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Studying populations of shapes
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Diffeomorphometry

Idea: characterizing the difference between two shapes thanks
to the "best" diffeomorphism transforming one into the other.

D’Arcy Thompson (On Growth and Form, 1917)
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Shape registration: a minimisation problem

ES,T (ϕ) = c(ϕ) + λD(ϕ · S,T )

▶ Source S, target T
▶ D(ϕ · S,T ) : data attachment −→ (i) Local distance
▶ c(ϕ) : regularization −→ (ii) Deformation model
▶ λ : balance factor
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Shape registration: a minimisation problem

Possible shape spaces
▶ Point clouds

Euclidean, Hausdorff, measures distances

▶ Curves, surfaces
Current, varifolds distances12

▶ Images
L2 metrics

▶ Combinations

1
Charon, N., Trouvé, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic

registration. SIAM Journal on Imaging Sciences, 6(4), 2547-2580.
2

Kaltenmark, I., Charlier, B., Charon, N. (2017). A general framework for curve and surface comparison and
registration with oriented varifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.
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Shape registration with large deformations

Theorem
Let v ∈ L1([0,1],C1

0(R
d ,Rd)), then{
φv

t=0 = Id
∂tφ

v
t = vt ◦ φv

t

has a unique continuous solution called the flow of v.
For all t , φv

t is a diffeomorphism.

J. Glaunes (2005). Transport par difféomorphismes de points, de mesures et de courants pour la
comparaison de formes et l’anatomie numérique.



Constrained diffeomorphometry in computational anatomy

Diffeomorphometry

Shape registration with large deformations{
φt=0 = Id
∂tφt = vt ◦ φt
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Shape registration with large deformations

Shape registration

min
v∈U⊂L1([0,1],C1

0(Rd ,Rd ))

{∫ 1

0
c(vt)dt + λD(φv

t=1 · S,T )

}

Large deformation diffeomorphic metric mappings (LDDMM)3 4

min
v∈L2([0,1],V )

{∫ 1

0
|vt |2V dt + λD(φv

t=1 · S,T )

}

3
Beg, M. F., Miller, M. I., Trouvé, A., Younes, L. (2005). Computing large deformation metric mappings via

geodesic flows of diffeomorphisms. International journal of computer vision
4

Arguillere, S., Trélat, E., Trouvé, A., Younes, L. (2015). Shape deformation analysis from the optimal control
viewpoint. Journal de mathématiques pures et appliquées



Constrained diffeomorphometry in computational anatomy

Diffeomorphometry

Shape registration with large deformations
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Shape registration with large deformations

[Gupta, M. D., Nath, U. (2015). Divergence in patterns of leaf growth polarity is associated with the expression

divergence of miR396. The Plant Cell, tpc-15.]
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Shape registration with large deformations
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Structured large deformations

Incorporating a structure in deformation models
▶ Extracting geometrical descriptors = relevant data for the

structure
▶ Defining a field structure associated to each geometrical

descriptors and an associated cost
▶ Specifying the evolution of the structure during flow

integration
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Structured large deformations

Two main possibilities :
▶ Defining local field generators56789

▶ Setting shape-dependent metric on the space of vector
fields1011

5
S. Durrleman, M. Prastawa, G. Gerig, and S. Joshi. Optimal data-driven sparse parameterization of

diffeomorphisms for population analysis. In Information Processing in Medical Imaging , 2011
6

U. Grenander , A. Srivastava , S. Saini. A pattern-theoric characerization of biological growth. IEEE, 2007
7

V. Arsigny, X. Pennec, N. Ayache. Polyrigid and Polyaffine Transformations: A Novel Geometrical Tool to Deal
with Non-rigid Deformations – Application to the Registration of Histological Slices. Medical Image Analysis. 2005

8
L. Younes. Constrained diffeomorphic shape evolution. Foundations of Computational Mathematics, 2012.

9
Higher order momentum [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum

distributions and locally affine lddmm registration. SIAM Journal on Imaging Sciences, 2013]
10

N. Charon and L. Younes. "Shape spaces: From geometry to biological plausibility. 2022
11

D. N. Hsieh, S. Arguillère, N. Charon, M.I. Miller, L. Youne. A model for elastic evolution on foliated shapes. In
International Conference on Information Processing in Medical Imaging. 2019.
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DEFORMATION MODULE



Constrained diffeomorphometry in computational anatomy

Deformation modules

▶ Extend space of shape
q = (q̃, θ)

