Wasserstein Proximal Gradient

Adil Salim ${ }^{1}$ Anna Korba ${ }^{2}$ Giulia Luise ${ }^{3}$

${ }^{1}$ VCC, KAUST, Saudi Arabia ${ }^{2}$ CREST, ENSAE, Institut Polytechnique de Paris
${ }^{3}$ Department of Computer Science, University College London
Entropic regularization of OT and applications

Problem

Let $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int\|x\|^{2} d \mu(x)<\infty\right\}$, and
$V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathcal{H}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty,+\infty]$.
We consider the problem

$$
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathcal{G}(\mu):=\underbrace{\int V d \mu}_{\mathcal{E}_{V}(\mu)}+\mathcal{H}(\mu)
$$

Examples:

1. Sampling (e.g. when $\mathcal{G}(\mu)=\operatorname{KL}(\mu \mid \pi)$, where π is a target distribution) [Cheng et al.'17, Wibisono'18, Bernton'18, Durmus et al.'19, Arbel et al.'19].
2. Optimization of overparametrized shallow neural networks (e.g. when $\mathcal{G}(\mu)=\operatorname{MMD}(\mu, \pi)$, where π is the optimal distribution over parameters) [Chizat et al.'18, Arbel et al.'19].

Contributions of this paper

- This problem is a free energy minimization for which Wasserstein gradient flows are well understood continuous time minimization dynamics [Ambrosio et al.'08].
- Various time-discretizations have been considered in the literature, see e.g. [Jordan et al.'98, Wibisono'18].
In this work, we propose a Forward Backward (FB) discretization scheme that can tackle the case where the objective function is the sum of a smooth and a nonsmooth terms.

We show that it has convergence guarantees similar to the analog scheme in Euclidean spaces, under mild assumptions on V and \mathcal{H}.

Outline

Wasserstein gradient flows

Motivations for this problem

Specific case of the relative entropy

Wasserstein Proximal Gradient

Setting - The Wasserstein space

Let $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ denote the space of probability measures on \mathbb{R}^{d} with finite second moments, i.e.

$$
\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int\|x\|^{2} d \mu(x)<\infty\right\}
$$

Setting - The Wasserstein space

Let $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ denote the space of probability measures on \mathbb{R}^{d} with finite second moments, i.e.

$$
\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int\|x\|^{2} d \mu(x)<\infty\right\}
$$

Setting - The Wasserstein space

Let $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ denote the space of probability measures on \mathbb{R}^{d} with finite second moments, i.e.

$$
\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int\|x\|^{2} d \mu(x)<\infty\right\}
$$

$\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is endowed with the Wasserstein-2 distance from Optimal transport :

$$
W_{2}^{2}(\nu, \mu)=\inf _{s \in \Gamma(\nu, \mu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} d s(x, y) \quad \forall \nu, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

where $\Gamma(\nu, \mu)$ is the set of possible couplings between ν and μ.

Def (pushforward) : Let $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. The pushforward measure $T_{\#} \mu$ is characterized by:

- \forall B meas. set, $T_{\#} \mu(B)=\mu\left(T^{-1}(B)\right)$
- $x \sim \mu, T(x) \sim T_{\#} \mu$

Def (pushforward) : Let $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. The pushforward measure $T_{\#} \mu$ is characterized by:

- \forall B meas. set, $T_{\#} \mu(B)=\mu\left(T^{-1}(B)\right)$
- $x \sim \mu, T(x) \sim T_{\#} \mu$

Brenier's theorem : Let $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ s.t. $\mu \ll L e b$. Then,

- Then $\exists!T_{\mu}^{\nu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ s.t. $T_{\mu \#}^{\nu} \mu=\nu$, and a convex function g s.t. $T_{\mu}^{\nu}=\nabla g \mu$-a.e.
- $W_{2}^{2}(\mu, \nu)=\left\|I-T_{\mu}^{\nu}\right\|_{L_{2}(\mu)}^{2}=\inf _{T \in L_{2}(\mu)} \int(x-T(x))^{2} d \mu(x)$
- Also if $\nu \ll L e b$, then $T_{\mu}^{\nu} \circ T_{\nu}^{\mu}=I \nu$-a.e. and $T_{\nu}^{\mu} \circ T_{\mu}^{\nu}=I$ μ-a.e.

Def (pushforward) : Let $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. The pushforward measure $T_{\#} \mu$ is characterized by:

- \forall B meas. set, $T_{\# \mu} \mu(B)=\mu\left(T^{-1}(B)\right)$
- $x \sim \mu, T(x) \sim T_{\#} \mu$

Brenier's theorem : Let $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ s.t. $\mu \ll$ Leb. Then,

- Then $\exists!T_{\mu}^{\nu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ s.t. $T_{\mu \#}^{\nu} \mu=\nu$, and a convex function g s.t. $T_{\mu}^{\nu}=\nabla g \mu$-a.e.
- $W_{2}^{2}(\mu, \nu)=\left\|I-T_{\mu}^{\nu}\right\|_{L_{2}(\mu)}^{2}=\inf _{T \in L_{2}(\mu)} \int(x-T(x))^{2} d \mu(x)$
- Also if $\nu \ll L e b$, then $T_{\mu}^{\nu} \circ T_{\nu}^{\mu}=I \nu$-a.e. and $T_{\nu}^{\mu} \circ T_{\mu}^{\nu}=I$ μ-a.e.
W_{2} geodesics?
$\rho(0)=\mu, \rho(1)=\nu$.
$\rho(t)=\left((1-t) I+t T_{\mu}^{\nu}\right)_{\#} \mu$
$\neq \rho(t)=\underbrace{(1-t) \mu+t \nu}_{\text {mixture }}$

Continuity equations

Let $T>0$. Consider a family $\mu:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), t \mapsto \mu_{t}$. It satisfies a continuity equation if there exists $\left(V_{t}\right)_{t \in[0, T]}$ such that $V_{t} \in L^{2}\left(\mu_{t}\right)$ and distributionnally:

$$
\frac{\partial \mu_{t}}{\partial t}+\operatorname{div}\left(\mu_{t} V_{t}\right)=0
$$

Density μ_{t} of particles $x_{t} \in \mathbb{R}^{d}$ driven by a vector field V_{t} :

$$
\frac{d x_{t}}{d t}=V_{t}\left(x_{t}\right)
$$

Riemannian interpretation [Otto, 2001]:
The tangent space of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ at μ_{t} verifies:
$\mathcal{T}_{\mu_{t}} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \subset L^{2}\left(\mu_{t}\right)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \int\|f(x)\|^{2} d \mu_{t}(x)<\infty\right\}$.

