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Sampling

Problem: Sample (=generate new examples) from a target
distribution π over Rd , whose density w.r.t. Lebesgue measure
is known up to an intractable normalisation constant Z :

π(w) =
π̃(w)

Z
, π̃ known, Z unknown.

Main application: Bayesian inference, where π is the posterior
distribution over parameters of a model.
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Bayesian inference
Let D = (xi , yi )

m
i=1 a dataset of labelled examples (xi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by w , e.g. :

y = g(x ,w) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over w to fit the data.

1. Compute the Likelihood:

p(D|w) =
m∏

i=1

p(yi |w , xi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(xi ,w)‖2

)
.

2. Choose a prior distribution on the parameter:

w ∼ p, e.g. p(w) ∝ exp

(
−‖w‖

2

2

)
.

3. Bayes’ rule yields:

π(w) := p(w |D) =
p(D|w)p(w)

Z
Z =

∫
Rd

p(D|w)p(w)dw

i.e. π(w) ∝ exp (−V (w)) , V (w) =
1
2

m∑
i=1

‖yi − g(xi ,w)‖2 +
‖w‖2

2
.

4/ 27



Bayesian inference
Let D = (xi , yi )

m
i=1 a dataset of labelled examples (xi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by w , e.g. :

y = g(x ,w) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over w to fit the data.

1. Compute the Likelihood:

p(D|w) =
m∏

i=1

p(yi |w , xi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(xi ,w)‖2

)
.

2. Choose a prior distribution on the parameter:

w ∼ p, e.g. p(w) ∝ exp

(
−‖w‖

2

2

)
.

3. Bayes’ rule yields:

π(w) := p(w |D) =
p(D|w)p(w)

Z
Z =

∫
Rd

p(D|w)p(w)dw

i.e. π(w) ∝ exp (−V (w)) , V (w) =
1
2

m∑
i=1

‖yi − g(xi ,w)‖2 +
‖w‖2

2
.

4/ 27



Bayesian inference
Let D = (xi , yi )

m
i=1 a dataset of labelled examples (xi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by w , e.g. :

y = g(x ,w) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over w to fit the data.

1. Compute the Likelihood:

p(D|w) =
m∏

i=1

p(yi |w , xi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(xi ,w)‖2

)
.

2. Choose a prior distribution on the parameter:

w ∼ p, e.g. p(w) ∝ exp

(
−‖w‖

2

2

)
.

3. Bayes’ rule yields:

π(w) := p(w |D) =
p(D|w)p(w)

Z
Z =

∫
Rd

p(D|w)p(w)dw

i.e. π(w) ∝ exp (−V (w)) , V (w) =
1
2

m∑
i=1

‖yi − g(xi ,w)‖2 +
‖w‖2

2
.

4/ 27



Bayesian inference
Let D = (xi , yi )

m
i=1 a dataset of labelled examples (xi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by w , e.g. :

y = g(x ,w) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over w to fit the data.

1. Compute the Likelihood:

p(D|w) =
m∏

i=1

p(yi |w , xi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(xi ,w)‖2

)
.

2. Choose a prior distribution on the parameter:

w ∼ p, e.g. p(w) ∝ exp

(
−‖w‖

2

2

)
.

3. Bayes’ rule yields:

π(w) := p(w |D) =
p(D|w)p(w)

Z
Z =

∫
Rd

p(D|w)p(w)dw

i.e. π(w) ∝ exp (−V (w)) , V (w) =
1
2

m∑
i=1

‖yi − g(xi ,w)‖2 +
‖w‖2

2
.

4/ 27



π is needed both for
I prediction for a new input x : ypred =

∫
Rd g(x ,w)dπ(w)

I measure uncertainty on the prediction.

Given a discrete approximation µn = 1
n

n∑
j=1

δwj of π:

ypred ≈
1
n

n∑
j=1

g(x ,wj).

Question: how can we approximate π?
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Main methods for sampling

I Markov Chain Monte Carlo Methods (MCMC)
generate a Markov chain whose law converges to
π ∝ exp(−V )

Example: Langevin Monte Carlo (LMC)

wl+1 = wl − γ∇V (wl) +
√

2γεl , εl ∼ N (0, Id )

other example: Hamiltonian Monte Carlo

I Variational inference (VI) methods
approximate π with a parametric distribution by solving

min
θ∈Θ

KL(pθ|π)

6/ 27



Difficult cases : non-convex potentials
Recall that

π(w) ∝ exp (−V (w)) , V (w) =
m∑

i=1

‖yi − g(xi ,w)‖2

︸ ︷︷ ︸
loss

+
‖w‖2

2
.

