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Problem and Motivation



Sampling

Problem: Sample (=generate new examples) from a target
distribution = over R?, whose density w.r.t. Lebesgue measure
is known up to an intractable normalisation constant Z :
(6
7(0) = 7T(Z)’ 7 known, Z unknown.
Main application: Bayesian inference, where  is the posterior
distribution over parameters of a model.
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2. Choose a prior distribution on the parameter:

_lieg?
60 ~p, eg.p(f)xexp 5 )
3. Bayes’ rule yields:

a(0) = plop) = PEPPEL z— [ poioypieyas

2
ie. m(0) o exp (— V(9)), ZZHJ’I g(wi, )| + ||92H'
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Question: how can we build ;.,?



Sampling as optimisation
Notice that

Jaolog (£(8)) du(6) ifp<m
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nEP(RY)
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2. Interacting particle systems, e.g. by considering other metrics or
functionals



Difficult cases : non-convex potentials
Recall that

2
m(0) < exp (—V(0)), ZH}’I— (w;, 0)|2 + 1= || .

loss

» if Vis convex (e.g. g(w, 8) = (w, #)) many sampling methods
are known to work quite well, including LMC

> but if its not (e.g. g(w, ) is a neural network), the situation is
much more delicate

» MCMC methods do not scale and require too many iterations

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.


https://www.telesens.co/2019/01/16/neural-network-loss-visualization.

Sampling as optimization over distributions

Assume that 7 € Po(RY) = {p € P(RY), [ |Ix]2du(x) < oo}
We equip P2(RY) with the Wassersteln 2 distance:

We(v.p) = inf / Ix— ylBds(x,y)  Vu.ue Pa(RY)
RYI xR

sel(v,u)
where I'(v, 1) is the set of possible couplings between v and .

The sampling task can be recast as an optimization problem:

m = argmin F(n), F(p):= D(u|r)
peP2(RY)

where D is a dissimilarity functional (f-div, IPM, OT
distance...).

Starting from an initial distribution 1o € P»(R?), one can then
consider the Wasserstein gradient flow of F over P,(RY) to
transport 1o to 7.



Outline

Wasserstein Gradient Flows



Euclidean gradient flow and continuity equation
Let V : RY — R. Consider the gradient flow
dX;

E = —V V(X[)

and assume xp random with density po. What is the dynamics
of the density u¢ of x; ? Let ¢ : R — R a test function.

d
i E0(x) = /<v¢> V V) u(x)dx = /¢> (V' V)(x)ax,
and 8
6(x0)) /¢ ,ut
Therefore,

Ot

5 V- (uVV).



Wasserstein gradient flows (WGF) (ambrosio et al. 200¢)
The first variation of u — F(u) evaluated at © € P, if it exists, is the
unique function 220 . RY s R s. t. for any ., u' € P:

O
tim HF G <l =) - 70l = [ ZEE e - duo,




Wasserstein gradient flows (WGF)

The family p : [0, 00] — P, t — p; satisfies a Wasserstein gradient

flow of F if distributionally:

0
8l;t V- (1t Vw, F ()
where Vi, F(u) := Vaf € L?(u) denotes the Wasserstein gradient
of F.



Wasserstein gradient flows (WGF)

The family p : [0, 00] — P, t — p; satisfies a Wasserstein gradient
flow of F if distributionally:

0
S =V (uVwF ().

where Vi, F(u) := Vaf € L?(u) denotes the Wasserstein gradient
of F.

It can be implemented by the deterministic process:

aX
Ttt = =V, F () (Xt)



Time and Space discretization - Particle system

Let v > 0 be a step-size:

Xir1 = X — 7V F () (X))
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Time and Space discretization - Particle system
Let v > 0 be a step-size:
Xiw1 = Xi = Vi F (1) (X))

Problem: the vector field depends on the unknown py, the
density of the particle at time /.

Idea: replace it by the empirical measure of a system of n
interacting particles:

X3, X8 ~ o
andforj=1,...,m

X,y =X~V w,F()(X])

~ 1 n
where i) = 5> i 5XI,-.