Wasserstein gradient flows [Ambrosio et al., 2008]

Let $\mathcal{G}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \cup\{+\infty\}$ a regular functional.
The differential of $\mu \mapsto \mathcal{G}(\mu)$ evaluated at $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is the unique function $\frac{\partial \mathcal{G}(\mu)}{\partial \mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s. t. for any $\mu, \mu^{\prime} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, $\mu^{\prime}-\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):$

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\mathcal{G}\left(\mu+\epsilon\left(\mu^{\prime}-\mu\right)\right)-\mathcal{G}(\mu)\right)=\int_{\mathbb{R}^{d}} \frac{\partial \mathcal{G}(\mu)}{\partial \mu}(x)\left(d \mu^{\prime}-d \mu\right)(x) .
$$

Wasserstein gradient flows [Ambrosio et al., 2008]

Let $\mathcal{G}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \cup\{+\infty\}$ a regular functional.
The differential of $\mu \mapsto \mathcal{G}(\mu)$ evaluated at $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is the unique function $\frac{\partial \mathcal{G}(\mu)}{\partial \mu}: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathbf{s}$. t. for any $\mu, \mu^{\prime} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, $\mu^{\prime}-\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):$

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\mathcal{G}\left(\mu+\epsilon\left(\mu^{\prime}-\mu\right)\right)-\mathcal{G}(\mu)\right)=\int_{\mathbb{R}^{d}} \frac{\partial \mathcal{G}(\mu)}{\partial \mu}(x)\left(d \mu^{\prime}-d \mu\right)(x)
$$

Then $\mu:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), t \mapsto \mu_{t}$ satisfies a Wasserstein gradient flow of \mathcal{G} if distributionally:

$$
\frac{\partial \mu_{t}}{\partial t}-\operatorname{div}\left(\mu_{t} \nabla \frac{\partial \mathcal{G}\left(\mu_{t}\right)}{\partial \mu_{t}}\right)=0, \text { i.e. } V_{t}=-\nabla_{w} \mathcal{G}(\mu)
$$

where $\nabla_{W} \mathcal{G}(\mu):=\nabla \frac{\partial \mathcal{G}(\mu)}{\partial \mu} \in L^{2}(\mu)$ is called the Wasserstein gradient of \mathcal{G}.

Free energies

In particular, if the functional \mathcal{G} is a free energy:

$$
\begin{gathered}
\mathcal{G}(\mu)=\underbrace{\int H(\mu(x)) d x}_{\text {internal energy } \mathcal{H}(\mu)}+\underbrace{\int V(x) d \mu(x)}_{\text {potential energy } \mathcal{E}_{V}(\mu)}+\underbrace{\int W(x, y) d \mu(x) d \mu(y)}_{\text {interaction energy } \mathcal{W}(\mu)} \\
\text { Then: } \frac{\partial \mu_{t}}{\partial t}=\operatorname{div}\left(\mu_{t} \nabla\left(H^{\prime}\left(\mu_{t}\right)+V+W * \mu_{t}\right)\right) .
\end{gathered}
$$

Here, we consider

$$
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathcal{G}(\mu):=\underbrace{\int V d \mu}_{\mathcal{E}_{V}(\mu)}+\mathcal{H}(\mu)
$$

We study an unbiased algorithm/time-discretization of the Wasserstein gradient flow of \mathcal{G} to minimize this functional.

Outline

Wasserstein gradient flows

Motivations for this problem

Specific case of the relative entropy

Wasserstein Proximal Gradient

The relative entropy/Kullback-Leibler divergence

For any $\mu, \pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the Kullback-Leibler divergence of μ w.r.t. π is defined by

$$
\mathrm{KL}(\mu \mid \pi)=\int_{\mathbb{R}^{d}} \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi
$$

and is $+\infty$ otherwise.
We consider the functional $\operatorname{KL}(\cdot \mid \pi): \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow[0,+\infty]$.

The relative entropy/Kullback-Leibler divergence

For any $\mu, \pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the Kullback-Leibler divergence of μ w.r.t. π is defined by

$$
\mathrm{KL}(\mu \mid \pi)=\int_{\mathbb{R}^{d}} \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi
$$

and is $+\infty$ otherwise.
We consider the functional $\mathrm{KL}(\cdot \mid \pi): \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow[0,+\infty]$.
For any $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mu \ll \pi$, the differential of $K L(\cdot \mid \pi)$ evaluated at $\mu, \frac{\partial \mathrm{KL}(\mu \mid \pi)}{\partial \mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the function

$$
\log \left(\frac{\mu}{\pi}\right)(.)+1: \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

Hence, for μ regular enough, $\nabla_{W} \mathrm{KL}(\cdot \mid \pi)$ is:

$$
\nabla \log \left(\frac{\mu}{\pi}\right)(.): \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

Example 1 : Bayesian statistics

- Let $\mathcal{D}=\left(w_{i}, y_{i}\right)_{i=1, \ldots, N}$ observed data.
- Assume an underlying model parametrized by $\theta \in \mathbb{R}^{d}$
(e.g. $p(y \mid w, \theta)$ gaussian)
\Longrightarrow Likelihood: $p(\mathcal{D} \mid \theta)=\prod_{i=1}^{N} p\left(y_{i} \mid \theta, w_{i}\right)$.
- The parameter $\theta \sim p$ the prior distribution.

