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Problem : Sample from a target distribution = over RY, whose
density w.r.t. Lebesgue is known up to a constant Z :

where Z is the (untractable) normalization constant.
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Problem : Sample from a target distribution = over RY, whose
density w.r.t. Lebesgue is known up to a constant Z :

where Z is the (untractable) normalization constant.

Motivation : Bayesian statistics.
» Let D = (w;, Yi)i=1,.. n Observed data.

> Assume an underlying model parametrized by 6
(e.g. p(y|w, 6) gaussian)

— Likelihood: p(D|6) = [T, p(yil6, w;).
» Assume also 6 ~ p (prior distribution).

Bayes’ rule : w(0) := p(0|D) = (D|0 / p(D|0)p



Sampling as optimization over distributions

Assume that 7 € P»(RY) = {1 € P(RY), [ ||Ix|[Pdu(x) < oo}.
The sampling task can be recast as an optimization problem:

7w = argmin D(u|r) := F(u),
pEP(RY)

where D is a dissimilarity functional.

Starting from an initial distribution g € P2(R?), one can then
consider the Wasserstein gradient flow of F over P,(RY) to
transport 1o to 7.



Wasserstein gradient flows
The differential of 1 — F(u) evaluated at . € P is the unique
function af(“) ‘R 5 Rs.t.forany u, i/ € P, i/ —p € P:

lim L+ e = ) = 7o) = [ P2 e~ o,




Wasserstein gradient flows
The differential of 1 — F(u) evaluated at . € P is the unique
function af(“) ‘R 5 Rs.t.forany u, i/ € P, i/ —p € P:

lim L+ e = ) = 7o) = [ P2 e~ o,

Then p : [0,00] — P, t — p; satisfies a Wasserstein gradient
flow of F if distributionnally:

Ot a]:(Mt)
ot = ( Ot )7

where Vi, F(u) = Vag—fj‘) € L2(p) is called the Wasserstein
gradient of F.



Choice of the loss function

Many possibilities for the choice of D among Wasserstein
distances, f-divergences, Integral Probability Metrics...

For instance,
» D is the KL (Kullback-Leibler divergence):

KL(M!W)Z{ {R;Jog( #00) ) gtﬁefN;;e.

» D is the MMD (Maximum Mean Discrepancy):

MMD? (s, = / K(x, y)diu(x)dp(y)

[ koenantasein =2 [ ke nantoss

where k : RY x RY — R is a p.s.d. kernel.



Two parts for this talk:
» first part : related to the optimization of the KL
» second part : related to the optimization of the MMD
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Sampling as optimization of the KL
The target distribution 7 is solution of :

in KL
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1. Variants of Langevin Monte Carlo (LMC)

> generates a Markov chain whose law converges to =
> corresponds to a time-discretization of the gradient flow of the KL

> rates of convergence deteriorates quickly in high dimensions
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Sampling as optimization of the KL
The target distribution 7 is solution of :

in KL 1
e () (1)

1. Variants of Langevin Monte Carlo (LMC)
> generates a Markov chain whose law converges to =
> corresponds to a time-discretization of the gradient flow of the KL
> rates of convergence deteriorates quickly in high dimensions

2. Variational Inference (VI):

> restrict the search space in (1) to a parametric family

> tractable in the large scale setting

> only returns an approximation of =

= Other algorithms can be obtained by discretizing the W,
gradient flow of the KL...



The KL as a composite functional

KL (p|) = / 08 (20)) du(x) if 4 <, 400 else.

10/69



The KL as a composite functional

KL (p|) = / 08 (20)) du(x) if 4 <, 400 else.

It is written as a composite functional :

KL(ulr) = [ VOdut) + [ loglulx))du(x) +cte

Ev(u) external potennal U(w) negative entropy




The KL as a composite functional

KL (p|) = / 08 (20)) du(x) if 4 <, 400 else.

It is written as a composite functional :

KL(ulr) = [ VOdut) + [ loglulx))du(x) +cte

Ev(u) external potential U(w) negative entropy

W, gradient flow of the KL is the Fokker-Planck equation:

0 . .

aitt = div(ut V log ( )) =diviur VV )+ div(u: Viog(ut))
Vi, Ev(n) U(p)
Vi, KL(pt|m)



The KL as a composite functional

KL (p|) = / 08 (20)) du(x) if 4 <, 400 else.

It is written as a composite functional :

KL(ulr) = [ VOdut) + [ loglulx))du(x) +cte

Ev(u) external potential U(w) negative entropy

W, gradient flow of the KL is the Fokker-Planck equation:

aut T .
o = diviu tVIog( >)—dlv(ut TV, )+ div(ju ¥ log(su)

V. &
Vi, KL(st|) WV (k) U(n)

It is the continuity equation (X; ~ p;) of the Langevin dynamics :
dX; = —VV(X;) + V2dB;

where (B;) is the brownian motion in RY.



