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Regression:
Observe: (X1, Y1), . . . , (Xn, Yn) paired data

Yi = T0(Xi) + ε i

Goal: estimate T0

Non-parametric least squares:

E∥T̂ − T0∥2 ≤ infT∈T ∥T − T0∥2 + δn,T

model error estimation error

T̂ ∈ arg minT∈T ∑n
i=1 ∥T(Xi)− Yi∥2



Regression:
Observe: (X1, Y1), . . . , (Xn, Yn) paired data

Yi = T0(Xi) + ε i

Goal: estimate T0

Non-parametric least squares:

E∥T̂ − T0∥2 ≤ infT∈T ∥T − T0∥2 + δn,T

model error estimation error

→ What if we only have access to {Xi} and {Yj}?
(uncoupled regression)

→ What if we only have access to {Xi} ∼ µ and
{Yj = T0(X′

j)} ∼ (T0)♯µ, with Xi ⊥ X′
j?

T̂ ∈ arg minT∈T ∑n
i=1 ∥T(Xi)− Yi∥2



Application: computational biology

X1, . . . , Xn ∼ µt

time t time t + 1

T0(X′
1), . . . , T0(X′

n)

population of stem cells evolve through time
→ observing a cell destroys it

= Y1, . . . , Yn ∼ µt+1

What is the transformation T0?

Problem: Lack of identifiability
→ Given µ, ν, there are many Ts with T♯µ = ν

[Schiebinger &
al. 19, Moriel &
al. 21, Demetci &
al. 21]



minimize
∫
∥x − T(x)∥2dµ(x)

under the constraint T♯µ = ν

(Monge)

µ ν

→ Existence?



minimize
∫
∥x − y∥2dπ(x, y)

under the constraint π ∈ Π(µ, ν)

(Kantorovitch)

→ Linear problem under
linear constraints!

π(A × Rd) = µ(A) π(Rd × B) = ν(B)



minimize
∫
∥x − y∥2dπ(x, y)

under the constraint π ∈ Π(µ, ν)

(Kantorovitch)

→ Linear problem under
linear constraints!
Discrete setting: µ = ∑n

i=1 µiδxi

ν = ∑m
j=1 νjδyj

Cij = ∥xi − yj∥2

minimize ⟨C, π⟩
under the constraints ∀i, ∑j πij = µi ∀j, ∑i πij = νj

→ nm variables, n + m constraints

π(A × Rd) = µ(A) π(Rd × B) = ν(B)



minimize S(ϕ) = µ(ϕ) + ν(ϕ∗) (Dual problem)

where ϕ∗(y) = supx⟨x, y⟩ − ϕ(x)

→ complexity O(nm(n + m)) = O(n3) if n = m

(Lagrange)



minimize S(ϕ) = µ(ϕ) + ν(ϕ∗) (Dual problem)

where ϕ∗(y) = supx⟨x, y⟩ − ϕ(x)

→ complexity O(nm(n + m)) = O(n3) if n = m

(Brenier)

(Lagrange)

Theorem: if µ has a density on Rd, then
(Monge) has a unique solution T0, equal
to ∇ϕ0 where ϕ0 is the (convex) Brenier
potential.
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So far...
X1, . . . , Xn ∼ µ Y1, . . . , Yn ∼ ν = (T0)♯µ•

• T0 = ∇ϕ0 where ϕ0 = arg minϕ S(ϕ) =
∫

ϕdµ +
∫

ϕ∗dν

• T̂ = ∇ϕ̂ where

F = family of candidate potentials

ϕ̂ = arg minϕ∈F Sn(ϕ) =
1
n ∑n

i=1 ϕ(Xi) +
1
n ∑n

i=1 ϕ∗(Yi)

• The “size" of F is measured by its metric entropy:

N(h) = smallest number of L∞ balls of radius h needed to cover F



Theorem: if µ satisfies a Poincaré inequality, if ϕ0 and
all potentials in F are (uniformly) smooth, and if

E[∥∇ϕ̂ −∇ϕ0∥2
L2(µ)

] ≲ infϕ∈F (S(ϕ)− S(ϕ0)) + n−( 2
2+γ∧

1
γ )

log N(h) ≲log(1/h) h−γ γ ≥ 0

Then

→ New (near) minimax results in many different situations:
approximation with NNs, Barron spaces, RKHS, spiked
model, etc.

→ Generalizes previous theoretical and applied works
[Hütter Rigollet 21], [Makkuva & al. 20], [Bunne & al. 22],
[Vacher Vialard 21]



An example: the spiked transport model

U ⊂ Rd unknown k-dimensional subspace, k ≪ d (the spike)

T0(x) = T′
0(πU(x)) + π⊤

U (x)

where T′
0 : U → U is of regularity α ≥ 1

[Niles-Weed Rigollet 21]

→ design F adapted to the model with

E[∥∇ϕ̂F − T0∥2
L2(µ)

] ≲ n− 2(α+1)
2α+k+2



X1, . . . , Xn ∼ µ Y1, . . . , Yn ∼ ν

[Manole & al. 21]Theorem: If T0 is bi-Lipschitz, µ is almost
uniform on a nice domain in Rd. Then,

E∥T̂1NN − T0∥L2(µ) ≲ n−1
d



⇒ What if T0 is not even continuous?



⇒ What if T0 is not even continuous?

E∥T̂1NN − T0∥L2(µ) ≳ n− 1
2d



The semi-discrete case: µ has a density, ν = ∑J
j=1 qjδyj

T0(x) = yj if x ∈ Lj

Lj = Laguerre cell



minimize
∫
∥x − y∥2dπ(x, y) + ε KL(π∥µ ⊗ ν)

under the constraint π ∈ Π(µ, ν) (Schrödinger)

Imagine that you observe a system of diffusing
particles which is in thermal equilibrium. Suppose

that at a given time t0 you see that their repartition is
almost uniform and that at t1 > t0 you find a

spontaneous and significant deviation from this
uniformity. You are asked to explain how this

deviation occurred. What is its most likely behaviour?



minimize
∫
∥x − y∥2dπ(x, y) + ε KL(π∥µ ⊗ ν)

under the constraint π ∈ Π(µ, ν) (Schrödinger)

πε(x, y) = e
xy−ϕε(x)−ψε(y)

ε dµ(x)dν(y)

entropic Brenier potential

x

πε

√
ε

Tε(x)
Tε(x) =

∫
ydπx

ε (y)

→ complexity O(n2/ε2) through Sinkhorn’s algorithm [Cuturi, 13]



Theorem:
· µ almost uniform on compact convex support
· ν = ∑J

j=1 qjδyj , qj ≥ qmin

· T̂ε = Tµn→νn
ε

Then, for ε ≃ n−1/2,

E∥T̂ε − T0∥L2(µ) ≤ ∥Tε − T0∥L2(µ)︸ ︷︷ ︸
bias

+E∥T̂ε − Tε∥L2(µ)︸ ︷︷ ︸
fluctuations

≲
√

ε + 1√
nε

≃ n− 1
4

[Pooladian, D., Niles-Weed, ICML 23]

→ This rate is minimax optimal!



Take-home messages

• Discontinuous transport maps arise naturally in OT

• Semi-discrete OT: toy model to understand relevant
phenomena

• Entropic smoothing → fast computations + improved
statistical rates

→ Can we prove similar phenomena in other
discontinuous settings (manifolds?)

→ Can we design a selection procedure for ε?


