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Problem

Let Po(RY) = {u € P(RY), [ ||Ix][2du(x) < oo}, and
V.Rd—>R H: PZ(R ) = (=00, +0q].

We consider the problem

min  G(p) :z/Vdp+’H(,u).

peP2(RY)

N——
Ev(n)
Examples:
1. Sampling (e.g. when G(u) = KL(u|7), where 7 is a target
distribution)

2. Optimization of overparametrized shallow neural networks
(e.g. when G(p) = MMD(p, ), where 7 is the optimal
distribution over parameters)



Contributions of this paper

» This problem is a free energy minimization for which
Wasserstein gradient flows are well understood
continuous time minimization dynamics

» Various time-discretizations have been considered in the
literature, see e.g.

In this work, we propose a Forward Backward (FB)
discretization scheme that can tackle the case where the
objective function is the sum of a smooth and a nonsmooth
terms.

We show that it has convergence guarantees similar to the
analog scheme in Euclidean spaces, under mild assumptions
on V and H.



Outline

Wasserstein gradient flows
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Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on R?
with finite second moments, i.e.

Pa(RY) = {u € P(RY), / IX[2du(x) < o0}
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Setting - The Wasserstein space

Let P»(RY) denote the space of probability measures on R?
with finite second moments, i.e.

Pa(RY) = {u € P(RY), / IX[2du(x) < o0}

P2(RY) is endowed with the Wasserstein-2 distance from
Optimal transport :

W)= inf [ - ylPdstey) Ve Pare)
sel(v,u) JRIxRA

where I'(v, 1) is the set of possible couplings between v and .



Def (pushforward) : Let 1 € Po(RY), T:RY — RY. The
pushforward measure T is characterized by:

> v B meas. set, Tyu(B) = u(T~1(B))
> X~y T(X) ~ Tup
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> X~y T(X) ~ Tup

Brenier’s theorem : Let i, v € P2(RY) s.t. 1 < Leb. Then,
> Then 3! T RY - RYs.t. T/, = v, and a convex
function g s.t. T = Vg u-a.e.
> WE(1,v) = Il = TYIR, 0 = infretyu (X — T(x)2dpu(x)
> Alsoif v < Leb, then T} o T!' = lv-a.e.and T o T =1
u-a.e.



Def (pushforward) : Let 1 € Po(RY), T:RY — RY. The
pushforward measure T is characterized by:

> v B meas. set, Tyu(B) = u(T~1(B))
> X~y T(X) ~ Tup
Brenier’s theorem : Let i, v € P2(RY) s.t. 1 < Leb. Then,

> Then 3! T RY - RYs.t. T/, = v, and a convex
function g s.t. T = Vg u-a.e.

> W) = 1= TYIZ, ) = infresyge J(X — T(x))2dp(x)
> Alsoif v < Leb, then T} o T!' = lv-a.e.and T o T =1

u-a.e.
W, geodesics?

p(0) = p, p(1) = v.
p(t) = (0 = I+ 1T )4p

#o(t)=(1-u+tv

mixture



Continuity equations

Let T > 0. Consider a family . : [0, T] — Po(RY), t = pz. It
satisfies a continuity equation if there exists (V;):c[o, 77 such that

Vi € L2(p¢) and distributionnally:

Ot
5t Ly div(pui Vi) =0

Density 1 of particles x; € RY driven by a vector field V;:

dXt
vy,

g = Vixi)
Riemannian interpretation

The tangent space of P,(RY) at s verlfles

TuP2(RY) € L2(ue) = {f : RT = R, [ [[F(x)[2dpue(x) < oo}



Wasserstein gradient flows
Let G : Po(RY) — R U {+o0} a regular functional.
The differential of 11 — G(u) evaluated at i € Po(RY) is the
unique function ag(p) :RY = R s. t. for any p, 4/ € Pa(RY),
W—pe Pz(Rd)-
i 2+ e = )~ 6) = [ 22 e — dp)(x).
RS OH

e—0 €



Wasserstein gradient flows
Let G : Po(RY) — R U {+o0} a regular functional.
The differential of 11 — G(u) evaluated at i € Po(RY) is the
unique function ag(p) :RY = R s. t. for any p, 4/ € Pa(RY),
W—pe Pz(Rd)-
i 2+ e = )~ 6) = [ 22 e — dp)(x).
RS OH

e—0 €

Then y: [0, T] — P2(RY), t — u; satisfies a Wasserstein
gradient flow of G if distributionally:

Ope 0G(ut)\ _ o - _
T div <mV B =0, ie. Vi=-VuwG(n)

where VG (p) = Vag(#) € L2(p) is called the Wasserstein
gradient of G.