Gradient flow of the entropy

The gradient flow of the negative entropy ¢/() is the heat
equation

This has an exact solution which is the heat flow
e = o * N(0, 2tly).

In space, this is implemented via the addition of Gaussian noise
"

Xi = Xo + vtz (2)
where Z ~ N(0, Iy) and Z independent of Xj.
Some time-discretizations of the KL gradient flow...

'The true solution of the heat flow is the Brownian motion in space.
However, at each time, the solution has the same distribution as (2)



Unadjusted Langevin Algorithm (ULA)

Xnt1 = Xn =7V V(Xn) + V27€n where &, ~ N(0, l)
and v > 0 is a constant step-size.
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Unadjusted Langevin Algorithm (ULA)

Xnp1 = Xn =7V V(Xn) + /276 where §, ~ N(0, Iy)
and v > 0 is a constant step-size.
Problem : ULA is biased (has stationary distribution

Ty # ).

We can write ULA as the composition :

Yni1 = Xn —yVV(X,) gradient descent/forward method for V
Xni1 = Ynr1 + V270 exact solution for the heat flow

= Forward-Flow discretization

In the space of measures P:

Vnp1 = (I =V V)ppin gradient descent for &y
pnit = N(0,2v1) * vpyq exact gradient flow for 2/

This Forward-flow discretization is biased



Other (unbiased) time discretizations
1. Forward method :

pint = @80~V KL (unl)) = (1= 7V log (£7))

where exp,, : L2(u) — P, ¢ — (I + ¢)pu,
and which corresponds in R? to:

Xni1 = Xo =V 10g (E2) (X0) ~ pinys
2. Backward method :
tiny1 = JKO, kL(.|r)(#n)
1
where JKO, 7(v) = argmin F(u) + o WE(v, ).
HEP 27
3. Forward-Backward method :

V1 = (I =7V V)gpn
pns1 = JKOy(vns1)



Focus on the Forward method
Problem: Vy, KL(un|m) = V log(£2).

While V log 7 is known, V log 1, has to be estimated from
particles X!,..., X", e.g. with? :

1. Kernel Density Estimation (KDE):

N

pnll) =~ 1> k(X))

i=1

Then,

L iy VA~ xz‘o)
S k(.= Xh)

Remark : it is not the W, gradient of some functional (see the
next slide)

—Vw, KLl 7) () ~ — (v V()

2assume a symmetric, translation invariant kernel



2. Blob Method
Instead of

() = | log(u(x))du(x).
consider
U(p) = / log(k * (X)) dpu(x), where kipu(x / K(x—y)du(y
Then,

— Vi, KL(pn|7)() & — (VV( )+
N

Vk(.— Xj) SN, V(.- XA))
; SN KO- X)X k(. — Xb)




Stein Variational Gradient Descent

N
Vi, KL(aalm)() ~ — (Z k(.= XDV V(X)) + V k(. - xA))

i=1

2=

3. Stein Variational Gradient Descent (SVGD)
» "non parametric” VI, only depends on the choice of some
kernel k

» corresponds to a time-discretization of the gradient flow of
the KL under a metric depending on k

> uses a set of interacting particles to approximate =

https://chi-feng.github.io/mcmc-demo/app.html?
algorithm=HamiltonianMC&target=banana


https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=banana
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=banana

SVGD in the ML literature

» Empirical performance demonstrated in various tasks:
» Bayesian inference

> learning deep probabilistic models

» reinforcement learning

> Theoretical guarantees :

> asymptotic theory: (in continuous time, infinite number of
particles) converges asymptotically to = when
V grows at most polynomially

> non asymptotic theory: no rates of convergence.

: non asymptotic analysis of SVGD in the infinite
particle regime but discrete time + finite sample approximation.
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SVGD algorithm
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Background on kernels and RKHS
> Let k: RY x RY — R a positive, semi-definite kernel, e.g.
k(x,x') = exp(—i‘lx_,f/”z),eXp<—7”X_hX/”)7(C+ [x = x'[)? ...
» 7 its corresponding RKHS (Reproducing Kernel Hilbert Space):

{Za, LX), meN; aq,...,am€R; x1,...,xmeRd}

> 7 is a Hilbert space with inner product (.,.)s; and norm ||.||%.
It satisfies the reproducing property:

Vo feH, xeRY, f(x)=(fk(x,))n

We assume [,q. g K(X, X)dpu(x) < oo forany p e P. = H C L?(p).
For instance assume ||k(x,.)|13,, = k(x, x) < B?, then for f € Hy

Il = [ IFCOEdut) = [ (f.k(x, )%, du(x)

< 1118, [ K(x0du() < 2113,



The kernel integral operator

Then, the inclusion from . : H — L?(x) admits an adjoint
¥ = S, where S,, : L?(u) — H is defined by:

[ /k x)du(x), feLl?(u).