We recall that

m = argmin KL(p|7), KL(p|7)= /Iog('u)d,u ifp<m
peP2(RY) 7r

and that we can consider the Forward time discretisation:
X141 = X — YV, KLy 7)(X1), X ~ py,
where Vi, KL(|7) = VZEHAID = G log(L(.)).

Problem: ., hence V log(y) is unknown and has to be
estimated from a set of particles.
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Part | - Stein Variational Gradient Descent



Background on kernels and RKHS

> Let k: RY x RY — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)



Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—%

> the Laplace kernel k(x,y) = eXP(—w)

> the inverse multiquadratic kernel
k(x,y) = (c+|lx —y[)~" with 8 €]0, 1]



Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—w

> the Laplace kernel k(x,y) = eXP(—w)

» the inverse multiquadratic kernel
k(x,y) = (c+|x — yl)=" with 5 €]0, 1]
> 7, its corresponding RKHS (Reproducing Kernel Hilbert Space):

m
Hy = {Zaik(-,x,'); meN; ay,...,am € R, X1,...,Xm€]Rd}

i=1



Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—w

> the Laplace kernel k(x,y) = eXP(—w)

» the inverse multiquadratic kernel
k(x,y) = (c+|x — yl)=" with 5 €]0, 1]
> 7, its corresponding RKHS (Reproducing Kernel Hilbert Space):

m
Hy = {Zaik(-,x,'); meN; ay,...,am € R, X1,...,Xm€]Rd}

i=1

> H, is a Hilbert space with inner product (., .}, and norm ||.||%,.



Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—w

> the Laplace kernel k(x,y) = eXP(—w)

» the inverse multiquadratic kernel
k(x,y) = (c+|x — yl)=" with 5 €]0, 1]
> 7, its corresponding RKHS (Reproducing Kernel Hilbert Space):

m
Hy = {Zaik(-,x,'); meN; ay,...,am € R, X1,...,Xm€]Rd}

i=1

v

Hy is a Hilbert space with inner product (., .)3;, and norm ||. ||,
> assume [pq. o K(X, X)dpu(x) < oo for any p € P(RY),= Hx C L2(u).



Background on kernels and RKHS

> Let k: RY x R? — R a positive, semi-definite kernel
((k(xi, %)) is a p.s.d. matrix for all i, ..., x, € RY)

> examples:
> the Gaussian kernel k(x,y) = exp(—w

> the Laplace kernel k(x,y) = eXP(—w)
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Hy its corresponding RKHS (Reproducing Kernel Hilbert Space):

v

m
Hy = {Zaik(-,x,'); meN; ay,...,am € R, X1,...,Xm€]Rd}

i=1

v

Hy is a Hilbert space with inner product (., .)3;, and norm ||. ||,
assume [gq, gs K(X, X)du(x) < oo for any p € P(RY),=> Hy C L3(p).
It satisfies the reproducing property:

Vo ofeHk, xeRI F(x) = (f,k(X,.))n,-

vy



Stein Variational Gradient Descent

Consider the following metric depending on

0
W2 (10, j11) = |nf {/ Hthszdt '“f (MtVt)}'

Then, the W, gradient flow of the KL writes as the PDE

%‘;%V (1P Viog (21)) =0, P,,:fr—>/k(x

It converges to m oc exp(— V) under mild conditions on k and if
V grows at most polynomially

1 WZ(MOJM) = inf(u,v) te[0,1] {fo HVfHLZ(M dt a# =V. (:ufvf)} :

du(x).



SVGD algorithm

SVGD trick: applying the kernel integral operator to the W, gradient
of KL(:|7) leads to

P 1og (4) () = [ Viog (%) Gok(x. )u(x)
- / ¥ log(m(x))K(x, ) du(x) + / V(u(x))k(x, .)dx

@f_/wmmuMUA+VMWJWMﬁ

under appropriate boundary conditions on k and =, e.g.
lim|x||—o0 K(X, -)m(x) — 0.



SVGD algorithm

SVGD trick: applying the kernel integral operator to the W, gradient
of KL(~|7r) leads to

PHV|og /Vlog Yk(x,.)du(x)
_ / ¥ log(m(x))k(x, )du(x) + [ V(u(x))k(x,.)dx
2P [ logm(x)k(x,) + Vuk(x, ldlu(x),

under appropriate boundary conditions on k and =, e.g.
lim|x||—o0 K(X, -)m(x) — 0.

