Minimax estimation of optimal transport maps

Vincent Divol
Journée SMAI-SIGMA

CEREMADE

Université Paris Dauphine - PSL

vincent.divol@psl.eu
vincentdivol.github.io

Jon Niles-Weed

Aram Pooladian

Regression: $\quad Y_{i}=T_{0}\left(X_{i}\right)+\varepsilon_{i}$
Observe: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ paired data Goal: estimate T_{0}

Non-parametric least squares:

$$
\begin{aligned}
& \hat{T} \in \arg \min _{T \in \mathcal{T}} \sum_{i=1}^{n}\left\|T\left(X_{i}\right)-Y_{i}\right\|^{2} \\
& \mathbb{E}\left\|\hat{T}-T_{0}\right\|^{2} \leq \inf _{T \in \mathcal{T}}\left\|T-T_{0}\right\|^{2}+\delta_{n, \mathcal{T}} \\
& \quad \text { model error } \quad \text { estimation error }
\end{aligned}
$$

Regression: $\quad Y_{i}=T_{0}\left(X_{i}\right)+\varepsilon_{i}$
Observe: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ paired data Goal: estimate T_{0}

Non-parametric least squares:

$$
\begin{aligned}
& \hat{T} \in \arg \min _{T \in \mathcal{T}} \sum_{i=1}^{n}\left\|T\left(X_{i}\right)-Y_{i}\right\|^{2} \\
& \mathbb{E}\left\|\hat{T}-T_{0}\right\|^{2} \leq \inf _{T \in \mathcal{T}}\left\|T-T_{0}\right\|^{2}+\delta_{n, \mathcal{T}} \\
& \quad \text { model error } \quad \text { estimation error }
\end{aligned}
$$

\rightarrow What if we only have access to $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$? (uncoupled regression)
\rightarrow What if we only have access to $\left\{X_{i}\right\} \sim \mu$ and $\left\{Y_{j}=T_{0}\left(X_{j}^{\prime}\right)\right\} \sim\left(T_{0}\right)_{\sharp \mu}$, with $X_{i} \perp X_{j}^{\prime}$?

Application: computational biology

population of stem cells evolve through time \rightarrow observing a cell destroys it

What is the transformation T_{0} ?
Problem: Lack of identifiability
\rightarrow Given μ, v, there are many $T \mathrm{~s}$ with $T_{\sharp} \mu=v$
minimize $\int\|x-T(x)\|^{2} \mathrm{~d} \mu(x)$
(Monge)
under the constraint $T_{\sharp} \mu=v$

\rightarrow Existence?
minimize $\int\|x-y\|^{2} \mathrm{~d} \pi(x, y)$

(Kantorovitch)

 under the constraint $\pi \in \Pi(\mu, v)$$\pi\left(A \times \mathbb{R}^{d}\right)=\mu(A) \quad \pi\left(\mathbb{R}^{d} \times B\right)=v(B)$
\rightarrow Linear problem under
linear constraints!
minimize $\int\|x-y\|^{2} \mathrm{~d} \pi(x, y)$

(Kantorovitch)

 under the constraint $\pi \in \Pi(\mu, v)$$\pi\left(A \times \mathbb{R}^{d}\right)=\mu(A) \quad \pi\left(\mathbb{R}^{d} \times B\right)=v(B)$
\rightarrow Linear problem under
linear constraints!
Discrete setting: $\mu=\sum_{i=1}^{n} \mu_{i} \delta_{x_{i}}$

$$
\begin{aligned}
& v=\sum_{j=1}^{m} v_{j} \delta_{y_{j}} \\
& C_{i j}=\left\|x_{i}-y_{j}\right\|^{2}
\end{aligned}
$$

minimize $\langle C, \pi\rangle$
under the constraints $\quad \forall i, \sum_{j} \pi_{i j}=\mu_{i} \quad \forall j, \sum_{i} \pi_{i j}=v_{j}$
$\rightarrow n m$ variables, $n+m$ constraints
minimize $S(\phi)=\mu(\phi)+\nu\left(\phi^{*}\right) \quad$ (Dual problem)
where $\phi^{*}(y)=\sup _{x}\langle x, y\rangle-\phi(x)$
\rightarrow complexity $O(n m(n+m))=O\left(n^{3}\right)$ if $n=m$

(Lagrange)
minimize $S(\phi)=\mu(\phi)+\nu\left(\phi^{*}\right) \quad$ (Dual problem)
where $\phi^{*}(y)=\sup _{x}\langle x, y\rangle-\phi(x)$
\rightarrow complexity $O(n m(n+m))=O\left(n^{3}\right)$ if $n=m$
(Brenier)

(Lagrange)
Theorem: if μ has a density on \mathbb{R}^{d}, then (Monge) has a unique solution T_{0}, equal to $\nabla \phi_{0}$ where ϕ_{0} is the (convex) Brenier potential.

