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Exploiting 
the unreasonable effectiveness of 

geometry in computing 
Mathieu Desbrun

Geometry is key in many scientific fields
 at the crossroad of several sciences

 observable invariants/symmetries of the world around us
 “mothertongue” of most physical theories

 from E&M to General Relativity, differential structures and 
symmetry groups are central

 studied for centuries
 Cartan, Poincaré, Lie, Hodge, de Rham, Noether…

 mostly differential geometry, though
 based on differential and integral calculus

Large body of work available on geometry
… alas, discrete counterpart lacking in substance

The Role of Geometry
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“Discrete” differential geometry?
 finite-dimensional counterpart to continuous theory

 where we leverage differential understanding
 geometry as a guiding principle to discretization

 discretize the geometric principles
 predictive power guaranteed



 PDEs often hide structures completely

Of both academic and practical interests
 education (simple discrete analogs)
 Hollywood (cool graphics, fast animation)
 computational science (new numerical methods)

Next, four vignettes to illustrate a few aspects…

Continuum vs. Finitude  
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Vignette 1:
Surface Flows
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Scanners introduce noise to geometry 
 can be smoothed though non-linear diffusion

How to “reproduce” this equation on a PWL surface?
 what’s the curvature? normal? 

 not even collocated…
 local polynomial fitting just bad…

What about a geometric way?
 simply reduce area (or length for curves)

 and area trivial to compute exactly for triangles
 variational definition of mean curvature vector

 L2-minimization of area known to Darboux in ‘99

Surface Denoising

nx 
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Real-life Example
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Vignette 2:
Calculus on Meshes

October 29, 1675

Leibnitz wrote:

Utile erit scribit  pro Omnia

A revolution ensued
 from discrete, to differential modeling
 easy to manipulate with pen & paper

Fast-forward three centuries: advent of computers…
 computers deal with sets of finite numbers
 need for discretization

 differential equations are not usable as is

Strange cycle…
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Discrete, yet differential quantities:
 they “live” at special places, as distributions

 again, think of a piecewise linear surface:
 mean curvature at edges only

 Gaussian curvature at vertices only

 they can be handled through integration
 integration calls for k-forms (antisymmetric tensors)

 you’ve heard of it before:                    

 not often used for computations, though…

Need framework linking discrete & continuous worlds…

Discrete Differential Modeling

 dxxf )(
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Exterior Calculus

Foundation of calculus on smooth manifolds
 historically, purpose was to extend div, curl, grad

 Poincaré, Cartan, Lie, … 

 building blocks: differential forms (antisymmetric tensors)

 objects begging to be integrated (k-forms over k-D sets)

 not obscured by coordinate-system dependent notations
 in fact, often correspond to measurements (e.g., flux) 

 Hodge decomposition, modern diff. geometry, … 
 untangles topology and metric

 only a few basic operators are needed
 d, , , b/#, iX ,LX (see [Abraham, Marsden, Ratiu], ch. 6-7)
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Discrete Exterior Calculus

Foundations: discrete differential forms
 mesh as computational structure

 chains as proxies for domains

 store k-forms as integrated values over simplices
 cochains extends point sampling to “simplex sampling”

 basic operators: d (exterior derivative) and     (Hodge star)
through heavy use of adjointness

 d through Stokes
 d is a topological operator, hence exact
 exact link to (co)homology  [Munkres]

 simplest Hodge duality via mesh duality
 exploits Delaunay/Voronoi duality – or FEEM

0-simplex 1-simplex 2-simplex 3-simplex

Dual

Primal

Discrete calculus through linear algebra:

 simple exercise in matrix assembly
 discrete Hodge theory particularly simple

 cohomology, harmonic forms, etc…
 Whitney basis fcts extending FE picture [Arnold]
 can be made higher-order (through subdivision-

based Whitney bases) or even spectral bases
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Discrete De Rham Sequence

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field

  

 
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Lots of Applications

Hodge-Morrey-Friedrichs decomposition

Navier-Stokes simulation

Geometry processing

Vignette 3:
Grooming and Cartan’s Development
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How Do You Grow Hair?
©
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How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge (change of basis)
 discrete Levi-Civita (metric) connection
 … and its discrete holonomy