Algorithm : Starting from ni.i.d. samples (X(’)'),-:1
algorithm updates the n particles as follows :

n ™~ M0, SVGD

.....

. . 1 .
Xy =X = |- D Vg logm(XDK(X]. X]) + ¥y k(X]. X])

j=1

n
=X/ - yanmg( )(x,) withu,":%ZaXI,
j=1



SVGD in practice

» more than 600 citations for

» Relative empirical success in Bayesian inference and more
recently for deep networks

» It can suffer for multimodal distributions
, underestimate the target variance
, but still can be very efficient on difficult sampling

problems.
AUROC(H) AUROC(MD) Accuracy H,/H, MD,/MD; ECE NLL

Deep ensemble [38] 0.958+0.001 0.97540.001 91.12240.013  6.25740.005 6.394:0.001  0.012+0.001  0.129+0.001
= SVGD [46] 0.960+0.001  0.973+0.001 91.13440.024 6.315+0.019 6.395+0.018  0.014+0.001  0.127+0.001
wv  f-SVGD [67] 0.956+0.001  0.975+0.001 89.88440.015  5.65240.009 6.531+£0.005 0.013+0.001  0.150+0.001
z kde-WGD (ours) 0.9604+0.001  0.97040.001 91.2384+0.019  6.5874+0.019 6.379+0.018 0.01440.001  0.12840.001
E sge-WGD (ours) 0.9604+0.001  0.97040.001 91.3124+0.016  6.5624+0.007 6.363+0.009  0.0124+0.001  0.128+0.001
-_g ssge-WGD (ours) 0.968+0.001  0.97940.001 91.1984+0.024  6.5224+0.009 6.610+0.012  0.0124+0.001  0.13040.001
% kde-fWGD (ours) 0.971+0.001  0.980+0.001 91.2604+0.011  7.0794+0.016  6.8874+0.015 0.01540.001  0.125+0.001
= sge-fWGD (ours) 0.969+0.001  0.978+0.001 91.19240.013  7.07640.004  6.9004+0.005 0.01540.001  0.125+0.001

ssge-fWGD (ours) 0.971+0.001  0.980+0.001 91.240+0.022  7.129+0.006 6.951:£0.005 0.016+0.001  0.124+0.001

Deep ensemble [38] 0.843+0.004 0.736+0.005 85.5524+0.076  2.24440.006 1.6674+0.008 0.049+0.001 0.27740.001

SVGD [46] 0.825+0.001  0.71040.002 85.14240.017  2.10640.003  1.5674+0.004 0.052+0.001 0.287+0.001
. fSVGD [67] 0.78340.001  0.71240.001 84.5104+0.031 1.9684+0.004 1.62440.003 0.049+0.001  0.292+0.001
= kde-WGD (ours) 0.838+0.001  0.73540.004 85.904+0.030 2.205+0.003 1.661+0.008 0.053+0.001 0.276+0.001
< sge-WGD (ours) 0.837+0.003  0.72540.004 85.79240.035 2.21440.010 1.6344+0.004 0.0514+0.001  0.275+0.001
E ssge-WGD (ours) 0.832+0.003  0.731+0.005 85.638+0.038  2.182+0.015 1.655+0.001 0.049+0.001  0.276+0.001

kde-fWGD (ours) 0.791£0.002  0.758+0.002  84.888+0.030 1.970+0.004 1.749+0.005 0.044+-0.001 0.282+0.001
sge-fWGD (ours) 0.795+£0.001  0.754+0.002  84.766+0.060 1.984+0.003 1.729+0.002 0.047+0.001 0.288+0.001
ssge-fWGD (ours)  0.792+0.002 0.752+0.002  84.762+0.034 1.970+0.006 1.723+0.005 0.046+0.001 0.286+0.001

From Repulsive Deep Ensembles are Bayesian. F. D'angelo, V. Fortuin. Conference on Neural Information
Processing Systems (NeurlPS 2021).



Continuous-time dynamics of SVGD

o ©
B (i Viog (M) =0, Pt /k(x, V) dp(x).