I if V is convex (e.g. g(x ,w) = 〈w , x〉) many sampling MCMC
methods come with theoretical guarantees,

I but if its not (e.g. g(x ,w) is a neural network), the situation is
much more delicate

A highly nonconvex neural net loss surface. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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I MCMC methods do not scale and require too many iterations
(≈ 104) see [Izmailov et al., 2021] that run HMC over 512 Tensor
processing unit (TPU) devices to obtain baselines on CIFAR10

Figure: Long oral ICML 2021.

I VI remains a standard approach in Bayesian Deep Learning

Question: What can we say on the validity or limitations of VI for
Bayesian Neural Networks (BNN)?

especially in the current, overparametrized regime era for neural
networks.
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Infinite width neural network
consider a one-hidden-layer neural network, denote
φwj (x) = ajσ(〈bj , x〉) the output of neuron j .

min
(wj )

n
j=1∈R

d
E(x,y)∼Pdata

[∥∥∥∥y−1
n

n∑
j=1

φwj (x)

︸ ︷︷ ︸
ŷ

∥∥∥∥2
]
−−−−→
n→∞

min
µ∈P(Rd )

E(x,y)∼Pdata

[∥∥∥∥y −
∫
Rd

φw (x)dµ(w)

∥∥∥∥2
]

︸ ︷︷ ︸
F(µ)

Optimising the neural network is equivalent to minimizing F .
[Chizat and Bach, 2018], [Rotskoff et al., 2019], [Mei et al., 2018a],
[Arbel et al., 2019]...

Idea: consider a similar regime for VI on BNN.
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Assume we have access to {(xi , yi )}p
i=1 samples from the data

distribution on X× Y.

for each input x ∈ X, the output prediction fw : X→ RdY of the neural
network can be written as:

fw (x) =
1
N

N∑
j=1

s(wj , x), with s(wj , x) = ajσ(〈bj , x〉),

wj = (aj ,bj ) ∈ Rd , w ∈ RN×d .

Given a loss function ` : Y× Y→ R+, the likelihood is defined as

L(y |x ,w) ∝ exp(−`(fw (x), y)) .

Then, choosing a prior pdf P0 on w , the posterior pdf P of the weights
is

P(w) =
P0(w)

∏p
i=1 L(yi |xi ,w)

Z
.
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Recall that VI considers a variational family of pdfs
FΘ = {qθ : θ ∈ Θ} and solves

θ∗ ∈ argminθ∈Θ KL(qθ |P), P(w) =
P0(w)

∏p
i=1 L(yi |xi ,w)

Z
.

It is equivalent to maximizing the Evidence Lower Bound (ELBO)
defined for any θ ∈ Θ by:

ELBON(θ) = −KL(qθ |P0)︸ ︷︷ ︸
(1) penalty term

+

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw︸ ︷︷ ︸
(2) data fitting term

.

In practice, it is common to consider a tempered ELBON :
[Zhang et al., 2018, Khan et al., 2018, Osawa et al., 2019, Ashukha et al., 2020]

ELBON
η (θ) = −ηKL(qθ |P0) +

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw .

ELBON
η ⇐⇒ ELBON where P is replaced by a tempered posterior

PTN ∝ L1/ηP0 [Wenzel et al., 2020, Wilson and Izmailov, 2020].
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In the VI literature, one can find for instance:

Reference temperature ηN

[Zhang et al., 2018] η ∈ {1/2, . . . ,1/10}
[Osawa et al., 2019] η ∈ {1/5, . . . ,1/10}

[Ashukha et al., 2020] η from 10−5 to 10−3

η reweights the KL term and is typically smaller than 1 on current
prediction tasks/neural nets architecture. From:

Figure: Cold posteriors for training BNN with stochastic gradient
Stochastic Gradient Markov chain Monte Carlo methods. Long oral
ICML 2020.
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Informally: Why tempering?

Idea: in parametric approaches, the model capacity (which is
determined by the number of neurons and the neural network
architecture) is chosen by the user; hence it may be
mispecified.

It has been shown that tempered models may have better
statistical properties than non tempered ones, e.g. for
Generalized Linear Models
[Grünwald, 2012, Grünwald and Van Ommen, 2017, Bhattacharya et al., 2019,

Heide et al., 2020, Grunwald et al., 2021] - not clear how this extends to
BNN.

Our work: study the impact of the choice of the cooling
parameter ηN in the overparametrized regime (1 hidden layer
neural net).

14/ 27



Informally: Why tempering?