The kernel integral operator

Then, the inclusion from . : H — L?(x) admits an adjoint
¥ = S, where S,, : L?(u) — H is defined by:

[ /k x)du(x), feLl?(u).

We have forany f,g € Lo(u) x H :

(f,09) 120y = (*F, Q) = (Suf, @)n-

We will denote P, =10 S,,.




SVGD algorithm

SVGD trick: applying this operator to the W, gradient of
KL(:|7) leads to

P Vlog /[V log (X)K(X,-) + VxKk(x,-)]du(x),

under approprlate boundary conditions on k and =, e.g.
|im||xHaoo k(X, ‘)7T(X) — 0.



SVGD algorithm

SVGD trick: applying this operator to the W, gradient of
KL(:|r) leads to

P 1og (£) () = = ¥ logm(x)k(x.) + Txk(x. )]du(x)

under appropriate boundary conditions on k and =, e.g.
|im||xHaoo k(X, -)7T(X) — 0.

Algorithm : Starting from N i.i.d. samples (X ) 77777 N ~ [0,
SVGD algorithm updates the N particles as foIIows

i
Xn+1 n

NZk(X’ xXhv Vi log (X)) + V k(X,l,,X’)

2

Pa,Viog(£2)(X}),  with =1 21 5y
j= n



SVGD algorithm

SVGD trick: applying this operator to the W, gradient of
KL(:|r) leads to

P 1og (£) () = = ¥ logm(x)k(x.) + Txk(x. )]du(x)

under appropriate boundary conditions on k and =, e.g.
|im||xHaoo k(X, -)7T(X) — 0.

Algorithm : Starting from N i.i.d. samples (X ) 77777 N ~ [0,
SVGD algorithm updates the N particles as foIIows

X/

=X — NZk(X’ xXhv Vi log (X)) + V k(X,l,,X’)

Pa,Viog(£2)(X}),  with =1

M=
(=%}
<

: non asymptotic analysis of SVGD in the infinite
particle regime + finite sample approximation.



Continuous-time dynamics of SVGD
SVGD gradient flow , :

Opt . i
W + dIV(,ut Vt) = 0, Vt = —va |Og <?)



Continuous-time dynamics of SVGD
SVGD gradient flow , :
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Continuous-time dynamics of SVGD
SVGD gradient flow , :
Kt
at C4div(ueVy) =0, V= —P,Viog (?)
How fast the KL decreases along SVGD dynamics?

AR _ (v, 5108 (1)),
Mt

at
s () e (%),

HSMVIog( )H since .* = S,

KSD2 (/)
<0.

On the r.h.s. we have the squared Kernel Stein discrepancy
(KSD) or Stein Fisher information at ..



Stein Fisher information

Stationary condition : KSD2(yu|r) = || S,,,V log ()||5, = 0.

Implies weak convergence of p; to 7 if
> r is distantly dissipative® (e.g. gaussian mixtures)
> k is translation invariant with a non-vanishing Fourier

transform;
or k is the IMQ kernel defined by k(x, y) = (¢ + ||x — y|3)?
forc > 0 and s € [-1,0] (slow decay rate).

3lim infr— oo k(r) > 0 for
k(r) = inf{—2(Vlog w(x) — Vlogm(y), x — y)/lIx — yl5: lIx = yl3 = r}



Stein Fisher information

Stationary condition : KSD?(|r) = ||S,,V log () Hi =0.

Implies weak convergence of p; to 7 if
> r is distantly dissipative® (e.g. gaussian mixtures)
> k is translation invariant with a non-vanishing Fourier
transform;
or k is the IMQ kernel defined by k(x, y) = (¢ + ||x — y|3)?
forc > 0 and s € [-1,0] (slow decay rate).

We show that if k is bounded, m « exp(— V) with H, bounded
above and if 3C > 0, [ ||x||2dut(x) < Cforall t > 0, then
KSD?(j¢|7) — 0.

3lim infr— oo k(r) > 0 for
k(r) = inf{—2(Vlog w(x) — Vlogm(y), x — y)/lIx — yl5: lIx = yl3 = r}



Convergence of continuous-time dynamics

The convergence of the Stein Fisher information to 0 can be
slow. When do we have fast convergence of SVGD
dynamics?

= satisfies the Stein log-Sobolev inequality with
constant A > 0 if for any u:

1 2
< — .
KL(ulm) < 5y KSD2(ul)



Convergence of continuous-time dynamics

The convergence of the Stein Fisher information to 0 can be
slow. When do we have fast convergence of SVGD
dynamics?

