
Variational Inference of overparameterized
Bayesian Neural Networks: a theoretical and

empirical study

Anna Korba
CREST, ENSAE, Institut Polytechnique de Paris

Laplace demon seminar

Joint work with Tom Huix, Szymon Majewski, Eric Moulines (CMAP,
Polytechnique) and Alain Durmus (ENS Cachan).

1/ 27



Outline

Problem and Motivation

VI for BNN

Identifying well-posed regimes for the ELBO with product priors

Experiments

2/ 27



Sampling

Problem: Sample (=generate new examples) from a target
distribution π over Rd , whose density w.r.t. Lebesgue measure
is known up to an intractable normalisation constant Z :

π(w) =
π̃(w)

Z
, π̃ known, Z unknown.

Main application: Bayesian inference, where π is the posterior
distribution over parameters of a model.
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Bayesian inference
Let D = (xi , yi )

m
i=1 a dataset of labelled examples (xi , yi )

i.i.d.∼ Pdata.
Assume an underlying model parametrized by w , e.g. :

y = g(x ,w) + ε, ε ∼ N (0, I)

Goal: learn the best distribution over w to fit the data.

1. Compute the Likelihood:

p(D|w) =
m∏

i=1

p(yi |w , xi ) ∝ exp

(
−1

2

m∑
i=1

‖yi − g(xi ,w)‖2

)
.

2. Choose a prior distribution on the parameter:

w ∼ p, e.g. p(w) ∝ exp

(
−‖w‖

2

2

)
.

3. Bayes’ rule yields:

π(w) := p(w |D) =
p(D|w)p(w)

Z
Z =

∫
Rd

p(D|w)p(w)dw

i.e. π(w) ∝ exp (−V (w)) , V (w) =
1
2

m∑
i=1

‖yi − g(xi ,w)‖2 +
‖w‖2

2
.
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π is needed both for
I prediction for a new input x : ypred =

∫
Rd g(x ,w)dπ(w)

I measure uncertainty on the prediction.

Given a discrete approximation µn = 1
n

n∑
j=1

δwj of π:

ypred ≈
1
n

n∑
j=1

g(x ,wj).

Question: how can we approximate π?
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Main methods for sampling

I Markov Chain Monte Carlo Methods (MCMC)
generate a Markov chain whose law converges to
π ∝ exp(−V )

Example: Langevin Monte Carlo (LMC)

wl+1 = wl − γ∇V (wl) +
√

2γεl , εl ∼ N (0, Id )

other example: Hamiltonian Monte Carlo

I Variational inference (VI) methods
approximate π with a parametric distribution by solving

min
θ∈Θ

KL(pθ|π)

6/ 27



Difficult cases : non-convex potentials
Recall that

π(w) ∝ exp (−V (w)) , V (w) =
m∑

i=1

‖yi − g(xi ,w)‖2

︸ ︷︷ ︸
loss

+
‖w‖2

2
.

I if V is convex (e.g. g(x ,w) = 〈w , x〉) many sampling MCMC
methods come with theoretical guarantees,

I but if its not (e.g. g(x ,w) is a neural network), the situation is
much more delicate

A highly nonconvex neural net loss surface. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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I MCMC methods do not scale and require too many iterations
(≈ 104) see [Izmailov et al., 2021] that run HMC over 512 Tensor
processing unit (TPU) devices to obtain baselines on CIFAR10

Figure: Long oral ICML 2021.