Idea: in parametric approaches, the model capacity (which is
determined by the number of neurons and the neural network
architecture) is chosen by the user; hence it may be
mispecified.

It has been shown that tempered models may have better
statistical properties than non tempered ones, e.g. for
Generalized Linear Models
[Grünwald, 2012, Grünwald and Van Ommen, 2017, Bhattacharya et al., 2019,

Heide et al., 2020, Grunwald et al., 2021] - not clear how this extends to
BNN.

Our work: study the impact of the choice of the cooling
parameter ηN in the overparametrized regime (1 hidden layer
neural net).

14/ 27



Informally: Why tempering?

Idea: in parametric approaches, the model capacity (which is
determined by the number of neurons and the neural network
architecture) is chosen by the user; hence it may be
mispecified.

It has been shown that tempered models may have better
statistical properties than non tempered ones, e.g. for
Generalized Linear Models
[Grünwald, 2012, Grünwald and Van Ommen, 2017, Bhattacharya et al., 2019,

Heide et al., 2020, Grunwald et al., 2021] - not clear how this extends to
BNN.

Our work: study the impact of the choice of the cooling
parameter ηN in the overparametrized regime (1 hidden layer
neural net).

14/ 27



Our model - independent neurons, diagonal
Gaussians

We consider a prior on w ∈ RN×d which factorize over the weights,
i.e., of the form

P0(w) =
N∏

j=1

P1
0 (wj ) ,

and similarly for the variational posterior

qθ(w) =
N∏

i=1

q1
θj

(wj )

where P1
0 and {q1

θj
}N

j=1 are distributions over Rd .

For each neuron, we consider q1
θ = (Tθ)#γ where γ = N (0, Id ) and

Tθ : z 7→ µ+ σ � z , θ = (µ, σ) ∈ R2d

where � is the component wise product.

In this case, θ = (θ1, . . . , θN) ∈ RN×2d .
15/ 27



Recall the tempered ELBO:

ELBON
η (θ) = −ηKL(qθ |P0) +

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw .

To make the dependence in N more explicit, we can rewrite it as:

ELBON
η (θ) = −η

N∑
j=1

KL(q1
θj
|P1

0 )

︸ ︷︷ ︸
(1)

−
p∑

i=1

GN
Θ(θ; (xi , yi ))︸ ︷︷ ︸

(2)

where, denoting the output of a neuron parametrized by θ ∈ Rd for an
input xi by

φ(θ, z, xi ) = s(Tθ(z), xi ) ,

and z = (z1, . . . , zN) ∈ Rd×N ,

GN
Θ(θ; (x , y)) =

∫
`

y ,
N∑

j=1

φ(θj , zj , x)

N

 γ⊗N(dz) .

Problem: (1) scales as O(N), while (2) scales as O(p) and does not
grow with N if the variance of qθ does not scale with N.

=⇒ (1) becomes predominant as N →∞ !
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The ELBO in our model

Proposition. Let θ∗,N = argmaxθ∈ΘELBON(θ). Assume that
P0 ∈ FΘ where FΘ are diagonal Gaussians, that l is the square loss
or cross-entropy, Lipschitz activation functions for the neural network,
and that X is compact. Then,

KL(qθ∗,N ,P0)→ 0 as N →∞.

inspired from [Coker et al., 2021] that show a similar result when l is the

square loss and activation functions are odd.

Idea of the proof: By the optimality of θ?,N , we have:

−KL(qθ∗,N |P0)− L(qθ∗,N ) = ELBON(θ?) ≥ ELBON(θ0) = −L(P0)

Hence,
KL(qθ∗,N |P0) ≤ L(P0)− L(qθ∗,N ).

Then show that both terms on the r.h.s. have the same finite limit.
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Example of the square loss: we have

L(qN
θ ) =

p∑
i=1

Ew∼qN
θ

[
‖yi‖2 + ‖fw (xi )‖2 − 2〈yi , fw (xi )〉+ log(Z )

]
we first obtain:

lim
N→∞

L(qN
θ0

) =

p∑
i=1

‖yi‖2 + log Z .

Furthermore,
KL(qN

θ∗ |qN
θ0

) ≤ L(qN
θ0

),

hence the KL is bounded by CKL. Then we have we have:

Ew∼qN
θ∗

[fw (x)] ≤
F (KL(qN

θ∗ ,qN
θ0

),X,dY)
√

N
≤ F (CKL,X,dY)√

N

Ew∼qN
θ∗

[‖fw (x)‖2] ≤
G(KL(qN

θ∗ ,qN
θ0

),X,dY)
√

N
≤ G(CKL,X,dY)√

N
Hence, we obtain:

lim
N→∞

L(qN
θ∗) =

p∑
i=1

‖yi‖2 + log Z .
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First step: generalize the definition of ELBON
η defined in over RN×2d

to probability measures ν on R2d .