Bayes' rule : $\pi(\theta):=p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{Z}, Z=\int_{\mathbb{R}^{d}} p(\mathcal{D} \mid \theta) p(\theta) d \theta$.
π is known up to a constant since Z is untractable.
How to sample from π then?

1. MCMC methods
2. Sampling as optimization of the KL [Wibisono, 2018]

$$
\pi=\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\operatorname{argmin}} \mathrm{KL}(\mu \mid \pi)
$$

Maximum Mean Discrepancy [Gretton etal, 2012]

Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$
k\left(z, z^{\prime}\right)=\left\langle\phi(z), \phi\left(z^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \phi: \mathbb{R}^{d} \rightarrow \mathcal{H}
$$

Assume $\mu \mapsto \int k(z,). d \mu(z)$ injective (characteristic k).

Maximum Mean Discrepancy [Gretton etal, 2012]

Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$
k\left(z, z^{\prime}\right)=\left\langle\phi(z), \phi\left(z^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \phi: \mathbb{R}^{d} \rightarrow \mathcal{H}
$$

Assume $\mu \mapsto \int k(z,). d \mu(z)$ injective (characteristic k).
Maximum Mean Discrepancy defines a distance on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \frac{1}{2} \mathrm{MMD}^{2}(\mu, \pi)=\frac{1}{2} \int k\left(z, z^{\prime}\right) d \mu(z) d \mu\left(z^{\prime}\right) \\
& \quad+\frac{1}{2} \int k\left(z, z^{\prime}\right) d \pi(z) d \pi\left(z^{\prime}\right)-\int k\left(z, z^{\prime}\right) d \mu(z) d \pi\left(z^{\prime}\right)
\end{aligned}
$$

Maximum Mean Discrepancy [Gretton etal, 2012]

Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$
k\left(z, z^{\prime}\right)=\left\langle\phi(z), \phi\left(z^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \phi: \mathbb{R}^{d} \rightarrow \mathcal{H}
$$

Assume $\mu \mapsto \int k(z,). d \mu(z)$ injective (characteristic k).
Maximum Mean Discrepancy defines a distance on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \frac{1}{2} \mathrm{MMD}^{2}(\mu, \pi)=\frac{1}{2} \int k\left(z, z^{\prime}\right) d \mu(z) d \mu\left(z^{\prime}\right) \\
& \quad+\frac{1}{2} \int k\left(z, z^{\prime}\right) d \pi(z) d \pi\left(z^{\prime}\right)-\int k\left(z, z^{\prime}\right) d \mu(z) d \pi\left(z^{\prime}\right)
\end{aligned}
$$

The differential of $\mu \mapsto \frac{1}{2} \operatorname{MMD}^{2}(., \pi)$ evaluated at $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is:

$$
\int k(z, .) d \mu(z)-\int k(z, .) d \pi(z): \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

Hence, for k regular enough, $\nabla_{W} \frac{1}{2} M M D^{2}(., \pi)$ is:

$$
\int \nabla_{2} k(z, .) d \mu(z)-\int \nabla_{2} k(z, .) d \pi(z): \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

Example 2 : Regression with infinite width NN

Minimization of the MMD : the well-specified case

We have $(x, y) \sim$ data.
Assume $\exists \pi \in \mathcal{P}, \mathbb{E}[y \mid X=x]=\mathbb{E}_{Z \sim \pi}\left[\phi_{Z}(x)\right]$.
Then :

$$
\begin{gathered}
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left[\left\|y-\mathbb{E}_{Z \sim \mu}\left[\phi_{Z}(x)\right]\right\|^{2}\right] \\
\underset{\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}}{ } \mathbb{E}\left[\left\|\mathbb{E}_{Z \sim \pi}\left[\phi_{Z}(x)\right]-\mathbb{E}_{Z \sim \mu \mu}\left[\phi_{Z}(x)\right]\right\|^{2}\right] \\
\mathbb{V}
\end{gathered}
$$

$\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\substack{Z \sim \pi \\ Z^{\prime} \sim \pi}}\left[k\left(Z, Z^{\prime}\right)\right]+\mathbb{E}_{\underset{Z \sim \mu}{Z^{\prime} \sim \mu}}\left[k\left(Z, Z^{\prime}\right)\right]-2 \mathbb{E}_{\underset{Z^{\prime} \sim \pi}{ } \sim \mu}\left[k\left(Z, Z^{\prime}\right)\right]$ with $k\left(Z, Z^{\prime}\right)=\mathbb{E}_{x \sim \operatorname{data}}\left[\phi_{Z}(x)^{T} \phi_{Z^{\prime}}(x)\right]$

$$
\min _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \frac{1}{2} \mathrm{MMD}^{2}(\mu, \pi)
$$

KL and MMD are free energies

The relative entropy $\mathcal{G}(\mu)=\operatorname{KL}(\mu \mid \pi)$ can be written:

$$
\mathcal{G}(\mu)=\underbrace{\int H(\mu(x)) d x}_{\mathcal{H}(\mu)}+\underbrace{\int V(x) \mu(x) d x}_{\mathcal{E}_{\mathcal{V}}(\mu)}-C,
$$

$H(s)=s \log (s), V(x)=-\log (\pi(x)), \quad C=\mathcal{H}(\pi)+\mathcal{E}_{V}(\pi)$.
Application : sampling from a posterior distribution $\pi \propto \exp (-V)$ in Bayesian inference.

