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Exploiting 
the unreasonable effectiveness of 

geometry in computing 
Mathieu Desbrun

Geometry is key in many scientific fields
 at the crossroad of several sciences

 observable invariants/symmetries of the world around us
 “mothertongue” of most physical theories

 from E&M to General Relativity, differential structures and 
symmetry groups are central

 studied for centuries
 Cartan, Poincaré, Lie, Hodge, de Rham, Noether…

 mostly differential geometry, though
 based on differential and integral calculus

Large body of work available on geometry
… alas, discrete counterpart lacking in substance

The Role of Geometry
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“Discrete” differential geometry?
 finite-dimensional counterpart to continuous theory

 where we leverage differential understanding
 geometry as a guiding principle to discretization

 discretize the geometric principles
 predictive power guaranteed



 PDEs often hide structures completely

Of both academic and practical interests
 education (simple discrete analogs)
 Hollywood (cool graphics, fast animation)
 computational science (new numerical methods)

Next, four vignettes to illustrate a few aspects…

Continuum vs. Finitude  
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Vignette 1:
Surface Flows
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Scanners introduce noise to geometry 
 can be smoothed though non-linear diffusion

How to “reproduce” this equation on a PWL surface?
 what’s the curvature? normal? 

 not even collocated…
 local polynomial fitting just bad…

What about a geometric way?
 simply reduce area (or length for curves)

 and area trivial to compute exactly for triangles
 variational definition of mean curvature vector

 L2-minimization of area known to Darboux in ‘99

Surface Denoising

nx 
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Real-life Example
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Vignette 2:
Calculus on Meshes

October 29, 1675

Leibnitz wrote:

Utile erit scribit  pro Omnia

A revolution ensued
 from discrete, to differential modeling
 easy to manipulate with pen & paper

Fast-forward three centuries: advent of computers…
 computers deal with sets of finite numbers
 need for discretization

 differential equations are not usable as is

Strange cycle…
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Discrete, yet differential quantities:
 they “live” at special places, as distributions

 again, think of a piecewise linear surface:
 mean curvature at edges only

 Gaussian curvature at vertices only

 they can be handled through integration
 integration calls for k-forms (antisymmetric tensors)

 you’ve heard of it before:                    

 not often used for computations, though…

Need framework linking discrete & continuous worlds…

Discrete Differential Modeling

 dxxf )(
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Exterior Calculus

Foundation of calculus on smooth manifolds
 historically, purpose was to extend div, curl, grad

 Poincaré, Cartan, Lie, … 

 building blocks: differential forms (antisymmetric tensors)

 objects begging to be integrated (k-forms over k-D sets)

 not obscured by coordinate-system dependent notations
 in fact, often correspond to measurements (e.g., flux) 

 Hodge decomposition, modern diff. geometry, … 
 untangles topology and metric

 only a few basic operators are needed
 d, , , b/#, iX ,LX (see [Abraham, Marsden, Ratiu], ch. 6-7)
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Discrete Exterior Calculus

Foundations: discrete differential forms
 mesh as computational structure

 chains as proxies for domains

 store k-forms as integrated values over simplices
 cochains extends point sampling to “simplex sampling”

 basic operators: d (exterior derivative) and     (Hodge star)
through heavy use of adjointness

 d through Stokes
 d is a topological operator, hence exact
 exact link to (co)homology  [Munkres]

 simplest Hodge duality via mesh duality
 exploits Delaunay/Voronoi duality – or FEEM

0-simplex 1-simplex 2-simplex 3-simplex

Dual

Primal

Discrete calculus through linear algebra:

 simple exercise in matrix assembly
 discrete Hodge theory particularly simple

 cohomology, harmonic forms, etc…
 Whitney basis fcts extending FE picture [Arnold]
 can be made higher-order (through subdivision-

based Whitney bases) or even spectral bases
12

Discrete De Rham Sequence

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field
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Lots of Applications

Hodge-Morrey-Friedrichs decomposition

Navier-Stokes simulation

Geometry processing

Vignette 3:
Grooming and Cartan’s Development
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How Do You Grow Hair?
©
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How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge (change of basis)
 discrete Levi-Civita (metric) connection
 … and its discrete holonomy

Vector Field Processing
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simple rotation of 
coordinate frame

simple rotation of 
coordinate frame

K
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Holonomy: measure of path-dependence
 for a (contractible) loop, measures 

angle difference after transport
 represents integrated curvature

 integral of Gaussian curvature
for canonical Levi-Civita

[Holonomy for our Planet]

K

How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge

 discrete Levi-Civita (metric) connection, & discrete holonomy

 extension to an arbitrary principal connection?
 add adjustment rotation during the translation…

 integrated connection 1-form
 see Discrete Exterior Calculus

Vector Field Processing

+rotate

18

17

18



10

We can encode adjustment to Levi-Civita…
 one rotation angle per edge crossing

to cancel holonomy of Levi-Civita connection!
 forcing zero holonomy on (almost) all discrete cycles

 contractible (V) & noncontractible (2g) cycles
 except for a few chosen singularities

 Poincaré-Hopf theorem
 and get smallest adjustments!