« satisfies the Stein log-Sobolev inequality with
constant A > 0 if for any u:

1 2
< — .
KL(ulm) < 5y KSD2(ul)

If it holds,

d KL (put| )
at

and by integrating :

= — KSD?(put|m) < —2XKL(p¢|m)

KL(pe|w) < 2N KL(psol).



"Classic" log-Sobolev inequality upper bounds the KL by the
Fisher divergence :

KL(uf) < o [1og (2)]

L2(n)

satisfied as soon as = is A-log concave, but it's more general.




"Classic" log-Sobolev inequality upper bounds the KL by the
Fisher divergence :

2
L2(n)

KL(ulr) < \Wog (£)

satisfied as soon as = is A-log concave, but it's more general.

When is Stein log-Sobolev satisfied? not as well known and
understood , but :

» it fails to hold if k is too regular with respect to =

» some working examples in dimension 1

» whether it holds in higher dimension is more challenging
and subject to further research...
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Some non-asymptotic results
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Proof of a descent lemma for GD of a smooth function

Gradient descent for V : RY — R a C?(RY) s.t. ||Hy(x)| < M
for any x.
Xnt1 = Xn — YV V(Xp).
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Proof of a descent lemma for GD of a smooth function
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for any x.
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Gradient descent for V : RY — R a C?(RY) s.t. ||Hy(x)| < M
for any x.

Xni1 = Xn — YV V(Xn).
Denote x(t) = x, — tVV(xy,) and ¢(t) = V(x(t)). Using Taylor
expansion :
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Proof of a descent lemma for GD of a smooth function

Gradient descent for V : RY — R a C?(RY) s.t. ||Hy(x)| < M
for any x.
Xni1 = Xn — YV V(Xn).
Denote x(t) = x, — tVV(xy,) and ¢(t) = V(x(t)). Using Taylor
expansion :
Y
P0) = 2(0)+1 O + [ (= 0 (et

Since (x(t) = 0):
¢'(0) = (VV(x(0)), X(0)) = (VV(x(0)), =V V(xn)) = =V V(xn)]?,
(1) = (X(t), Hy(x(£)x(t)) < MIIx(t)[I? = M|V V(xa)|1?,
we have
.
V(Xni1) < V() = IV V(xa) |? + M/O (v = DIV V(xa)|?at

Vi) = Vo) < = (1= 31 ITVxn) .



A descent lemma for SVGD

Recall that 7 < exp(— V) and assume ||Hy(x)| < M. Here, the
Hessian of the KL at 1 is an operator on L?(y) where:

(f, Hessii(m) (1)) 12(u) = Exp | (F(X), HY(X)F(X)) + HJf(X)Hf/s]

and yet, this operator is not bounded due to the Jacobian
term.



A descent lemma for SVGD

Recall that 7 < exp(— V) and assume ||Hy(x)| < M. Here, the
Hessian of the KL at 1 is an operator on L?(y) where:

(f, Hessii(m) (1)) 12(u) = Exp | (F(X), HY(X)F(X)) + HJf(X)H%s]

and yet, this operator is not bounded due to the Jacobian
term.

In the case of SVGD, one restricts the descent directions f to
‘H. Under several assumptions (boundedness of k and Vk, of
Hessian of V and moments on the trajectory) we could show for
~ small enough:

2
KL(pny1]m) — KL(pn|7) < —Cy HSNHV log (%) ’H

KSD?(pun|)



Sketch of proof - 1
Fix n > 0. Denote g = P,V log(£2), ¢ = | — tg for t € [0,]
and p; = (¢)44n. We have 22 = div(pw;) with w; = —gog; " .

Denote ¢(t) = KL(p¢|7). Using a Taylor expansion,

Y
f0) = 2(0)+1¢ O + [ (= 0 (et
Step 1. ©(0) = KL(un|m) and o(7y) = KL(pns1|m).
Step 2. Using the chain rule,
Qol(t) - <VW2 KL(pT|7T)7 Wf)Lz(pt)'

Hence :

#(0) = ~(7108 (22) . @)(uy = — S 108 (42) |




Sketch of proof - 2
Step 3.

@ () = (wr, HeSSKL(.m)(P)Wt) 12(,p) = 11 (1) + 22(1),
PY1(1) = Exp [(We(X), Hy(X)wi(x))] and wo(t) = Ex~p, [HJWt(X)H%-/S}

where pt = (¢¢)ghin, We = —go (o).



Sketch of proof - 2
Step 3.