Free energies
In particular, if the functional G is a

/H dx+/V Ydp(x /nydu()du()

internal energy H(/J.) potential energy £y (1) interaction energy W(u)

0 .
Then : % = div(uV(H () + V + W x ).

Here, we consider

min  G(p) ::/Vdu—FH(u).
peP2(RY)
Ev(n)

We study an unbiased algorithm/time-discretization of the
Wasserstein gradient flow of G to minimize this functional.



Outline

Motivations for this problem
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The relative entropy/Kullback-Leibler divergence

For any i, ™ € P»(RY), the Kullback-Leibler divergence of 1.
w.r.t. 7 is defined by

KL () = /R tog () du(x) f p <

and is oo otherwise.
We consider the functional KL(:|7) : Po(R?) — [0, +o<].



The relative entropy/Kullback-Leibler divergence

For any i, ™ € P»(RY), the Kullback-Leibler divergence of 1.
w.r.t. 7 is defined by

KL(u|m) = / g (X(x)) du(x) it <

and is oo otherwise.
We consider the functional KL(:|7) : Po(R?) — [0, +o<].

For any u € P>(RY), 1 < m, the differential of KL(-|7) evaluated
at u, &(’fm RY — R is the function

Iog( )()—1—1 RY = R.

Hence, for p regular enough, Vyy KL(:|7) is:
K . d
V log (w) ():RY >R



Example 1 : Bayesian statistics

> Let D = (w;,y))i=1... n Observed data.

» Assume an underlying model parametrized by § ¢ R?
(e.g. p(y|w, 0) gaussian)
— Likelihood: p(D|6) = [TV, p(yil6, w).

» The parameter 6 ~ p the prior distribution.

P(’WZ)PW) z= /Rd p(D|6)p(6)d.

7 is known up to a constant since Z is untractable.
How to sample from 7 then?

1. MCMC methods
2. Sampling as optimization of the KL

Bayes’ rule : w(0) := p(0|D) =

m = argmin KL(u|m)
peP2(RY)



Maximum Mean Discrepancy
Let k : RY x RY — R a positive, semi-definite kernel

k(z,2') = ($(2), p(Z))n, ¢:RT =M

Assume p — [ k(z,.)du(z) injective (characteristic k).
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Maximum Mean Discrepancy
Let k : RY x RY — R a positive, semi-definite kernel

k(z,2') = ($(2), p(Z))n, ¢:RT =M

Assume p — [ k(z,.)du(z) injective (characteristic k).

Maximum Mean Discrepancy defines a distance on P,(RY):
5 MMD2(u.m) = 5 [ k(z,2)du(2)d(2)

- ;/k(z, Z'Ydr(z)dn(Z)) —/k(z, ZYdu(z)dn(Z)).

The differential of ;¢ — 3 MMD?(., 7) evaluated at 1 € Po(RY) is:

/k Jdu(z /k dm(z

Hence, for k regular enough, V3 MMDZ(.,w) is:

/ Vok(z,.)du(z) — / Vok(z,.)dn(2)  RY — R.



Example 2 : Regression with infinite width NN

(x,y) ~ data

. 1 & . 2
Zm“} Egaallly — N Z ¢Z,.(x)||2] W :‘é‘; Euaral 1y = Bz [@p7(0111°]

N i=1
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Minimization of the MMD : the well-specified case
We have (x, y) ~ data.

Assume 37 € P, E[y|X = x] = Ez[pz(X)].

Then : min E[||y — EZNM[¢Z(X)]H2]
peP,(RY)
T
omin | EllEze[62(0)] ~ Ezvuléz(X)] 7]
¥
min  Ez.[k(Z,Z)] +Ez.,[k(Z,Z')] - 2E 2z [k(Z,2))]
peEP(RY)  Z'~m Z'~u
with k(Z, Z') = Exqataldz(X) T ¢2/(x)]
7

’
min =~ MMD?(u, 7
ltépzl(Rd)z .7)



KL and MMD are free energies
The relative entropy G(1) = KL(u|7) can be written:

/H x)dx+/V pu(x)dx —C,
H ()

Ev(p)

H(s) = slog(s), V(x) = —log(n(x)), C = H(x) + Ev(n).




KL and MMD are free energies

The relative entropy G(1) = KL(u|7) can be written:

/H dx+/V x)dx —C,

Ev(p)

W@zﬂ%U,W)=4www»C=Hwawﬂ

The Maximum Mean Discrepancy G(u) = 1 MMD2( ) also:

n)= [ VEdut)+ 5 [ Woxy)du(dity)+C.