2p, = S; 0S,, where S,, : L?(u) — Hy, f+— [ Kk(x,.)f(x)du(x) and S}, =
Ly, —12(y) the injection from #H, to L2(1). We sometimes abuse notation here
between P,,. S, for ease of presentation.
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%JFV (utP//Vlog (M)) =0, F~, fH/k () du(x).

How fast the KL decreases along SVGD dynamics? Apply the chain
rule in the Wasserstein space?:

T = (e (), = [Raves ()

2
<0.

Hi

KSD2(ju(| )

On the r.h.s. we have the Kernel Stein discrepancy (KSD)
or Stein Fisher information of p; relative to =:

HP,, kVIog( ) ; <Plt7kV|og(%>,P,thIog(%»Hk

— [[ 1o8(%0) 7 tos( £ K(x. 1)) duy).
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A descent lemma in discrete time for SVGD

Idea: in optimisation, descent lemmas can be shown if the objective
function has a bounded Hessian.

Assume that 7 oc exp(— V) where ||Hy(x)|| < M.
The Hessian of the KL at y is an operator on L2(y):
(f, Hessic(.ix) (1)) 2y = Exen [(F(X), HV(X)F(X)) + | JF(X)IIfss]

and yet, this operator is not bounded due to the Jacobian term.

However: In the case of SVGD, the descent directions f are restricted
to Hx (bounded functions, bounded derivatives for bounded k, V k).

Proposition: Assume (boundedness of k and Vk, Hy, and moments
on the trajectory), then for v small enough:

2
KL(p1|m) — KL(pu|m) < —c5

pvios (1)

KSD2(ju|)

'Hk.




Rates in KSD

Consequence of the descent lemma: for v small enough,

- KL(ko|7)
c,L

,,,,,

L
. 2
r1n|nLKSD () < g KSD=(py|m) <

This result only relies on the smoothness of V, not on any kind of
convexity, in contrast with many convergence results on LMC.



Open question 1: Rates in terms of the KL objective?
To obtain rates, one may combine a descent lemma (1) of the form
2

KL(urs1]m) = KL(plm) < —¢, || P, ¥ log (£2))]

™

H

and the Stein log-Sobolev inequality (2) with constant A:

KL(p|m) < 217 KSD?(u|x) for all p.



Open question 1: Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the form

2

KL(ur1]m) = KL(ui|m) < —c, HPHang (%ﬂ M

and the Stein log-Sobolev inequality (2) with constant A:
KL(ulm) < 55 KSD2(u|7r) for all .

Then:

—C, 2\ KL (ptn| ).

o [psion ()]

KL(pt141]m) = KL(pus|) S
k Vv
@)

<
~~—
(1

lterating this inequality yields KL(u|7) < (1 — 2¢,A)" KL(po|T).

Problem: not possible to combine (1) and (2). (2) fails to hold if k is
too regular with respect to 7 (e.g. k bounded, = Gaussian)

. Some working examples in dimension 1, open
question in greater dimensions...



First Experiments (d=1)

. Initial distribution . 500" iteration
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD?(uJ'|r) and KL(k % ul'|7) to 0.



Open question 2: SVGD quantisation

The quality of a set of points (x', ..., x") can be measured by the
integral approximation error:

1 > f(x) - . f(x)dn(x)

i=1

E(xy,..., X)) = . (1)

(a) iid. (b) svab Gaussian k (C) svaD Laplace k
For i.i.d. points or MCMC iterates, (1) is of order n—%. Can we bound
(1) for SVGD final states?

Accurate quantization of measures via interacting particle-based
optimization. Xu, L., Korba, A., SlepCev, D. ICML 2022.
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Part Il : Sampling as optimization of the KSD



A lot of problems previously came from the fact that the KL is not
defined for discrete measures u,. Can we consider functionals that
are well-defined for u,?



A lot of problems previously came from the fact that the KL is not

defined for discrete measures u,. Can we consider functionals that
are well-defined for u,?

Remember the Kernel Stein discrepancy of u relative to 7:

KSD?(u|m) _H kVIog( )H e f»—>/f Yk(x, .)dpu(x).