@ () = (wr, HeSSKL(.m)(P)Wt) 12(,p) = 11 (1) + 22(1),
PY1(1) = Exp [(We(X), Hy(X)wi(x))] and wo(t) = Ex~p, [HJWt(X)H%-/S}

where pt = (¢t)ghin, We = —go (¢1) "
Step 3.a. Assuming || Hy| < M and k(.,.) < B:

1(0) < Migif,y < ME2 [, 10g (42)




Sketch of proof - 2
Step 3.

@ () = (wr, HeSSKL(.m)(P)Wt) 12(,p) = 11 (1) + 22(1),
PY1(1) = Exp [(We(X), Hy(X)wi(x))] and wo(t) = Ex~p, [HJWt(X)H%-/S}

where pt = () 4tin, We = —g o (61)"
Step 3.a. Assuming || Hy| < M and k(.,.) < B:

Ui () < Mgz, < MB? HS“"VIOg (%)

’2

2(1) = Exeep ||t 0 $1(0) 5] < 199(0) s 1(J60) ™ ()15

<ot o v (1)

’ 2
H

a,

assuming || Vk(...)| < B and choosing ~ < f(«) with o > 1.



From: -
o(7) = (0) +7/(0) + /0 (v — (D)t
we have:
KL(jtn1/m) = KL(pnl) < =111,V 10g (22) I,
2
T (o2 2 HnY 2
+ 5 (0 + MBS,V log (£ |,

Choosing ~ small enough yields a descent lemma :

KL(pns1]m) — KL(pn|m) < CWHS#"wa (Mn>

KSD?(pun| )

’H'




Rates in terms of the Stein Fisher Information

Consequence of the descent lemma: for v small enough,

< Klluo|m)
KSD( 2( KL(xo|m)
k= n?m SO (pnlm) < ZKSD cn

This result does not rely on:
» convexity of V
» nor on Stein log Sobolev inequality
» but only on smoothness of V.

unlike most convergence results on LMC which rely on Log
Sobolev inequality or convexity of V.



Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the
form
2
KL(jin1/m) = KL(tnl) < —c, | S,V 10g (22) |

H

and the Stein log-Sobolev inequality (2) with constant A:

||
KL(un+1\7r)—KL(Mn’”)v(< ~¢.|S1og (7)<
1 2)

— ¢, 2\KL(tin| 7).

lterating this inequality yields KL(jp|m) < (1 —2¢,A)" KL(po] 7).

"Classic" approach in optimization orin the
analysis of LMC.



Not possible to combine both....

Given that both the kernel and its derivative are bounded, the
equation

d
[ >o1@ve)ree
i=1
— O V(x)(0 k(x, x) + 02k(x, X)) + 8} ?k(x, x)]dr(x) < 00 (3)

reduces to a property on V which, as far as we can tell, always holds
onRY...



Not possible to combine both....

Given that both the kernel and its derivative are bounded, the
equation

d
[ >o1@ve)ree
i=1
— 0iV(x)(9'k(x, X) + 02k(x, X)) + 0] 92k(x, x)]dn(x) < 0o (3)
reduces to a property on V which, as far as we can tell, always holds
onRY...
and this implies that Stein LS| does not hold
Remark : Equation (3) does not hold for :
» k polynomial of order > 3, and

» 7 with exploding § moments with g > 3 (ex: a student
distribution, which belongs to P the set of distributions with
bounded second moment).



Experiments
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD?(y,|7) to 0.



We already have a bound on u, versus =. What about ji,?

Recall that the practical SVGD implementation is :

~

ri7+1 = X/Q — 7P,V log (lj:

2 \

) 06 :i .

where [i, denotes the empirical distribution of the interacting
particles.



We already have a bound on u, versus =. What about ji,?

Recall that the practical SVGD implementation is :

~

rl7+‘| = )(,I7 - ’}/Pﬁnv Iog (ﬂ_n

N
Z X\
n

where [i, denotes the empirical distribution of the interacting
particles.

) 06

2 \

Propagation of chaos result
Letn>0and T > 0. Under
;forany0 <n< - we have :

EIWE (o )] < % <\1m Var(#o)eLT) (T —1)

where L is a constant depending on k and = and
fin = NZ/ 15)(/ with X%, ~ pup iii.d.



Contributions and openings

» First rates of convergence for SVGD, using techniques
from optimal transport and optimization (discrete time -
infinite number of particles)

» Propagation of chaos bound (finite number of particles
regime)



Open questions

>

>

Rates in KL?

Propagation of chaos : weaker assumptions? uniform in
time (UIT)?

Is it possible to obtain a unified convergence bound
(decreasing as n, N — o0)? (requires UIT)

D(fin, m) < An+ Bn

» how good is SVGD quantisation?

» Other kernels?