Ev(p) W(n)
V(x) = — [ k(x,x")dr(x"), W(x,x") = k(x,x'), C=W(r).




Outline

Specific case of the relative entropy
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The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.
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The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.

It is written as a composite functional (7 o exp(—V)):

L) = / V(x)du(x) + / log(1u(X))dpu(x) +cte

external potential H () negative entropy




The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.

It is written as a composite functional (7 o exp(—V)):

L(u|r) = /V )du(x +/|og(,u(x))d,u(x) +cte

Ey(p) external potential H () negative entropy

The W, gradient flow of the KL is the Fokker-Planck equation:

Ot _ iy 11V log (B)) = div(ue IV, )+ A

ot
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Vw KL(pt|m)



The KL as a composite functional

KL () = / og (X)) du(x) i 1 < m, 0 else.

It is written as a composite functional (7 o exp(—V)):

L(u|r) = /V )du(x +/|og(,u(x))d,u(x) +cte

Ey(p) external potential H () negative entropy

The W, gradient flow of the KL is the Fokker-Planck equation:

0 .

% — div(j V Iog< )) =div(p TV, )+ Au).
N——— VwEv(n)
Vw KL(pt|m)

It is the continuity equation (X; ~ ;) of the Langevin diffusion :

dX; = —VV(X;) + vV2dB;

where (B) is the brownian motion in RY.



Gradient flow of the entropy

The gradient flow of the negative entropy #(1) is the heat
equation

This has an exact solution which is the heat flow
e = o * N(0, 2tly).

In space, this is implemented by adding Gaussian noise '
X; = Xo+V2tZ

where Z ~ N(0, Iy) and Z independent of Xj.

Some time-discretizations of the KL gradient flow...

"The true solution of the heat flow is the Brownian motion in space.
However, at each time, the solution has the same distribution as (1)



Unadjusted Langevin Algorithm (ULA)

Xnt1 = Xn =V V(Xn) + v/27v¢n Where &, ~ N(0, l)
and v > 0 is a step-size.
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Unadjusted Langevin Algorithm (ULA)

Xnp1 = Xn =7V V(Xn) + /276 where §, ~ N(0, Iy)
and v > 0 is a step-size.
Problem : ULA is biased (has stationary distribution

Ty # ).

We can write ULA as the composition :

Yni1 = Xn —yVV(X,) gradient descent/forward method for V
Xni1 = Ynr1 + V270 exact solution for the heat flow

= Forward-Flow discretization

In the space of measures P:

Vnp1 = (I =V V)ppin gradient descent for &y
pnit = N(0,2v1) * vpyq exact gradient flow for 2/

This Forward-flow discretization is biased



Unbiased time discretizations (or algorithms)

1. Forward :
pn1 = (I = vV wKL(pn|m)) 4 pin
2. Backward :
pny1 = JKO. v KL(. |7T( n)

1
where JKO, i [x)(1n) = argmin KL(.|m)(1) + 5~ WE (. jn).
pePy(RY) v

3. Forward-Backward :

Vnit = (I =9V V)gpn
tn1 = JKO 3 (vni1)

It is unbiased because the backward method is the adjoint of
the forward method, so the minimizer is conserved.



Outline

Wasserstein Proximal Gradient
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Forward Backward discretization

G(n) = Ev(p) +H(p)
= We propose to analyze :

Vnit = (I =YV V)gpn

pint1 = JKO 3 (Vni1)

1
where JKOx(vpyq) = argmin H(p) + = W2 (1, vpi).
HEP,(RY) 2y

Tools for the proof :
» Identification of OT maps

> use geodesic convexity (convexity of V and generalized
geodesic convexity of H)



Descent Lemma in the smooth case

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any p, v, u* € P with v < Leb, t € [0,1] :

H((tTye + (1 = )T )pp™) < tH(v) + (1 = HH(p).

T!. and T'. are the OT maps from * to v and from p* to .



Descent Lemma in the smooth case

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any p, v, u* € P with v < Leb, t € [0,1] :

H((tTye + (1 = )T )pp™) < tH(v) + (1 = HH(p).

T!. and T'. are the OT maps from * to v and from p* to .

Result: A descent lemma for V being L-smooth? and v < 1/L:

L
G1ins1) < Glpn)= (1= 5 ) IV VAT 1)oXo1

where X1 = T, o (I — 4V V).

Vn41

eV (x,y) € RY, V(y) < V(x) + (VV(X),y — x) + £[|x — yI2.