KL and MMD are free energies

The relative entropy $\mathcal{G}(\mu)=\operatorname{KL}(\mu \mid \pi)$ can be written:

$$
\mathcal{G}(\mu)=\underbrace{\int H(\mu(x)) d x}_{\mathcal{H}(\mu)}+\underbrace{\int V(x) \mu(x) d x}_{\mathcal{E}_{V}(\mu)}-C
$$

$H(s)=s \log (s), V(x)=-\log (\pi(x)), \quad C=\mathcal{H}(\pi)+\mathcal{E}_{V}(\pi)$.
Application: sampling from a posterior distribution
$\pi \propto \exp (-V)$ in Bayesian inference.
The Maximum Mean Discrepancy $\mathcal{G}(\mu)=\frac{1}{2} \operatorname{MMD}^{2}(\mu, \pi)$ also:

$$
\begin{gathered}
\mathcal{G}(\mu)=\underbrace{\int V(x) d \mu(x)}_{\mathcal{E}_{V}(\mu)}+\underbrace{\frac{1}{2} \int W(x, y) d \mu(x) d \mu(y)}_{\mathcal{W}(\mu)}+C, \\
V(x)=-\int k\left(x, x^{\prime}\right) d \pi\left(x^{\prime}\right), W\left(x, x^{\prime}\right)=k\left(x, x^{\prime}\right), C=\mathcal{W}(\pi) .
\end{gathered}
$$

Application : optimizing infinite-width 1 hidden layer NN where π is the optimal distribution.

Outline

Wasserstein gradient flows
\section*{Motivations for this problem}

Specific case of the relative entropy

Wasserstein Proximal Gradient

The KL as a composite functional

$$
\mathrm{KL}(\mu \mid \pi)=\int \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi,+\infty \text { else. }
$$

The KL as a composite functional

$$
\mathrm{KL}(\mu \mid \pi)=\int \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi,+\infty \text { else. }
$$

It is written as a composite functional $(\pi \propto \exp (-V))$:

$$
\mathrm{KL}(\mu \mid \pi)=\underbrace{\int V(x) d \mu(x)}_{\mathcal{E}_{V}(\mu) \text { external potential }}+\underbrace{\int \log (\mu(x)) d \mu(x)}_{\mathcal{H}(\mu) \text { negative entropy }}+\text { cte }
$$

The KL as a composite functional

$$
\mathrm{KL}(\mu \mid \pi)=\int \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi,+\infty \text { else }
$$

It is written as a composite functional $(\pi \propto \exp (-V))$:

$$
\mathrm{KL}(\mu \mid \pi)=\underbrace{\int V(x) d \mu(x)}_{\mathcal{E}_{V}(\mu) \text { external potential }}+\underbrace{\int \log (\mu(x)) d \mu(x)}_{\mathcal{H}(\mu) \text { negative entropy }}+\text { cte }
$$

The W_{2} gradient flow of the KL is the Fokker-Planck equation:

$$
\frac{\partial \mu_{t}}{\partial t}=\operatorname{div}(\mu_{t} \underbrace{\nabla \log \left(\frac{\mu_{t}}{\pi}\right)}_{\nabla_{w} \mathrm{KL}\left(\mu_{t} \mid \pi\right)})=\operatorname{div}(\mu_{t} \underbrace{\nabla V}_{\nabla_{W} \mathcal{E}_{V}(\mu)})+\Delta\left(\mu_{t}\right) .
$$

The KL as a composite functional

$$
\mathrm{KL}(\mu \mid \pi)=\int \log \left(\frac{\mu}{\pi}(x)\right) d \mu(x) \text { if } \mu \ll \pi,+\infty \text { else }
$$

It is written as a composite functional $(\pi \propto \exp (-V))$:

$$
\mathrm{KL}(\mu \mid \pi)=\underbrace{\int V(x) d \mu(x)}_{\mathcal{E}_{V}(\mu) \text { external potential }}+\underbrace{\int \log (\mu(x)) d \mu(x)}_{\mathcal{H}(\mu) \text { negative entropy }}+\text { cte }
$$

The W_{2} gradient flow of the KL is the Fokker-Planck equation:

$$
\frac{\partial \mu_{t}}{\partial t}=\operatorname{div}(\mu_{t} \underbrace{\nabla \log \left(\frac{\mu_{t}}{\pi}\right)}_{\nabla_{w} \mathrm{KL}\left(\mu_{t} \mid \pi\right)})=\operatorname{div}(\mu_{t} \underbrace{\nabla V}_{\nabla_{W} \mathcal{E}_{V}(\mu)})+\Delta\left(\mu_{t}\right) .
$$

It is the continuity equation $\left(X_{t} \sim \mu_{t}\right)$ of the Langevin diffusion:

$$
d X_{t}=-\nabla V\left(X_{t}\right)+\sqrt{2} d B_{t}
$$

where $\left(B_{t}\right)$ is the brownian motion in \mathbb{R}^{d}.

Gradient flow of the entropy

The gradient flow of the negative entropy $\mathcal{H}(\mu)$ is the heat equation

$$
\frac{\partial \mu_{t}}{\partial t}=\Delta \mu_{t}
$$

This has an exact solution which is the heat flow $\mu_{t}=\mu_{0} * \mathcal{N}\left(0,2 t l_{d}\right)$. In space, this is implemented by adding Gaussian noise ${ }^{1}$

$$
\begin{equation*}
x_{t}=X_{0}+\sqrt{2 t} z \tag{1}
\end{equation*}
$$

where $Z \sim \mathcal{N}\left(0, I_{d}\right)$ and Z independent of X_{0}.
Some time-discretizations of the KL gradient flow...
${ }^{1}$ The true solution of the heat flow is the Brownian motion in space. However, at each time, the solution has the same distribution as (1)

Unadjusted Langevin Algorithm (ULA)

$$
X_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right)+\sqrt{2 \gamma} \xi_{n} \text { where } \xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$ and $\gamma>0$ is a step-size.

