

H
.

If it holds,

dKL(µt |π)

dt
= −

∥∥∥Sµt∇ log
(µt

π

)∥∥∥2

H
≤ −2λKL(µt |π)

and by integrating :

KL(µt |π) ≤ e−2λtKL(µ0|π).
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slow. When do we have fast convergence of SVGD
dynamics?
π satisfies the Stein log-Sobolev inequality [Duncan et al., 2019] with
constant λ > 0 if for any µ:

KL(µ|π) ≤ 1
2λ

∥∥∥Sµ∇ log
(µ
π

)∥∥∥2

H
.
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dt
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"Classic" log-Sobolev inequality upper bounds the KL by the
Fisher divergence :

KL(µ|π) ≤ 1
2λ

∥∥∥∇ log
(µ
π

)∥∥∥2

L2(µ)
.

satisfied as soon as π is λ-log concave, but it’s more general.

When is Stein log-Sobolev satisfied? not as well known and
understood [Duncan et al., 2019], but :
I it fails to hold if k is too regular with respect to π
I some working examples in dimension 1
I whether it holds in higher dimension is more challenging

and subject to further research...
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A descent lemma for SVGD
In optimization, descent lemmas can be obtained under a
boundedness condition on the Hessian matrix.

Gradient descent for F : Rd → R a C2(Rd ) s.t. ‖HF (x)‖ ≤ M for
any x .

xn+1 = xn − γ∇F (xn).

Denote x(t) = xn − t∇F (xn) and ϕ(t) = F (x(t)). Using Taylor
expansion :

ϕ(γ) = ϕ(0) + γϕ′(0) +

∫ γ

0
(γ − t)ϕ′′(t)dt .

leads to

F (xn+1) ≤ F (xn)− γ‖∇F (xn)‖2 + M
∫ γ

0
(γ − t)‖∇F (xn)‖2dt

≤ F (xn)− γ‖∇F (xn)‖2 +
Mγ2

2
‖∇F (xn)‖2.
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Here, the Hessian operator of the KL at µ is an operator on
L2(µ):

〈f ,HessKL(.|π)(µ)f 〉L2(µ) = EX∼µ

[
〈f (X ),HV (X )f (X )〉+ ‖Jf (X )‖2HS

]
and yet, this operator is not bounded.

In the case of SVGD one restricts the descent directions f to
H. Under several assumptions (boundedness of k and ∇k , of
Hessian of V and moments on the trajectory) we could show for
γ small enough:

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H︸ ︷︷ ︸
IStein(µn|π)

.
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Rates in terms of the Stein Fisher Information

Consequence : for γ small enough,

min
k=1,...,n

IStein(µn|π) ≤ 1
n

n∑
k=1

IStein(µk |π) ≤ KL(µ0|π)

cγn
.

This result does not rely on:
I Stein log Sobolev inequality
I nor on convexity of V

unlike most results on LMC which rely on Log Sobolev
inequality or convexity of V .
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Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the
form

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H

and the Stein log-Sobolev inequality (2):

KL(µn+1|π)−KL(µn|π) ≤︸︷︷︸
(1)

−cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H
≤︸︷︷︸
(2)

−cγ2λKL(µn|π).

Iterating this inequality yields KL(µn|π) ≤ (1− 2cγλ)nKL(µ0|π).
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Not possible to combine both....

Given that both the kernel and its derivative are bounded, the
equation

∫ d∑
i=1

[(∂iV (x))2k(x , x)

− ∂iV (x)(∂1
i k(x , x) + ∂2

i k(x , x)) + ∂1
i ∂

2
i k(x , x)]dπ(x) <∞ (2)

reduces to a property on V which, as far as we can tell, always
holds...

and this implies that Stein LSI does not hold [Duncan et al., 2019].

Remark : Equation (2) does not hold for k polynomial of order
≥ 3 and π with exploding β ≥ 3 moments (ex: a student
distribution in P the set of distributions with bounded second
moment).
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Experiments
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of IStein(µn|π) and KL(µn|π) to 0. 29/ 33
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Recall that the practical SVGD implementation is :

X i
n+1 = X i

n − γPµ̂n∇ log

(
µ̂n

π

)
(X i

n), µ̂n =
1
N

N∑
j=1

δX j
n
.

where µ̂n denotes the empirical distribution of the interacting
particles.

Propagation of chaos result
Let n ≥ 0 and T > 0. Under boundedness and Lipschitzness
assumptions for all k ,∇k ,V ; for any 0 ≤ n ≤ T

γ we have :

E[W 2
2 (µn, µ̂n)] ≤ 1

2

(
1√
N

√
var(µ0)eLT

)
(e2LT − 1)

where L is a constant depending on k and π.
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Contributions and openings

I First rates of convergence for SVGD, using techniques
from optimal transport and optimization (discrete time -
infinite number of particles)

I Propagation of chaos bound (finite number of particles
regime)
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Open questions :

I Rates in KL?

I Is it possible to obtain a uniform propagation of chaos and
a unified convergence bound (decreasing as n,N →∞)?

I Properties of the kernel? SVGD dynamics are also relevant
for black-box variational inference and Gans [Chu et al., 2020],
where the kernel depends on the current distribution.

=⇒ in this case the kernel is the neural tangent kernel
kw (x , y) = ∇w f (x ,w)T∇w f (y ,w) (infinite width NN ≈
linear models)

Thank you!
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