I VI remains a standard approach in Bayesian Deep Learning

Question: What can we say on the validity or limitations of VI for
Bayesian Neural Networks (BNN)?

especially in the current, overparametrized regime era for neural
networks.
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Infinite width neural network
consider a one-hidden-layer neural network, denote
φwj (x) = ajσ(〈bj , x〉) the output of neuron j .

min
(wj )

n
j=1∈R

d
E(x,y)∼Pdata

[∥∥∥∥y−1
n

n∑
j=1

φwj (x)

︸ ︷︷ ︸
ŷ

∥∥∥∥2
]
−−−−→
n→∞

min
µ∈P(Rd )

E(x,y)∼Pdata

[∥∥∥∥y −
∫
Rd

φw (x)dµ(w)

∥∥∥∥2
]

︸ ︷︷ ︸
F(µ)

Optimising the neural network is equivalent to minimizing F .
[Chizat and Bach, 2018], [Rotskoff et al., 2019], [Mei et al., 2018a],
[Arbel et al., 2019]...

Idea: consider a similar regime for VI on BNN.
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Assume we have access to {(xi , yi )}p
i=1 samples from the data

distribution on X× Y.

for each input x ∈ X, the output prediction fw : X→ RdY of the neural
network can be written as:

fw (x) =
1
N

N∑
j=1

s(wj , x), with s(wj , x) = ajσ(〈bj , x〉),

wj = (aj ,bj ) ∈ Rd , w ∈ RN×d .

Given a loss function ` : Y× Y→ R+, the likelihood is defined as

L(y |x ,w) ∝ exp(−`(fw (x), y)) .

Then, choosing a prior pdf P0 on w , the posterior pdf P of the weights
is

P(w) =
P0(w)

∏p
i=1 L(yi |xi ,w)

Z
.
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Recall that VI considers a variational family of pdfs
FΘ = {qθ : θ ∈ Θ} and solves

θ∗ ∈ argminθ∈Θ KL(qθ |P), P(w) =
P0(w)

∏p
i=1 L(yi |xi ,w)

Z
.

It is equivalent to maximizing the Evidence Lower Bound (ELBO)
defined for any θ ∈ Θ by:

ELBON(θ) = −KL(qθ |P0)︸ ︷︷ ︸
(1) penalty term

+

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw︸ ︷︷ ︸
(2) data fitting term

.

In practice, it is common to consider a tempered ELBON :
[Zhang et al., 2018, Khan et al., 2018, Osawa et al., 2019, Ashukha et al., 2020]

ELBON
η (θ) = −ηKL(qθ |P0) +

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw .

ELBON
η ⇐⇒ ELBON where P is replaced by a tempered posterior

PTN ∝ L1/ηP0 [Wenzel et al., 2020, Wilson and Izmailov, 2020].
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In the VI literature, one can find for instance:

Reference temperature ηN

[Zhang et al., 2018] η ∈ {1/2, . . . ,1/10}
[Osawa et al., 2019] η ∈ {1/5, . . . ,1/10}

[Ashukha et al., 2020] η from 10−5 to 10−3

η reweights the KL term and is typically smaller than 1 on current
prediction tasks/neural nets architecture. From:

Figure: Cold posteriors for training BNN with stochastic gradient
Stochastic Gradient Markov chain Monte Carlo methods. Long oral
ICML 2020.
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Informally: Why tempering?

Idea: in parametric approaches, the model capacity (which is
determined by the number of neurons and the neural network
architecture) is chosen by the user; hence it may be
mispecified.

It has been shown that tempered models may have better
statistical properties than non tempered ones, e.g. for
Generalized Linear Models
[Grünwald, 2012, Grünwald and Van Ommen, 2017, Bhattacharya et al., 2019,

Heide et al., 2020, Grunwald et al., 2021] - not clear how this extends to
BNN.

Our work: study the impact of the choice of the cooling
parameter ηN in the overparametrized regime (1 hidden layer
neural net).
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Our model - independent neurons, diagonal
Gaussians

We consider a prior on w ∈ RN×d which factorize over the weights,
i.e., of the form

P0(w) =
N∏

j=1

P1
0 (wj ) ,

and similarly for the variational posterior

qθ(w) =
N∏

i=1

q1
θj

(wj )

where P1
0 and {q1

θj
}N

j=1 are distributions over Rd .