SVGD dynamics also appear in black-box variational
inference and Gans , Where the kernel is the
neural tangent kernel and depends on the current
distribution (k = k)
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Part Il : Sampling as optimization of the KSD
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Recall that
7w = argmin D(u|r) = F(u),
pEP2(RY)

where D is a dissimilarity functional.
Here we choose D as the Kernel Stein Discrepancy (KSD).
We propose an algorithm that is:

» score-based (only requires V log )

> using a set of particles whose empirical distribution
minimizes the KSD

» easy to implement and to use (e.g. leverages L-BFGS) !

We study:
> its convergence properties (numerically and theoretically)

» its empirical performance compared to Stein Variational
Gradient Descent
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Preliminaries on Kernel Stein Discrepancy
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Kernel Stein Discrepancy
For pu, m € P2(RY), the KSD of y relative to  is defined as

KSD?(p|r) = / / kr (X, y)du(x)du(y),

where k; : RY x RY — R is the Stein kernel, defined through
» the score function s(x) = V log (x),
» ap.s.d. kernel k : RY x RY = R, k € C?(RY)*

For x,y € RY,
ke(x,y) = s(x)Ts(y)k(x,y) + s(x)"V2k(x, y)
+ Vik(x,y)"s(y) + V -1 V2k(x, y)

eR.

‘e.g. 1 k(x,y) = exp(—x - y|?/h)



We have seen that the KSD2 is also as a kernelized Fisher

divergence (||V log( )HLZ(#

KSD2(y|) _HSMV|og( )H  Suk: f'—>/f

Jovis( 2 >\;

<SukV|og( ) Su,kVIog<%)>Hk

— [ [ w10(£00) 7 105 ( £ () k(x.y) ) duty)

+ |.P.P 3 times (V log p(x)du(x) =

of the previous slide.

Vu(x)) recovers the formula

(x).



Stein identity and link with MMD

Under mild assumptions on k and =, the Stein kernel k; is p.s.d. and
satisfies a Stein identity

/ k-(x,.)dr(x) = 0.
Rd

Consequently, KSD is an MMD with kernel k., since:

MMD2 (4| ) /k %, y)du(x)dpu(y /k X, y)dr(x)dr(y)
2 / ke (x, y)du(x)dr(y)

:/kw(x,y)du(x)dﬂ(}/)
= KSD?(ulr)



KSD benefits

KSD can be computed when
» one has access to the score of 7
» . is a discrete measure, e.9. yu = %Z,’L dyi, then :

KSD?(u|7) = N2 Zk (x', x)).
7] 1



KSD benefits

KSD can be computed when
» one has access to the score of 7
» . is a discrete measure, e.9. yu = %Z,’L dyi, then :

KSD?(u|7) = N2 Z ko (x', xI).
7] 1

KSD is known to metrize weak convergence
when:
» 7 is strongly log-concave at infinity ("distantly dissipative",
e.g. true for gaussian mixtures)
» k has a slow decay rate, e.g. true when k is the IMQ kernel
defined by k(x,y) = (¢ + ||x — y||3)” for ¢ > 0 and
B e (-1,0).



KSD in the literature

The KSD has been used for
» nonparametric statistical tests for goodness-of-fit

» sampling tasks:

> (greedy algorithms) to select a suitable set of static points
to approximate 7, adding a new one at each iteration

> to compress or reweight
Markov Chain Monte Carlo (MCMC)

outputs

> to learn a static transport map from o to 7

> learn Energy-Based models 7 « exp(— V) from samples of
7 (use reverse KSD)



Outline

KSD Descent
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Time/Space discretization of the KSD gradient flow

Let F(u) = KSD?(pu|r).
> lts Wasserstein gradient flow on P,(R?) finds a continuous
path of distributions that decreases .

» Different algorithms to approximate = depend on the time
and space discretization of this flow.

Forward discretization: Wasserstein gradient descent

Discrete measures: For discrete measures /i = & Zf\; Oyis
we have an explicit loss function

N

L) = F(R) = 1 D Ke(x' ).
ij=1

Then, Wasserstein gradient descent of F for discrete measures

0

(Euclidean) gradient descent of L on the particles.



KSD Descent - algorithms

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles (z{)Y ; ~ jo, number of itera-
tions M, step-size y
forn =1to M do

[E:zi»l]é\;l = i\l Z[Vzk n) i=1»
end for

Return: [asM] il

Algorithm 2 KSD Descent L-BFGS

Input: initial particles (z)X¥.; ~ o, tolerance tol

Return: [zi]Y | = L-BFGS(L, VL, [z}] ¥ ,, tol).

L-BFGS is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!



L-BFGS

L-BFGS ( Limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm ) is a quasi-Newton method:

Xni1 = Xn — 1By 'V L(Xn) = X + Y0y (4)
where B; ' is a p.s.d. matrix approximating the inverse Hessian at x,,.