So far...

$$
X_{1}, \ldots, X_{n} \sim \mu \quad Y_{1}, \ldots, Y_{n} \sim v=\left(T_{0}\right)_{\sharp \mu}
$$

- $T_{0}=\nabla \phi_{0}$ where $\phi_{0}=\arg \min _{\phi} S(\phi)=\int \phi d \mu+\int \phi^{*} d v$
- $\hat{T}=\nabla \hat{\phi}$ where

$$
\hat{\phi}=\arg \min _{\phi \in \mathcal{F}} S_{n}(\phi)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(X_{i}\right)+\frac{1}{n} \sum_{i=1}^{n} \phi^{*}\left(Y_{i}\right)
$$

$\mathcal{F}=$ family of candidate potentials

- The "size" of \mathcal{F} is measured by its metric entropy:
$N(h)=$ smallest number of L_{∞} balls of radius h needed to cover \mathcal{F}

Theorem: if μ satisfies a Poincaré inequality, if ϕ_{0} and all potentials in \mathcal{F} are (uniformly) smooth, and if

$$
\log N(h) \lesssim \log (1 / h) h^{-\gamma} \quad \gamma \geq 0
$$

Then
$\mathbb{E}\left[\left\|\nabla \hat{\phi}-\nabla \phi_{0}\right\|_{L_{2}(\mu)}^{2}\right] \lesssim \inf _{\phi \in \mathcal{F}}\left(S(\phi)-S\left(\phi_{0}\right)\right)+n^{-\left(\frac{2}{2+\gamma} \wedge \frac{1}{\gamma}\right)}$
\rightarrow Generalizes previous theoretical and applied works [Hütter Rigollet 21], [Makkuva \& al. 20], [Bunne \& al. 22], [Vacher Vialard 21]
\rightarrow New (near) minimax results in many different situations: approximation with NNs, Barron spaces, RKHS, spiked model, etc.

An example: the spiked transport model

[Niles-Weed Rigollet 21]

$U \subset \mathbb{R}^{d}$ unknown k-dimensional subspace, $k \ll d$ (the spike)

$$
T_{0}(x)=T_{0}^{\prime}\left(\pi_{U}(x)\right)+\pi_{U}^{\top}(x)
$$

where $T_{0}^{\prime}: U \rightarrow U$ is of regularity $\alpha \geq 1$
\rightarrow design \mathcal{F} adapted to the model with

$$
\mathbb{E}\left[\left\|\nabla \hat{\phi}_{\mathcal{F}}-T_{0}\right\|_{L_{2}(\mu)}^{2}\right] \lesssim n^{-\frac{2(\alpha+1)}{2 \alpha+k+2}}
$$

$Y_{1}, \ldots, Y_{n} \sim v$

Theorem: If T_{0} is bi-Lipschitz, μ is almost uniform on a nice domain in \mathbb{R}^{d}. Then,

$$
\mathbb{E}\left\|\hat{T}^{1 N N}-T_{0}\right\|_{L_{2}(\mu)} \lesssim n^{-\frac{1}{d}}
$$

\Rightarrow What if T_{0} is not even continuous?

$$
\begin{aligned}
& \nu=U_{n i f} f\left([0,1]^{d}\right) \\
& \nu=\frac{1}{2}\left(\delta_{x_{0}}+\delta_{x_{1}}\right)
\end{aligned}
$$

\Rightarrow What if T_{0} is not even continuous?

The semi-discrete case: μ has a density, $v=\sum_{j=1}^{J} q_{j} \delta_{y_{j}}$

minimize $\int\|x-y\|^{2} \mathrm{~d} \pi(x, y)+\varepsilon \mathrm{KL}(\pi \| \mu \otimes v)$

under the constraint $\pi \in \Pi(\mu, v) \quad$ (Schrödinger)

Imagine that you observe a system of diffusing particles which is in thermal equilibrium. Suppose that at a given time t_{0} you see that their repartition is almost uniform and that at $t_{1}>t_{0}$ you find a spontaneous and significant deviation from this uniformity. You are asked to explain how this deviation occurred. What is its most likely behaviour?

minimize $\int\|x-y\|^{2} \mathrm{~d} \pi(x, y)+\varepsilon \mathrm{KL}(\pi \| \mu \otimes v)$ under the constraint $\pi \in \Pi(\mu, v) \quad$ (Schrödinger)

$$
\pi_{\varepsilon}(x, y)=e^{\frac{x y-\phi_{\varepsilon}(x)-\psi_{\varepsilon}(y)}{\varepsilon}} \mathrm{d} \mu(x) \mathrm{d} \nu(y)
$$

\rightarrow complexity $O\left(n^{2} / \varepsilon^{2}\right)$ through Sinkhorn's algorithm [Cuturi, 13]

Theorem:

- μ almost uniform on compact convex support
$\cdot v=\sum_{j=1}^{J} q_{j} \delta_{y_{j}}, q_{j} \geq q_{\text {min }}$
- $\hat{T}_{\varepsilon}=T_{\varepsilon}^{\mu_{n} \rightarrow v_{n}}$

Then, for $\varepsilon \simeq n^{-1 / 2}$,

$$
\begin{aligned}
\mathbb{E}\left\|\hat{T}_{\varepsilon}-T_{0}\right\|_{L_{2}(\mu)} & \leq \underbrace{\left\|T_{\varepsilon}-T_{0}\right\|_{L_{2}(\mu)}}_{\text {bias }}+\underbrace{\mathbb{E}\left\|\hat{T}_{\varepsilon}-T_{\varepsilon}\right\|_{L_{2}(\mu)}}_{\text {fluctuations }} \\
& \lesssim \sqrt{\varepsilon}+\frac{1}{\sqrt{n \varepsilon}} \simeq n^{-\frac{1}{4}}
\end{aligned}
$$

\rightarrow This rate is minimax optimal!

Take-home messages

- Discontinuous transport maps arise naturally in OT
- Semi-discrete OT: toy model to understand relevant phenomena
- Entropic smoothing \rightarrow fast computations + improved statistical rates
\rightarrow Can we prove similar phenomena in other discontinuous settings (manifolds?)
\rightarrow Can we design a selection procedure for ε ?