Rates of convergence in the convex case
Assumption : V is \-strongly convex, i.e. V (x, y) € RY,
A
V(x)+ (VV(x),y = x) + SlIx =y < V().



Rates of convergence in the convex case
Assumption : V is \-strongly convex, i.e. V (x, y) € RY,
A
V(x)+ (VV(x),y = x) + SlIx =y < V().

Results : Assume the step size v < 1/L and up < Leb. Then
foralln>0

WE(tins1,7) < (1 = Y)W (1t ) — 22(Gpins1) — G(r)).

which implies:
1. G(un) — G(r) < —2,208 ™) in the convex case (A=0)

yn
2. W2(unp,m) < (1 - fy)\)”WZ(MO, 7) when A > 0

— same rates than proximal gradient in the euclidean setting!
— faster than ULA (1/v/nfor A =0 and 1/n for A > 0)



Implementation of the JKO of the negative entropy

» some subroutines exist to compute the JKO
, or the JKO w.r.t. the entropy-regularized
Wa

» it is very close from the entropic-regularized OT problem,
since:

. 1.5
min, d)'yH(V) + Wi v. )

: : 1 2
= m m Y + = — a.
uepzl(an) ser('}?y) H(V) 2 / ”X y” S(va)

_ 1
—min yH(Peys) + 5 [ Iyl ds(x.)

S:P1#S:

where P; : (x,y) — xand Py : (X,y) — .



Closed-form for the Gaussian case
it is possible to compute the JKO of negative entropy in closed
form in the gaussian case (i.e. for 7, ug gaussians)

Assume ™ = N (m, ¥).

Let o = NM(mg, Xo) and let £y = [ for simplicity, so ¥
commutes with X. Along FB, un, = N (mp, X,) stays Gaussian,
and:

Va1 = m+ (1= yE") (X — m)

Xpp1 = Mppq + (1 - ’72;411)71(}%—1-1 — Wn)

where

pngt = m+ (I == ") (pn — m)

Tnpr(l— 'er_;+11)2 =Tn(l - 7271)2



Experiments (d=1)
» 7 =N(0,1) (hence V(x) = 0.5x2 and A = 1);
o = N(10,100)
» we use the closed-form particle implementation for the FB
scheme

Histogram of the particles at n=0 Trajectory of the particles
040
e
035 ﬂ o
030 ‘ ‘ mmm Particles g
£
L, 025 ‘ | 2
2 020 ‘ ‘ s
e H
015 i i $
010 | | &
005 |1
000 -
-30 -20  -10 0 10 20 30 40 50 0 20 0 60 80 100
Position of the particles n
Histogram of the particles at n =10 Histogram of the particles at n =100
040 \ s 0.40 s
o — Hn 035 — Hn
I = Particles mmm Particles.
z | 5025
5 % 0.20
4 4

- 1] 2 - [} 2
Position of the particles sition of the particles
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Linear rate (d=1000)

multi dimensional extension : V(x) = 0.5||x||?, target 1*®? and
initial distribution z5®

Wasserstein distance to p. as a function of n

10° P
—— {1 —yA)"W4(ug, p+)

10° 1
. W2(Hn, )
E 10?
:E 2
e 10
F]
§ 1077 |
E 10—1-3 4

10—13 B
0 0 40 &0 &0 100

Figure: Linear convergence of i, to 7 in dimension d = 1000.



Contributions
» FB scheme is faster in nb of iterations compared to the
Unadjusted Langevin algorithm (converges at rate
O(1/+4/n)) at the cost of a higher iteration complexity.
» Our proof works for any functional # that is convex along
generalized geodesics, and that works for entropies, but
also for

potential energies H(u /F
for F convex, or
interaction energies H(u /W (X, y)u(x)u(y)dxdy

for W convex.



Open questions

» The JKO of entropy deserves more investigation to find an
efficient subroutine.

» Results in the non-convex case?

Thank you for listening !
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Identification of the optimal transport maps

From pinto vpp1 = (I = yVV)pin

Assumption : V is L-smooth i.e. V (x, y) € RY,
L
V(y) = Vx) +{VV(X)y = x) + 5lix — vl

Then : If up < Leband v < 1/L, the OT map from p, t0 vy 1
corresponds to :
T = (I=7VYV)

and v, 1 < Leb.