For each neuron, we consider q1
θ = (Tθ)#γ where γ = N (0, Id ) and

Tθ : z 7→ µ+ σ � z , θ = (µ, σ) ∈ R2d

where � is the component wise product.

In this case, θ = (θ1, . . . , θN) ∈ RN×2d .
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Recall the tempered ELBO:

ELBON
η (θ) = −ηKL(qθ |P0) +

p∑
i=1

∫
RN×d

log L(yi |xi ,w)qθ(w)dw .

To make the dependence in N more explicit, we can rewrite it as:

ELBON
η (θ) = −η

N∑
j=1

KL(q1
θj
|P1

0 )

︸ ︷︷ ︸
(1)

−
p∑

i=1

GN
Θ(θ; (xi , yi ))︸ ︷︷ ︸

(2)

where, denoting the output of a neuron parametrized by θ ∈ Rd for an
input xi by

φ(θ, z, xi ) = s(Tθ(z), xi ) ,

and z = (z1, . . . , zN) ∈ Rd×N ,

GN
Θ(θ; (x , y)) =

∫
`

y ,
N∑

j=1

φ(θj , zj , x)

N

 γ⊗N(dz) .

Problem: (1) scales as O(N), while (2) scales as O(p) and does not
grow with N if the variance of qθ does not scale with N.

=⇒ (1) becomes predominant as N →∞ !
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The ELBO in our model

Proposition. Let θ∗,N = argmaxθ∈ΘELBON(θ). Assume that
P0 ∈ FΘ where FΘ are diagonal Gaussians, that l is the square loss
or cross-entropy, Lipschitz activation functions for the neural network,
and that X is compact. Then,

KL(qθ∗,N ,P0)→ 0 as N →∞.

inspired from [Coker et al., 2021] that show a similar result when l is the

square loss and activation functions are odd.

Idea of the proof: By the optimality of θ?,N , we have:

−KL(qθ∗,N |P0)− L(qθ∗,N ) = ELBON(θ?) ≥ ELBON(θ0) = −L(P0)

Hence,
KL(qθ∗,N |P0) ≤ L(P0)− L(qθ∗,N ).

Then show that both terms on the r.h.s. have the same finite limit.
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Example of the square loss: we have

L(qN
θ ) =

p∑
i=1

Ew∼qN
θ

[
‖yi‖2 + ‖fw (xi )‖2 − 2〈yi , fw (xi )〉+ log(Z )

]
we first obtain:

lim
N→∞

L(qN
θ0

) =

p∑
i=1

‖yi‖2 + log Z .

Furthermore,
KL(qN

θ∗ |qN
θ0

) ≤ L(qN
θ0

),

hence the KL is bounded by CKL. Then we have we have:

Ew∼qN
θ∗

[fw (x)] ≤
F (KL(qN

θ∗ ,qN
θ0

),X,dY)
√

N
≤ F (CKL,X,dY)√

N

Ew∼qN
θ∗

[‖fw (x)‖2] ≤
G(KL(qN

θ∗ ,qN
θ0

),X,dY)
√

N
≤ G(CKL,X,dY)√

N
Hence, we obtain:

lim
N→∞

L(qN
θ∗) =

p∑
i=1

‖yi‖2 + log Z .

18/ 27



Outline

Problem and Motivation

VI for BNN

Identifying well-posed regimes for the ELBO with product priors

Experiments

19/ 27



First step: generalize the definition of ELBON
η defined in over RN×2d

to probability measures ν on R2d .

Recall that

ELBON
η (θ) = −η

N∑
j=1

KL(q1
θj
|P1

0 )−
p∑

i=1

GN
Θ(θ; (xi , yi ))

where, denoting z = (z1, . . . , zN) ∈ Rd×N ,

GN
Θ(θ; (x , y)) =

∫
`

y ,
N∑

j=1

φ(θj , zj , x)

N

 γ⊗N(dz) .