Unadjusted Langevin Algorithm (ULA)

$$
X_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right)+\sqrt{2 \gamma} \xi_{n} \text { where } \xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$

and $\gamma>0$ is a step-size.
Problem : ULA is biased (has stationary distribution $\left.\pi_{\gamma} \neq \pi\right)$.

Unadjusted Langevin Algorithm (ULA)

$$
X_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right)+\sqrt{2 \gamma} \xi_{n} \text { where } \xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$

and $\gamma>0$ is a step-size.
Problem : ULA is biased (has stationary distribution
$\left.\pi_{\gamma} \neq \pi\right)$.
We can write ULA as the composition :
$Y_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right) \quad$ gradient descent/forward method for V
$X_{n+1}=Y_{n+1}+\sqrt{2 \gamma} \xi_{n}$
exact solution for the heat flow
\Longrightarrow Forward-Flow discretization

Unadjusted Langevin Algorithm (ULA)

$$
X_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right)+\sqrt{2 \gamma} \xi_{n} \text { where } \xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$

and $\gamma>0$ is a step-size.
Problem : ULA is biased (has stationary distribution
$\pi_{\gamma} \neq \pi$).
We can write ULA as the composition :
$Y_{n+1}=X_{n}-\gamma \nabla V\left(X_{n}\right) \quad$ gradient descent/forward method for V
$X_{n+1}=Y_{n+1}+\sqrt{2 \gamma} \xi_{n} \quad$ exact solution for the heat flow
\Longrightarrow Forward-Flow discretization
In the space of measures \mathcal{P} :

$$
\begin{array}{ll}
\nu_{n+1}=(I-\gamma \nabla V)_{\#} \mu_{n} & \text { gradient descent for } \mathcal{E}_{V} \\
\mu_{n+1}=\mathcal{N}(0,2 \gamma I) * \nu_{n+1} & \text { exact gradient flow for } \mathcal{U}
\end{array}
$$

This Forward-flow discretization is biased [Wibisono, 2018].

Unbiased time discretizations (or algorithms)

1. Forward :

$$
\mu_{n+1}=\left(I-\gamma \nabla_{W} \operatorname{KL}\left(\mu_{n} \mid \pi\right)\right)_{\#} \mu_{n}
$$

2. Backward :

$$
\mu_{n+1}=J K O_{\gamma K L(. \mid \pi)}\left(\mu_{n}\right)
$$

where $J K O_{\gamma K L(. \mid \pi)}\left(\mu_{n}\right)=\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\operatorname{argmin}} \operatorname{KL}(. \mid \pi)(\mu)+\frac{1}{2 \gamma} W_{2}^{2}\left(\mu, \mu_{n}\right)$.
3. Forward-Backward :

$$
\begin{aligned}
\nu_{n+1} & =(I-\gamma \nabla V)_{\#} \mu_{n} \\
\mu_{n+1} & =J K O_{\gamma \mathcal{H}}\left(\nu_{n+1}\right)
\end{aligned}
$$

It is unbiased because the backward method is the adjoint of the forward method, so the minimizer is conserved.

Outline

Wasserstein gradient flows
Motivations for this problem
Specific case of the relative entropy

Wasserstein Proximal Gradient

Forward Backward discretization [wibisono, 2018, salim et al., 2020]

$$
\mathcal{G}(\mu)=\mathcal{E}_{V}(\mu)+\mathcal{H}(\mu)
$$

\Longrightarrow We propose to analyze [Wibisono, 2018] :

$$
\begin{aligned}
\nu_{n+1} & =(I-\gamma \nabla V)_{\#} \mu_{n} \\
\mu_{n+1} & =J K O_{\gamma \mathcal{H}}\left(\nu_{n+1}\right)
\end{aligned}
$$

where $J K O_{\mathcal{H}}\left(\nu_{n+1}\right)=\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\operatorname{argmin}} \mathcal{H}(\mu)+\frac{1}{2 \gamma} W_{2}^{2}\left(\mu, \nu_{n+1}\right)$.

Tools for the proof :

- Identification of OT maps
- use geodesic convexity (convexity of V and generalized geodesic convexity of \mathcal{H})

Descent Lemma in the smooth case

Key assumption : \mathcal{H} is convex along generalized geodesics defined by W_{2}, i.e. for any $\mu, \nu, \mu^{*} \in \mathcal{P}$ with $\nu \ll L e b, t \in[0,1]$:

$$
\mathcal{H}\left(\left(t T_{\mu^{*}}^{\nu}+(1-t) T_{\mu^{*}}^{\mu}\right)_{\#} \mu^{*}\right) \leq t \mathcal{H}(\nu)+(1-t) \mathcal{H}(\mu)
$$

$T_{\mu^{*}}^{\nu}$ and $T_{\mu^{*}}^{\mu}$ are the OT maps from μ^{*} to ν and from μ^{*} to μ.

Descent Lemma in the smooth case

Key assumption : \mathcal{H} is convex along generalized geodesics defined by W_{2}, i.e. for any $\mu, \nu, \mu^{*} \in \mathcal{P}$ with $\nu \ll \operatorname{Leb}, t \in[0,1]$:

$$
\mathcal{H}\left(\left(t T_{\mu^{*}}^{\nu}+(1-t) T_{\mu^{*}}^{\mu}\right)_{\#} \mu^{*}\right) \leq t \mathcal{H}(\nu)+(1-t) \mathcal{H}(\mu)
$$

$T_{\mu^{*}}^{\nu}$ and $T_{\mu^{*}}^{\mu}$ are the OT maps from μ^{*} to ν and from μ^{*} to μ.