▶ vq : h ∈ H −→ vq,h ∈ Vq

▶ cost : |vq,h|2 ≤ Mcq(h)
▶ Combination:

▶ q = (q̃, θ, ψ)
▶ Vq = Vθ + Vψ

▶ Trajectories s.t. ∃vt ∈ Vq :
q̇t = (vt ·q̃t , vt ·θt , vt ·ψt , . . . )
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Deformation modules

Modular registration

J(q,h) =
∫

cq(h)+λD(φ
vq,h
t=1 · S,T )

with q̇t = vqt ,ht · qt .
▶ Defining modules
▶ Minimizing J
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Deformation modules

Example: explicit module

Modules:
• Pose:

▶ Global translation
▶ Global rotation

• Strap lengths:
▶ local translations with

transported direction
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Deformation modules

Example: explicit module

[Gupta, M. D., Nath, U. (2015). Divergence in patterns of leaf growth polarity is associated with the expression

divergence of miR396. The Plant Cell, tpc-15.]
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Implicit deformation modules

▶ Defining vq : H 7→ Vq from
properties to satisfy

vq,h = argmin{|v |2V+
1
ν
|Sq(v)Sq(v)−Aq(h)Aq(h)|2}

▶ Evaluation operator S
▶ Observation operator A
▶ Model: S and A
▶ Explicit expression for vq,h
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Deformation modules

Implicit deformation modules of order 1

ζq(h) = argmin{|v |2V +
1
ν
|Sq(v)− Aq(h)|2}

▶ ϵx(v) =
Dv(x)+Dv(x)T

2

−→ Captures local metric changes induced by Id + v
around x
−→ Diagonalizable in orthonormal basis

▶ q = ((x1,R1), . . . , (xN ,RN)) ∈ (Rd × SOd(R))N

▶ Sq(v) = (ϵxi (v))i

▶ Aq(h) =
(

Ri

(
αi(h) 0

0 βi(h)

)
R−1

i

)
i
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Deformation modules

Implicit deformation modules of order 1

Aq(h) =
(

hRi

(
α 0
0 β

)
R−1

i

)
i

Ri = I2

ζq(h) = argmin{|v |2V +
1
ν
|Sq(v)− Aq(h)|2}



Constrained diffeomorphometry in computational anatomy

Deformation modules

Implicit deformation modules of order 1
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Implicit deformation modules of order 1
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Implicit deformation modules of order 1
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Deformation modules

Implicit deformation modules of order 1

Aq(h) =
(

hRi

(
α 0
0 β

)
R−1

i

)
i

v · Ri
.
=

Dv − Dv∗

2
Ri
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Deformation modules

Implicit deformation modules of order 1: first example

Modules:
• Pose:

▶ Global translation
▶ Global rotation

• Implicit module:
▶ strap lengths :

horizontal streching
▶ case : isotrope

scaling
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Deformation modules

Implicit deformation modules of order 1: estimating parameters

Modules:
• Pose:

▶ Global translation
▶ Global rotation

• Implicit module 1:
▶ unidirectional

stretching
▶ parameters: 2

angles, length
• Implicit module 2:

▶ Ears position
▶ Control of dimension

2



Constrained diffeomorphometry in computational anatomy

Deformation modules

Implicit deformation modules of order 1: estimating parameters

Modules:
• Pose:

▶ Global translation
▶ Global rotation

• Implicit module 1:
▶ unidirectional

stretching
▶ parameters: 2

angles, length
• Implicit module 2:

▶ Ears position
▶ Control of dimension

2
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Implicit deformation modules of order 1: estimating the growth tensor
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Deformation modules

Implicit deformation modules of order 1: estimating the growth tensor

▶ Joint registration: curves and dots
▶ Combination of 3 modules :

▶ Global translation
▶ Implicit of order 1(growth)
▶ Unstructured (model correction)
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Deformation modules

Implicit deformation modules of order 1: estimating the growth tensor

Initial growth tensor Estimated growth tensor
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Conclusion

• Incorporating structures in deformations
▶ Implicit deformation modules: simple structure from a

biophysical model
▶ Estimation and posterior analyze of the structure

• Source and documentation https://github.com/imodal
• IMODAL: creating learnable user-defined deformation models, Lacroix, Charlier, Trouvé, Gris, CVPR, 2021.

Thank you for your attention !
Questions ?
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