Recall that

ELBON
η (θ) = −η

N∑
j=1

KL(q1
θj
|P1

0 )−
p∑

i=1

GN
Θ(θ; (xi , yi ))

where, denoting z = (z1, . . . , zN) ∈ Rd×N ,

GN
Θ(θ; (x , y)) =

∫
`

y ,
N∑

j=1

φ(θj , zj , x)

N

 γ⊗N(dz) .

Define

νθN =
1
N

N∑
i=1

δθi , (1)

Proposition For any N ∈ N, there exists a function FN
η defined over

measures of the form (1), such that ELBON
η (θ) = FN

η (νθN) for any
θ ∈ RN×2d .

Problem: FN
η cannot be non-trivially extended to a functional defined

for a general probability measure on R2d .
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We show that, when restricted to empirical probabilities, FN
η is a

perturbation, as N → +∞, of the functional F̃N
η defined over all

P(R2d ) by

F̃N
η (ν) = −

p∑
i=1

G̃(ν; (xi , yi ))− ηN
∫

KL(q1
θ |P1

0 )dν(θ) ,

where

G̃(ν; (x , y)) = `

y ,
∫∫

φ(θ, z, x)dν(θ)dγ(z)︸ ︷︷ ︸∫∫
s(Tθ(z),x)dγ(z)dν(θ)

 ,

Remark:
I G̃ differs from GN

Θ through the integration "inside" the loss

I G̃ resembles the data fitting term one can find in
[Chizat and Bach, 2018, Mei et al., 2018b]... (classical NN)

Theorem: Under mild assumptions on the loss, activation functions,
prior, X, Y; there exists C ≥ 0 such that for any N,p ∈ N,
{(xi , yi )}p

i=1 ∈ (X× Y)p, θ ∈ ΞN and η > 0,

|ELBON
η (θ)− F̃N

η (νθN)| ≤ Cp/N , 21/ 27



It is now much clearer how to define a balanced functional
over P(R2d ).

We now set η = τp/N with τ > 0.

With this particular choice, F̃N
η depends only on the number of

observations p but no longer on the number of neurons N. We
denote, for that particular choice of ηN ,

F(ν) = p−1F̃N
η (ν) = −1

p

p∑
i=1

G̃(ν; (xi , yi))−τ
∫

KL(q1
θ |P1

0 )dν(θ) .
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We illustrate our findings and their practical implications for image
classification on standard datasets (MNIST, CIFAR-10), with a simple
one hidden layer architecture and a Resnet20 respectively.

For each neuron, we use a centered Gaussian prior with variance 1/5,
following [Osawa et al., 2019]. We train each BNN by Bayes by Backprop
[Blundell et al., 2015].

Metrics:
For an input x ∈ X, the predictive probability of a class c by a neural
network with weights w is defined by Ψc(fw (x)), where Ψc(fw (x))
denotes the c-th component of the softmax function applied to the
output fw (x) ∈ Rnl of the neural network.

I Accuracy: number of correct predictions

I NLL:
∑p

i=1

∫
RN×d `CE(yi , fw (xi ))qθ(w)dw where `CE is the

cross-entropy loss

I ECE: measures if the predictive posterior is close to the true
probability for each class c ∈ {1, . . . ,nl}.

I Confidence: conf (x) = maxc∈{1,...,nl}Ψc(fw (x)) averaged over all
points x .
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Figure: Effect of the temperature for a Linear BNN (one hidden layer,
relU activations) trained on MNIST. No cooling ηN = 1 is indicated by
a red line.
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Figure: Effect of the temperature for a Resnet20 trained on CIFAR-10.
No cooling ηN = 1 is indicated by a red line.

These experiments show that balancing the ELBO with the
scaling ηN = τp/N generalizes to much more complex
architectures that a one hidden layer. 26/ 27



Conclusion

I We have identified that the ELBO should be tempered according
to a temperature proportional to p/N, where p is the number of
data points and N the number of parameters, when using
product priors and posteriors

I With this choice, ELBO converges to a well-defined functional
over the space of probability measures and one could analyze
gradient descent dynamics through Wasserstein gradient flows

I Alternatively [Tran et al., 2020, Fortuin et al., 2021, Ober and Aitchison, 2021,
Sun et al., 2019] have proposed the design of new priors which
introduce correlation amongst the weights, however these
models may be harder to train

Thank you! Questions?
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