Result: A descent lemma for V being L-smooth ${ }^{a}$ and $\gamma<1 / L$:

$$
\mathcal{G}\left(\mu_{n+1}\right) \leq \mathcal{G}\left(\mu_{n}\right)-\gamma\left(1-\frac{L \gamma}{2}\right)\left\|\nabla V+\nabla w \mathcal{H}\left(\mu_{n+1}\right) \circ X_{n+1}\right\|_{L_{2}\left(\mu_{n}\right)}^{2},
$$

where $X_{n+1}=T_{\nu_{n+1}}^{\mu_{n+1}} \circ(I-\gamma \nabla V)$.

$$
\text { ai.e. } \forall(x, y) \in \mathbb{R}^{d}, V(y) \leq V(x)+\langle\nabla V(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2} .
$$

Rates of convergence in the convex case

Assumption : V is λ-strongly convex, i.e. $\forall(x, y) \in \mathbb{R}^{d}$,

$$
V(x)+\langle\nabla V(x), y-x\rangle+\frac{\lambda}{2}\|x-y\|^{2} \leq V(y) .
$$

Rates of convergence in the convex case

Assumption : V is λ-strongly convex, i.e. $\forall(x, y) \in \mathbb{R}^{d}$,

$$
V(x)+\langle\nabla V(x), y-x\rangle+\frac{\lambda}{2}\|x-y\|^{2} \leq V(y) .
$$

Results : Assume the step size $\gamma<1 / L$ and $\mu_{0} \ll L e b$. Then for all $n \geq 0$

$$
W_{2}^{2}\left(\mu_{n+1}, \pi\right) \leq(1-\gamma \lambda) W_{2}^{2}\left(\mu_{n}, \pi\right)-2 \gamma\left(\mathcal{G}\left(\mu_{n+1}\right)-\mathcal{G}(\pi)\right) .
$$

which implies:

$$
\begin{aligned}
& \text { 1. } \mathcal{G}\left(\mu_{n}\right)-\mathcal{G}(\pi) \leq \frac{W_{2}^{2}\left(\mu_{0}, \pi\right)}{2 \gamma n} \text { in the convex case }(\lambda=0) \\
& \text { 2. } W_{2}^{2}\left(\mu_{n}, \pi\right) \leq(1-\gamma \lambda)^{n} W_{2}^{2}\left(\mu_{0}, \pi\right) \text { when } \lambda>0
\end{aligned}
$$

\Longrightarrow same rates than proximal gradient in the euclidean setting!
\Longrightarrow faster than ULA ($1 / \sqrt{n}$ for $\lambda=0$ and $1 / n$ for $\lambda>0$)

Implementation of the JKO of the negative entropy

- some subroutines exist to compute the JKO [Santambrogio, 2017], or the JKO w.r.t. the entropy-regularized W_{2} [Peyré, 2015]
- it is very close from the entropic-regularized OT problem, since:

$$
\begin{aligned}
& \min _{\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \gamma \mathcal{H}(\nu)+\frac{1}{2} W^{2}(\nu, \mu) \\
& \quad=\min _{\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \min _{s \in \Gamma(\mu, \nu)} \gamma \mathcal{H}(\nu)+\frac{1}{2} \int\|x-y\|^{2} d s(x, y) \\
& \quad=\min _{s: P_{1 \#}=\mu} \gamma \mathcal{H}\left(P_{2 \#} s\right)+\frac{1}{2} \int\|x-y\|^{2} d s(x, y)
\end{aligned}
$$

where $P_{1}:(x, y) \mapsto x$ and $P_{2}:(x, y) \mapsto y$.

Closed-form for the Gaussian case

it is possible to compute the JKO of negative entropy in closed form in the gaussian case (i.e. for π, μ_{0} gaussians)
[Wibisono, 2018].
Assume $\pi=\mathcal{N}(m, \Sigma)$.
Let $\mu_{0}=\mathcal{N}\left(m_{0}, \Sigma_{0}\right)$ and let $\Sigma_{0}=I$ for simplicity, so Σ_{0} commutes with Σ. Along FB, $\mu_{n}=\mathcal{N}\left(m_{n}, \Sigma_{n}\right)$ stays Gaussian, and:

$$
\begin{aligned}
& y_{n+1}=m+\left(I-\gamma \Sigma^{-1}\right)\left(x_{n}-m\right) \\
& x_{n+1}=m_{n+1}+\left(I-\gamma \Sigma_{n+1}^{-1}\right)^{-1}\left(y_{n+1}-\mu_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu_{n+1}=m+\left(I-\gamma \Sigma^{-1}\right)\left(\mu_{n}-m\right) \\
& \Sigma_{n+1}\left(I-\gamma \Sigma_{n+1}^{-1}\right)^{2}=\Sigma_{n}\left(I-\gamma \Sigma^{-1}\right)^{2}
\end{aligned}
$$

Experiments ($\mathrm{d}=1$)

- $\pi=\mathcal{N}(0,1)$ (hence $V(x)=0.5 x^{2}$ and $\lambda=1$);
$\mu_{0}=\mathcal{N}(10,100)$
- we use the closed-form particle implementation for the FB scheme

Linear rate ($\mathrm{d}=1000$)

multi dimensional extension : $V(x)=0.5\|x\|^{2}$, target $\mu^{* \otimes d}$ and initial distribution $\mu_{0}^{\otimes d}$

Wasserstein distance to μ. as a function of n

Figure: Linear convergence of μ_{n} to π in dimension $d=1000$.

Contributions

- FB scheme is faster in nb of iterations compared to the Unadjusted Langevin algorithm (converges at rate $\mathcal{O}(1 / \sqrt{n}))$ at the cost of a higher iteration complexity.
- Our proof works for any functional \mathcal{H} that is convex along generalized geodesics, and that works for entropies, but also for

$$
\text { potential energies } \mathcal{H}(\mu)=\int F(x) \mu(x) d x
$$

for F convex, or

$$
\text { interaction energies } \mathcal{H}(\mu)=\int W(x, y) \mu(x) \mu(y) d x d y
$$

for W convex.