Step1. (requires VL) It computes a cheap version of d, based on
BFGS recursion:

B*‘] _ I— Axnyrz- B_1 I— ynAXrZ- AXnAXfT
G YIDx,) " N yTAx,

where
AXp = Xpnp1 — Xn
Yn = VL(Xp41) — VL(Xn)

Step2. (requires L and VL) A line-search is performed to find the best
step-size in (4) :
L(Xn 4+ yndh) < L(Xn) + c17nVL(Xn) " dp
VL(Xn + 'Yndn)Tdn > C2VL(Xn)Tdn

See



Related work
1. minimize the KL divergence (requires V log ), e.g. with
Stein Variational Gradient descent (SVGD, ).

Uses a set of N interacting particles and a p.s.d. kernel
k :RY x RY — R to approximate r:

XI

i
ni1 = Xn— 7

N
1 o , o
N D K, xh) ¥ log 7(Xh) + Vik(xh, x;,)] ,
j=1

Does not minimize a closed-form functional for discrete
measures! = cannot use L-BFGS.

2. minimize the MMD

i i
Xn+1 =Xp—

szz xh. xI) — Vak (), x )] .

(requires samples ()", ~ 7 )
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Toy experiments - 2D standard gaussian

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size

== KSD ==SVGD, small step SVGD, good step ==SVGD, big step

€ 10711 5 10' -
= 2
3
N
M Y — x —_—
T T T -1
0.0 0.1 0.2 0.0 0.1 0.2
Time (s.) Time (s.)

Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 patrticles.
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2D mixture of (isolated) Gaussians - failure cases

T ~ =7~ SS NPT ~S_="_-- =~_ N
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\\‘~-_—"/"\\\~-_—’ Pl S Rttt S’ 7

P S P ~--—”," Po S~m—m= PrantS \‘—-—”,’
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The green crosses indicate the initial particle positions
the blue ones are the final positions
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More initializations

Van\Init

0.1

0.3

Gaussian i.i.d.

on the s.a. close to s.a.

Green crosses : initial particle positions
Blue crosses : final positions
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Stationary measures - some explanations

In the paper, we explain how particles can get stuck in planes
of symmetry of the target .

» we show that if a stationary measure u, is full support,
then F(uo) = 0.

» but we also show that if supp(ug) € M, where M is a
plane of symmetry of 7, then for any time ¢ it remains true
for ps: supp(ut) € M.



Isolated Gaussian mixture - annealing

Add an inverse temperature variable 3 : 7°(x) o exp(—3V(x)) ,
with 0 < 8 < 1 (i.e. multiply the score by 3.)

7 L 7 == ==
=1 ", \\ B=0.1{r%s7 .\\ B=01-1 -,\\
° e (L]
2oL e s P e e Y UeT o e 26 e
i B S | St R I S R | et I S
T U AN SPTETA N VA I 20 U N R4
Pig \\“ N Vag o .\;’. i Sy, N
’-:\\ \}5_—’2 ./1 ~ “5—!—’2 ,’:\\ ‘\\ﬁ——’,’
/e o \ - /e Y - /.. . —_—
Fogon oV VUTZZ Al 0 o VN7 2 e oSN 0 ) M T 21
T A B B N et I L R L N S B X I I B W et
O .°, 1 ’lllll’: Ve, ey ’l’III - \°.~-ﬂ °y, ’I’III’:
N 71 r \ 7 1 r \N° e / r
sl S s d s 2 S 10047 ~—2? 5700007

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed.



Real world experiments (10 particles)

KSD Descent

Amari distance

%
L

>
f

0.6 0.8 1.0
SVGD

10° 4

1071 4

i

Random KSD SVGD

Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ~ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Bayesian ICA.

Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d < 8).

KSD is not better than random.



So.. when does it work?

. KSDD Stein points /
AN\ ~ z ya /

Comparison of KSD Descent and Stein poinis on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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Theoretical properties of the KSD flow
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First strategy : functional inequality?
Fulm) = [[ k(x, y)du(x)du(y).

We have

) [ ko)) = Bl (. )
and under approprlate growth assumptions on k;:

WoF (1) = Exe[Vaka(X, ).
Hence
dF
V) (g F (), Vw020
= — By | B [V2hn (6, V)] 2

—Difficult to identify a functional inequality to relate
dF(ut)/dt to F(ut), and establish convergence in continuous
time (similar to )




Second strategy : geodesic convexity of the KSD?

Let i) € C3°(RY) and the path p; = (I + tvw)#ﬂ for t € [0,1].
.7 (Po);

Define the quadratic form Hess,, F (v, 1) := dt2
t=
which is related to the W, Hessian of 7 at L.