Proof : (/ — vV V) is the gradient of a convex function for
v <1/L



Identification of the optimal transport maps

From vy 10 pipgt € JKO 3y (vngt) -

There exists a strong Fréchet subgradient at v,, 1 denoted
VwH(pns1), such that the OT map from vy, 1 10 ppq
corresponds to :

Tt = 1+ AV wH(png1)

and pp1 < Leb

By Brenier’s theorem (7,71 o T;,"%" = I) this also means

it = (I =yVwH(pnt1) o TZZT)#VnH-



Generalized geodesic convexity of H

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any u, 7,v € P with v <« Leb, t € [0,1] :

H((AT) + (1 = )T )pv) < tH(m) + (1 — )H(n)

where T™ and T} are the OT maps from v to 7 and from v to p.



Generalized geodesic convexity of H

Key assumption : # is convex along generalized geodesics
defined by Wa, i.e. for any u, 7,v € P with v <« Leb, t € [0,1] :

H(ETT + (1 = )T )pv) < tH(m) + (1 — )H(w)
where T™ and T} are the OT maps from v to 7 and from v to p.

This enables us to prove a descent lemma for V being
L-smooth and v < 1/L:

L
KL(ptng1|m) < KL(pn|m)—v <1 - ;) IVV+V wH(pn1)oXn i1 “%2(#,,)7

where X,p1 = T, o (I =V V).

Yn1



A dual point of view
Consider the gradient flow of V : RY — R

X(t) = ~VV(x(1))

for V : R? — R smooth and assume x(0) random with density
uo- What is the dynamics of the density p; of x(t) ?

2¢® function from RY to R with compact support.



A dual point of view
Consider the gradient flow of V : RY — R

X(t) = ~VV(x(1))

for V : R? — R smooth and assume x(0) random with density
uo- What is the dynamics of the density p; of x(t) ?

Let ¢ : R — R a test function?.

/qS aﬂt

SEE(0) =~ (V0.9 V)mx)ak = [ o(0dliv(uv V)(x)dx

Therefore,

0
% = div(utVV).

2¢® function from RY to R with compact support.




Wasserstein Gradient descent for the KL

Let o € P. Gradient descent on (P, W) is written:

OKL(un|m
Pntt = </—VV(§M"|)> fon
K #
where v > 0 is a step-size.
(Particle version) i.e. given Xy ~ puo,

O0KL
Kot = X =7V () o



Wasserstein Gradient descent for the KL

Let o € P. Gradient descent on (P, W) is written:

OKL(un|m
Hnt1 = </ — ’YV;ZM )># Kn
where v > 0 is a step-size.
(Particle version) i.e. given Xy ~ puo,

O KL(ptn|m)

Xnt1=Xn—7V i (Xn) ~ tint1

Problem: the W, gradient of KL(:|7) at up, is the function

V log(£2). While V log m is known, we do not know what 1, is at
each n, we only have X, 1
— V log un has to be estimated from samples.



Stein Variational Gradient Descent
> Let k: RY x R? — R a positive, semi-definite kernel
k(X x') = (p(x), (X)), ¢ :RY > H

> HitsRKHS : {f:RI SR, F() = 57 ak(x,)}
Hilbert space of functions equipped with (-, -}4, || - [|%-
we assume : Vu, [oq K(X, X)du(X) < oo = H C L?(p).




Stein Variational Gradient Descent
> Let k: RY x R? — R a positive, semi-definite kernel
KOGX) = (6(X), 6(X N, ¢RI = H
d
> 7 its RKHS : {f: RI 5 R, () = >0, aik(x;,.)}
Hilbert space of functions equipped with (-, -}4, || - [|%-
we assume : Vu, [oq K(X, X)du(X) < oo = H C L?(p).

Define the kernel integral operator S, : L2(u) — H :

/k du(x) Ve L2(y)

and denote Py, = t3,_,2(,) © Sp-

SVGD trick: applying this operator to the W, gradient of
KL(|7T) leads to (If Iim||X||_>oo k(X, -)7T(X) — O)

P 1og (£) () = = [ logm(x)k(x.) + Vxk(x. )]du(x)



Stein Variational Gradient Descent (SVGD)

Algorithm : Starting from N i.i.d. samples (Xé)i:L...,N ~ Lo,
SVGD algorithm updates the N particles as follows :
. . 1 N S . S
X1 =X —~ N Z k(X}, XA)VX[, log 7(X}) + Vxék(X/,, X))
j=1

-~

P,V log( %)(xg)

N N
where fin = 32/ 1 0.

» "non parametric” VI, only depends on the choice of some
kernel k

» uses a set of interacting particles to approximate r:
https://chi-feng.github.io/mcmc—demo/app.
html?algorithm=HamiltonianMCé&target=banana


https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=banana
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=banana
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