Open questions

- The JKO of entropy deserves more investigation to find an efficient subroutine.
- Results in the non-convex case?

Thank you for listening !

References I

國 Ambrosio, L., Gigli, N., and Savaré, G. (2008).
Gradient flows: in metric spaces and in the space of probability measures.
Springer Science \& Business Media.
(Retton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. J. (2012).
A kernel two-sample test.
JMLR, 13.
围 Liu, Q. and Wang, D. (2016).
Stein variational gradient descent: A general purpose bayesian inference algorithm.
In Advances in neural information processing systems, pages 2378-2386.

References II

(Rito, F. (2001).
The Geometry of Dissipative Evolution Equations: The Porous Medium Equation.
Communications in Partial Differential Equations, 26(1-2):101-174.

E- Peyré, G. (2015).
Entropic approximation of wasserstein gradient flows.
SIAM Journal on Imaging Sciences, 8(4):2323-2351.
圊 Salim, A., Korba, A., and Luise, G. (2020).
Wasserstein proximal gradient.
arXiv preprint arXiv:2002.03035.

References III

國 Santambrogio, F. (2017). \{Euclidean, metric, and Wasserstein\} gradient flows: an overview.
Bulletin of Mathematical Sciences, 7(1):87-154.
围 Wibisono, A. (2018).
Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. arXiv preprint arXiv:1802.08089.

Identification of the optimal transport maps

From μ_{n} to $\nu_{n+1}=(I-\gamma \nabla V)_{\#} \mu_{n}$:
Assumption : V is L-smooth i.e. $\forall(x, y) \in \mathbb{R}^{d}$,

$$
V(y) \leq V(x)+\langle\nabla V(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2} .
$$

Then : If $\mu_{0} \ll L e b$ and $\gamma<1 / L$, the OT map from μ_{n} to ν_{n+1} corresponds to :

$$
T_{\mu_{n}}^{\nu_{n+1}}=(I-\gamma \nabla V)
$$

and $\nu_{n+1} \ll L e b$.
Proof : $(I-\gamma \nabla V)$ is the gradient of a convex function for $\gamma<1 / L$.

Identification of the optimal transport maps

From ν_{n+1} to $\mu_{n+1} \in J K O_{\gamma \mathcal{H}}\left(\nu_{n+1}\right)$:
There exists a strong Fréchet subgradient at ν_{n+1} denoted $\nabla_{w} \mathcal{H}\left(\mu_{n+1}\right)$, such that the OT map from ν_{n+1} to μ_{n+1} corresponds to :

$$
T_{\mu_{n+1}}^{\nu_{n+1}}=I+\gamma \nabla_{w} \mathcal{H}\left(\mu_{n+1}\right)
$$

and $\mu_{n+1} \ll$ Leb [Ambrosio et al., 2008].
By Brenier's theorem ($T_{\mu_{n+1}}^{\nu_{n+1}} \circ T_{\nu_{n+1}}^{\mu_{n+1}}=I$) this also means

$$
\mu_{n+1}=\left(I-\gamma \nabla w \mathcal{H}\left(\mu_{n+1}\right) \circ T_{\nu_{n+1}}^{\mu_{n+1}}\right)_{\# \nu_{n+1}} .
$$

Generalized geodesic convexity of \mathcal{H}

Key assumption : \mathcal{H} is convex along generalized geodesics defined by W_{2}, i.e. for any $\mu, \pi, \nu \in \mathcal{P}$ with $\nu \ll L e b, t \in[0,1]$:

$$
\mathcal{H}\left(\left(t T_{\nu}^{\pi}+(1-t) T_{\nu}^{\mu}\right)_{\# \nu}\right) \leq t \mathcal{H}(\pi)+(1-t) \mathcal{H}(\mu)
$$

where T_{ν}^{π} and T_{ν}^{μ} are the OT maps from ν to π and from ν to μ.

Generalized geodesic convexity of \mathcal{H}

Key assumption : \mathcal{H} is convex along generalized geodesics defined by W_{2}, i.e. for any $\mu, \pi, \nu \in \mathcal{P}$ with $\nu \ll L e b, t \in[0,1]$:

$$
\mathcal{H}\left(\left(t T_{\nu}^{\pi}+(1-t) T_{\nu}^{\mu}\right)_{\# \nu}\right) \leq t \mathcal{H}(\pi)+(1-t) \mathcal{H}(\mu)
$$

where T_{ν}^{π} and T_{ν}^{μ} are the OT maps from ν to π and from ν to μ.
This enables us to prove a descent lemma for V being L-smooth and $\gamma<1 / L$:

$$
\operatorname{KL}\left(\mu_{n+1} \mid \pi\right) \leq \operatorname{KL}\left(\mu_{n} \mid \pi\right)-\gamma\left(1-\frac{L \gamma}{2}\right)\left\|\nabla V+\nabla_{w} \mathcal{H}\left(\mu_{n+1}\right) \circ X_{n+1}\right\|_{L_{2}\left(\mu_{n}\right)}^{2}
$$

where $X_{n+1}=T_{\nu_{n+1}}^{\mu_{n+1}} \circ(I-\gamma \nabla V)$.

A dual point of view

Consider the gradient flow of $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
x^{\prime}(t)=-\nabla V(x(t))
$$

for $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth and assume $x(0)$ random with density μ_{0}. What is the dynamics of the density μ_{t} of $x(t)$?