For ) € C(RY), we have
Hess, (1, 1) = Exymy | V(X)T V1 Vake (X, ) V0(y)]
+ By [V0(0)T Hike (X, y)VO()]

The first term is always positive but not the second one.
— the KSD is not convex w.r.t. W, geodesics.



Third strategy : curvature near equilibrium?
What happens near equilibrium 7? the second term vanishes
due to the Stein property of k. and :

Hess, F (v, ¢) = st,kﬁﬁﬂbng-tkﬂ >0
where

Lr:f— —Af—(Vlogm,Vf)gd

S,k f%/k Vf(X)du(x) € Hi, = {ke(X,.),x € R9}

Question: can we bound from below the Hessian at = by a
quadratic form on the tangent space of P»(RY) at 7 (C L3())?

1S ke LrtPl13,. = Hessz F(1,4) = MV T2y ?

That would imply exponential decay of F near =



Curvature near equilibrium - negative result

The previous inequality

1Sm ke L0113y, = MVIZ2 ()

» can be seen as a kernelized version of the Poincaré
inequality for 7 :

I£x1Z, () = AxlI VI, -
» can be written:
(W, Prgo W) 1p(m) = AW, L7 0) 15(m)
where P, x_: L?(1) — L3(n),f > / ke (x, .)f(x)dm(X).
Theorem : Let 7 o« V. Assume that V € C?(R9), VV is

Lipschitz and £, has discrete spectrum. Then exponential
decay near equilibium does not hold.
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Conclusion

Pros:
» KSD Descent is a very simple algorithm, and can be used
with L-BFGS (fast, and does not require

the choice of a step-size as in SVGD)

» works well on log-concave targets (unimodal gaussian,
Bayesian logistic regression with gaussian priors) or "nice
distributions (banana)

Cons:

» KSD is not convex w.r.t. W5, and no exponential decay
near equilibrium holds

» does not work well on non log-concave targets (mixture of
isolated gaussians, Bayesian ICA)



Open questions

» explain the convergence of KSD Descent when = is
log-concave?

» quantify propagation of chaos ? (KSD for a finite number of
particles vs infinite - but non uniformly Lipschitz vector
field)

» how good is KSD quantisation?



Code

>>>
>>>
>>>
>>>
>>>
>>>

Python package to try KSD descent yourself:
pip install ksddescent

website: pierreablin.github.io/ksddescent/
It also features pytorch/numpy code for SVGD.

import torch

from ksddescent import ksdd_lbfgs

n, p=250 2

x0 = torch.rand(n, p) # start from uniform distribution
score = lambda x: x # simple score function

x = ksdd_lbfgs(x0, score) # run the algorithm

Thank you for listening!


pierreablin.github.io/ksddescent/
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1 - Bayesian Logistic regression

Datapoints di,...,dy € RP, and labels y1,...,y; € {£1}.
Labels y; are modelled as p(y; = 1|d;, w) = (1 + exp(—w ' d;))~" for
some w € RP,

The parameters w follow the law p(w|a) = N'(0,a"lp), and « > 0 is
drawn from an exponential law p(«) = Exp(0.01).

The parameter vector is then x = [w, log(a)] € RP*, and we use
KSD-LBFGS to obtain samples from p(x| (d;, ;){_,) for 13 datasets,
with N = 10 particles for each.

1.0 1
2 Accuracy of the KSD descent and
§ 0.8 1 SVGD on bayesian logistic regression
= for 13 datasets.
< 06 Both methods yield similar results.
' KSD is better by 2% on one dataset.

0.6 0.8 1.0
SVGD



2 - Bayesian Independent Component Analysis

ICA: x = W~'s, where x is an observed sample in RP, W € RP*P is
the unknown square unmixing matrix, and s € RP are the
independent sources.

1)Assume that each component has the same density s; ~ ps.

2) The likelihood of the model is p(x|W) = log |W| + S"F_, ps([Wx];).
3)Prior: W has i.i.d. entries, of law N (0, 1).

The posterior is p(W|x) « p(x|W)p(W), and the score is given by
sS(W)=W=T —y(Wx)x" — W, where ¢ = —Z—é. In practice, we
choose ps such that ¢ (-) = tanh(-). We then use the presented
algorithms to draw 10 particles W ~ p(W/|x) on 50 experiments.

10° 4 [ -~ )
é‘ 10 \‘P? ? 10° 4 {é?* m”-q;‘? 4?

s
E 1074 4 E
< <
T T T T T T T T T
Random KSD SVGD Random KSD SVGD Random KSD SVGD

Left: p = 2. Middle: p = 4. Right: p = 8.

Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.

KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex.

Amari distance
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