With several integration by parts we have:

KSD?(u|m) = HPMV |og(ﬁ)‘ :

Hi
= [ [ v10e(£00) 7 tog( L)) (x 1)) lity)

= / / VlogW(X)TV|og7r(y)k(X, ¥) + Vg m(x)"Vak(x,y)
+ Vik(x,y) Viogn(y) + V 1 Vak(x, y)du(x)du(y)
= [[ kelxp)dnx)duiy).

can be written in closed-form for discrete measures ;..



KSD Descent - algorithms

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles (z%)~ ; ~ jo, number of itera-
tions M, step-size y
forn =1to M do

[E:zi»l]é\;l = z Z[Vzk n) =11
end for

Return: [asM] il

Algorithm 2 KSD Descent L-BFGS

Input: initial particles (z)XY.; ~ o, tolerance tol

Return: [zi]Y | = L-BFGS(L, VL, [z}] ¥, , tol).

L-BFGS is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!



Toy experiments - 2D standard gaussian

—— T~ N ~ N~ N

L ksDGrad NN [ - KSDLBFGS N
r LN r 2D \\
. s .:'* : 2

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.



SVGD vs KSD Descent - importance of the step-size

== KSD ==SVGD, small step SVGD, good step ==SVGD, big step

-1 5 10" -
= =1
N
M e S — x
0.0 0.1 0.2 0.0 0.1 0.2
Time (s.) Time (s.)

Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 patrticles.



2D mixture of (isolated) Gaussians - failure cases

LV o =" _ - =L N T o =7 _ - <N
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The green crosses indicate the initial particle positions
the blue ones are the final positions
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Add an inverse temperature variable 3 : 7°(x) x exp(—8V(x)) ,
with 0 < 8 < 1 (i.e. multiply the score by £.)

Isolated Gaussian mixture - annealing

This is a hard problem, even for Langevin diffusions, where

tempering strategies also have been proposed



Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ~ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Bayesian ICA.

Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d < 8).

KSD is not better than random.



So.. when does it work?

. KSDD Stein points /
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Comparison of KSD Descent and Stein poinis on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.



Theoretical properties of KSD flow

Stationary measures:

» we show that if a stationary measure u. is full support, then
F(poo) = 0.

> however, we also show that if supp(uo) € M, where M is a
plane of symmetry of «, then for any time f it remains true for y;:
supp(ue) € M.



Theoretical properties of KSD flow

Stationary measures:

» we show that if a stationary measure u. is full support, then
F(poo) = 0.

> however, we also show that if supp(uo) € M, where M is a
plane of symmetry of «, then for any time f it remains true for y;:
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Explain convergence in the log-concave case? again an open
question:

» the KSD is not geodesically convex
» it is not strongly geo convex near the global optimum =

» convergence of the continuous dynamics can be shown with a
functional inequality, but which does not hold for discrete
measures



KSD quantization

Theorem (Xu, K., Slecev): Assume that k is a Gaussian
kernel and that 7 o exp(—U) where U € C>*(RY) is such that
U(x) > cq|x| for large enough x, there exists polynomial f with
degree m such that ||[0*U(x)|| < f(x) for all 1 < |a| < d. Then
there exist points xq, ..., X, such that pu, = 27:1 Jx, satisfies:
|og n) 6d+22m+1

KSD(pnl) < Cy .

Note that for Gaussian mixtures = satisfies the conditions of the
theorem.
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» Mixing kernels and Wasserstein gradient flows enable to design
deterministic interacting particle systems
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Conclusion

» Mixing kernels and Wasserstein gradient flows enable to design
deterministic interacting particle systems

» They can provide a better approximation of the target for a finite
number of particles

» Theory does not match practice yet

» Numerics can be improved, via perturbed dynamics, change of
geometry...



Python package to try KSD descent and SVGD:
pip install ksddescent
website: pierreablin.github.io/ksddescent/

>>> import torch

>>> from ksddescent import ksdd_lbfgs

>>>n, p =50, 2

>>> x0 = torch.rand(n, p) # start from uniform distribution
>>> score = lambda x: x # simple score function

>>> x = ksdd_lbfgs(x@, score) # run the algorithm

Thank you!
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