A dual point of view

Consider the gradient flow of $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
x^{\prime}(t)=-\nabla V(x(t))
$$

for $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth and assume $x(0)$ random with density μ_{0}. What is the dynamics of the density μ_{t} of $x(t)$?
Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a test function ${ }^{2}$.

$$
\frac{d}{d t} \mathbb{E}(\phi(x(t)))=\int \phi(x) \frac{\partial \mu_{t}}{\partial t}(x) d x
$$

and

$$
\frac{d}{d t} \mathbb{E}(\phi(x(t)))=-\int\langle\nabla \phi, \nabla V\rangle \mu_{t}(x) d x=\int \phi(x) \operatorname{div}\left(\mu_{t} \nabla V\right)(x) d x
$$

Therefore,

$$
\frac{\partial \mu_{t}}{\partial t}=\operatorname{div}\left(\mu_{t} \nabla V\right)
$$

${ }^{2} \mathcal{C}^{\infty}$ function from \mathbb{R}^{d} to \mathbb{R} with compact support.

Wasserstein Gradient descent for the KL

Let $\mu_{0} \in \mathcal{P}$. Gradient descent on $\left(\mathcal{P}, W_{2}\right)$ is written:

$$
\mu_{n+1}=\left(I-\gamma \nabla \frac{\partial K L\left(\mu_{n} \mid \pi\right)}{\partial \mu}\right)_{\#} \mu_{n}
$$

where $\gamma>0$ is a step-size.
(Particle version) i.e. given $X_{0} \sim \mu_{0}$,

$$
X_{n+1}=X_{n}-\gamma \nabla \frac{\partial \operatorname{KL}\left(\mu_{n} \mid \pi\right)}{\partial \mu}\left(X_{n}\right) \sim \mu_{n+1}
$$

Wasserstein Gradient descent for the KL

Let $\mu_{0} \in \mathcal{P}$. Gradient descent on $\left(\mathcal{P}, W_{2}\right)$ is written:

$$
\mu_{n+1}=\left(I-\gamma \nabla \frac{\partial K L\left(\mu_{n} \mid \pi\right)}{\partial \mu}\right)_{\#} \mu_{n}
$$

where $\gamma>0$ is a step-size.
(Particle version) i.e. given $X_{0} \sim \mu_{0}$,

$$
X_{n+1}=X_{n}-\gamma \nabla \frac{\partial \operatorname{KL}\left(\mu_{n} \mid \pi\right)}{\partial \mu}\left(X_{n}\right) \sim \mu_{n+1}
$$

Problem: the W_{2} gradient of $\operatorname{KL}(\cdot \mid \pi)$ at μ_{n} is the function
$\nabla \log \left(\frac{\mu_{n}}{\pi}\right)$. While $\nabla \log \pi$ is known, we do not know what μ_{n} is at each n, we only have X_{n+1}
$\Longrightarrow \nabla \log \mu_{n}$ has to be estimated from samples.

Stein Variational Gradient Descent [Lu and Wang, 206]

- Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \phi: \mathbb{R}^{d} \rightarrow \mathcal{H}
$$

- \mathcal{H} its RKHS : $\overline{\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(.)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, .\right)\right\}}{ }^{\otimes d}$ Hilbert space of functions equipped with $\langle\cdot, \cdot\rangle_{\mathcal{H}},\|\cdot\|_{\mathcal{H}}$. we assume : $\forall \mu, \int_{\mathbb{R}^{d}} k(x, x) d \mu(x)<\infty \Longrightarrow \mathcal{H} \subset L^{2}(\mu)$.

Stein Variational Gradient Descent [Lu and Wang, 2016]

- Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a positive, semi-definite kernel

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \phi: \mathbb{R}^{d} \rightarrow \mathcal{H}
$$

- \mathcal{H} its RKHS $: \overline{\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(.)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, .\right)\right\}}{ }^{\otimes d}$ Hilbert space of functions equipped with $\langle\cdot, \cdot\rangle_{\mathcal{H}},\|\cdot\|_{\mathcal{H}}$.
we assume : $\forall \mu, \int_{\mathbb{R}^{d}} k(x, x) d \mu(x)<\infty \Longrightarrow \mathcal{H} \subset L^{2}(\mu)$.
Define the kernel integral operator $S_{\mu}: L^{2}(\mu) \rightarrow \mathcal{H}:$

$$
S_{\mu} f(\cdot)=\int k(x, .) f(x) d \mu(x) \quad \forall f \in L^{2}(\mu)
$$

and denote $P_{\mu}=\iota_{\mathcal{H} \rightarrow L^{2}(\mu)} \circ S_{\mu}$.
SVGD trick: applying this operator to the W_{2} gradient of $K L(\cdot \mid \pi)$ leads to (if $\lim _{\|x\| \rightarrow \infty} K(x, \cdot) \pi(x) \rightarrow 0$)

$$
P_{\mu} \nabla \log \left(\frac{\mu}{\pi}\right)(\cdot)=-\int\left[\nabla \log \pi(x) k(x, \cdot)+\nabla_{x} k(x, \cdot)\right] d \mu(x)
$$

Stein Variational Gradient Descent (SVGD)

Algorithm : Starting from N i.i.d. samples $\left(X_{0}^{i}\right)_{i=1, \ldots, N} \sim \mu_{0}$, SVGD algorithm updates the N particles as follows:

$$
X_{n+1}^{i}=X_{n}^{i}-\gamma \underbrace{\left[\frac{1}{N} \sum_{j=1}^{N} k\left(X_{n}^{i}, X_{n}^{j}\right) \nabla_{X_{n}^{j}} \log \pi\left(X_{n}^{j}\right)+\nabla_{X_{n}^{j}} k\left(X_{n}^{j}, X_{n}^{i}\right)\right]}_{P_{\hat{\mu}_{n}} \nabla \log \left(\frac{\hat{\mu}_{n}}{\pi}\right)\left(X_{n}^{i}\right)}
$$

where $\hat{\mu}_{n}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$.

- "non parametric" VI, only depends on the choice of some kernel k
- uses a set of interacting particles to approximate π :
https://chi-feng.github.io/mcmc-demo/app.
html?algorithm=HamiltonianMC\&target=banana