Define

νθN =
1
N

N∑
i=1

δθi , (1)

Proposition For any N ∈ N, there exists a function FN
η defined over

measures of the form (1), such that ELBON
η (θ) = FN

η (νθN) for any
θ ∈ RN×2d .

Problem: FN
η cannot be non-trivially extended to a functional defined

for a general probability measure on R2d .
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We show that, when restricted to empirical probabilities, FN
η is a

perturbation, as N → +∞, of the functional F̃N
η defined over all

P(R2d ) by

F̃N
η (ν) = −

p∑
i=1

G̃(ν; (xi , yi ))− ηN
∫

KL(q1
θ |P1

0 )dν(θ) ,

where

G̃(ν; (x , y)) = `

y ,
∫∫

φ(θ, z, x)dν(θ)dγ(z)︸ ︷︷ ︸∫∫
s(Tθ(z),x)dγ(z)dν(θ)

 ,

Remark:
I G̃ differs from GN

Θ through the integration "inside" the loss

I G̃ resembles the data fitting term one can find in
[Chizat and Bach, 2018, Mei et al., 2018b]... (classical NN)

Theorem: Under mild assumptions on the loss, activation functions,
prior, X, Y; there exists C ≥ 0 such that for any N,p ∈ N,
{(xi , yi )}p

i=1 ∈ (X× Y)p, θ ∈ ΞN and η > 0,

|ELBON
η (θ)− F̃N

η (νθN)| ≤ Cp/N , 21/ 27



It is now much clearer how to define a balanced functional
over P(R2d ).

We now set η = τp/N with τ > 0.

With this particular choice, F̃N
η depends only on the number of

observations p but no longer on the number of neurons N. We
denote, for that particular choice of ηN ,

F(ν) = p−1F̃N
η (ν) = −1

p

p∑
i=1

G̃(ν; (xi , yi))−τ
∫

KL(q1
θ |P1

0 )dν(θ) .
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We illustrate our findings and their practical implications for image
classification on standard datasets (MNIST, CIFAR-10), with a simple
one hidden layer architecture and a Resnet20 respectively.

For each neuron, we use a centered Gaussian prior with variance 1/5,
following [Osawa et al., 2019]. We train each BNN by Bayes by Backprop
[Blundell et al., 2015].

Metrics:
For an input x ∈ X, the predictive probability of a class c by a neural
network with weights w is defined by Ψc(fw (x)), where Ψc(fw (x))
denotes the c-th component of the softmax function applied to the
output fw (x) ∈ Rnl of the neural network.

I Accuracy: number of correct predictions

I NLL:
∑p

i=1

∫
RN×d `CE(yi , fw (xi ))qθ(w)dw where `CE is the

cross-entropy loss

I ECE: measures if the predictive posterior is close to the true
probability for each class c ∈ {1, . . . ,nl}.

I Confidence: conf (x) = maxc∈{1,...,nl}Ψc(fw (x)) averaged over all
points x .
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Figure: Effect of the temperature for a Linear BNN (one hidden layer,
relU activations) trained on MNIST. No cooling ηN = 1 is indicated by
a red line.
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Figure: Effect of the temperature for a Resnet20 trained on CIFAR-10.
No cooling ηN = 1 is indicated by a red line.

These experiments show that balancing the ELBO with the
scaling ηN = τp/N generalizes to much more complex
architectures that a one hidden layer. 26/ 27



Conclusion

I We have identified that the ELBO should be tempered according
to a temperature proportional to p/N, where p is the number of
data points and N the number of parameters, when using
product priors and posteriors

I With this choice, ELBO converges to a well-defined functional
over the space of probability measures and one could analyze
gradient descent dynamics through Wasserstein gradient flows

I Alternatively [Tran et al., 2020, Fortuin et al., 2021, Ober and Aitchison, 2021,
Sun et al., 2019] have proposed the design of new priors which
introduce correlation amongst the weights, however these
models may be harder to train

Thank you! Questions?
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