 L2-minimum of adjustment vector 
for “straightest” solution

Now, path-independent transport!
 creating discrete vector field on surface

Discrete Trivial Connection

Growing Hair on a Bunny…

Linear system

Resulting trivial connection
(no other singularities present)
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Robustness to Meshing Too!

22

Recent Use
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Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (try to preserve pairwise distances) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances

 using local positioning

 both approaches hailed as great extension of PCA

Connections for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA

NLDR

Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (e.g., try to preserve pairwise differences) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances

 using local positioning

 both approaches hailed as great extension of PCA
 although they both have pros and cons

 planar pointsets should be trivial to handle, right?
 pointsets on a developable surfaces too
 not robust to irregular sampling or noise…
 or even holes!

Connections for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA

23

24



13

Key idea: Parallel transport to find geodesic distances
 use intrinsic neighborhoods to estimate tangent spaces

 define metric connection between tangent spaces
 rotation of a tangent space frame to get to a parallel one nearby

 geodesic distances easy to evaluate (instead of Dijkstra’s)
 through Cartan’s development (unfold path in tangent space)

 intuition: the tangent of a geodesic is //-transported along it

6 lines of code to change in ISOMAP…. 
 https://tinyurl.com/PTUcode

Connection-based ISOMAP

Result on 3D Data
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On «Real» Data (letter A rotated/scaled)

Vignette 4:
Discrete Mechanics
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The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical solvers? 
 leverage geometric properties!
 just discretize paths (time stepping)

Variational Nature of Mechanics

configuration 
manifold
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The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical solvers? 
 leverage geometric properties!
 just discretize paths (time stepping)

 and use quadrature to evaluate discrete action 

 make for better numerics
 preserves symplecticity
 conserves energy  remarkably well
 preserves symmetries  through (discrete) Noether’s theorem

Variational Nature of Mechanics

solve DEL for time integration:
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 Links to known integrators
 Lie group integrators
 (non)holonomic constraints,
 time adaption
 etc…

Very Successful Developments

Molecular dynamics
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Introducing a mesoscopic description of fluid

32

Boltzmann Discretization

Macroscopic view
Navier-Stokes equations

Mesoscopic view
Boltzmann equation

Microscopic view
Molecular dynamics
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Introducing a mesoscopic description of fluid
 based on a statistical-mechanics (a.k.a. kinetic) model

 use a particle distribution function
 probability for a particle to be at 𝒙 at time 𝑡 with a velocity 𝒗

 Boltzmann transport equation:

 amounts to (near) incompressible Navier-Stokes

• and fluid at rest satisfies Maxwell-Boltzmann distribution 

Macroscopic quantities simple to recover!

Boltzmann Discretization

𝜌 𝒙, 𝑡 = 𝑓𝑑𝒗 𝜌𝒖(𝒙, 𝑡) = 𝒗𝑓𝑑𝒗

𝜕𝑓

𝜕𝑡
+ 𝒗 𝛻𝑓 = Ω 𝑓 + 𝑭 𝛻𝒗𝑓

𝑓(𝒙,𝒗, 𝑡)

note: “𝒖=0”   ≠  no motion!note: “𝒖=0”   ≠  no motion!

streamingstreaming collisioncollision forcingforcing
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particles
going straight

particles
collide

particles
pushed around
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Turbulence, Guggling, Bubbling

1.5 min/frame

5 min/frame
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Concorde Test

DDG useful for computing in high & low dims 
 computing through the lens of geometry

 geometry-powered numerics

 blurring the line between discrete & differential treatments
 non-linearity dealt with more systematically 

 exploiting connections, in particular

But… it requires quite a bit of knowledge!
 math, physics, linear algebra, etc…

 to the young people out there: learn it while you can

 even machine learning recently
 space-time upsampling for flows, for instance

 and creativity too

Wrapping Up

Trained with a very different flow!
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Questions?
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