Vector Field Processing

16

simple rotation of 
coordinate frame

simple rotation of 
coordinate frame

K
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Holonomy: measure of path-dependence
 for a (contractible) loop, measures 

angle difference after transport
 represents integrated curvature

 integral of Gaussian curvature
for canonical Levi-Civita

[Holonomy for our Planet]

K

How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge

 discrete Levi-Civita (metric) connection, & discrete holonomy

 extension to an arbitrary principal connection?
 add adjustment rotation during the translation…

 integrated connection 1-form
 see Discrete Exterior Calculus

Vector Field Processing

+rotate
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We can encode adjustment to Levi-Civita…
 one rotation angle per edge crossing

to cancel holonomy of Levi-Civita connection!
 forcing zero holonomy on (almost) all discrete cycles

 contractible (V) & noncontractible (2g) cycles
 except for a few chosen singularities

 Poincaré-Hopf theorem
 and get smallest adjustments!

 L2-minimum of adjustment vector 
for “straightest” solution

Now, path-independent transport!
 creating discrete vector field on surface

Discrete Trivial Connection

Growing Hair on a Bunny…

Linear system

Resulting trivial connection
(no other singularities present)
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Robustness to Meshing Too!

22

Recent Use
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Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (try to preserve pairwise distances) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances

 using local positioning

 both approaches hailed as great extension of PCA

Connections for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA

NLDR

Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (e.g., try to preserve pairwise differences) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances

 using local positioning

 both approaches hailed as great extension of PCA
 although they both have pros and cons

 planar pointsets should be trivial to handle, right?
 pointsets on a developable surfaces too
 not robust to irregular sampling or noise…
 or even holes!

Connections for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA
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Key idea: Parallel transport to find geodesic distances
 use intrinsic neighborhoods to estimate tangent spaces

 define metric connection between tangent spaces
 rotation of a tangent space frame to get to a parallel one nearby

 geodesic distances easy to evaluate (instead of Dijkstra’s)
 through Cartan’s development (unfold path in tangent space)

 intuition: the tangent of a geodesic is //-transported along it

6 lines of code to change in ISOMAP…. 
 https://tinyurl.com/PTUcode

Connection-based ISOMAP

Result on 3D Data
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On «Real» Data (letter A rotated/scaled)

Vignette 4:
Discrete Mechanics
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The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical solvers? 
 leverage geometric properties!
 just discretize paths (time stepping)

Variational Nature of Mechanics

configuration 
manifold
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The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical solvers? 
 leverage geometric properties!
 just discretize paths (time stepping)

 and use quadrature to evaluate discrete action 

 make for better numerics
 preserves symplecticity
 conserves energy  remarkably well
 preserves symmetries  through (discrete) Noether’s theorem

Variational Nature of Mechanics

solve DEL for time integration:
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 Links to known integrators
 Lie group integrators
 (non)holonomic constraints,
 time adaption
 etc…

Very Successful Developments

Molecular dynamics

31

Introducing a mesoscopic description of fluid

32

Boltzmann Discretization

Macroscopic view
Navier-Stokes equations

Mesoscopic view
Boltzmann equation

Microscopic view
Molecular dynamics
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Introducing a mesoscopic description of fluid
 based on a statistical-mechanics (a.k.a. kinetic) model

 use a particle distribution function
 probability for a particle to be at 𝒙 at time 𝑡 with a velocity 𝒗

 Boltzmann transport equation:

 amounts to (near) incompressible Navier-Stokes

• and fluid at rest satisfies Maxwell-Boltzmann distribution 

Macroscopic quantities simple to recover!

Boltzmann Discretization

𝜌 𝒙, 𝑡 = න𝑓𝑑𝒗 𝜌𝒖(𝒙, 𝑡) = න𝒗𝑓𝑑𝒗

𝜕𝑓

𝜕𝑡
+ 𝒗 ȉ 𝛻𝑓 = Ω 𝑓 + 𝑭 ȉ 𝛻𝒗𝑓

𝑓(𝒙,𝒗, 𝑡)

note: “𝒖=0”   ≠  no motion!note: “𝒖=0”   ≠  no motion!

streamingstreaming collisioncollision forcingforcing
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particles
going straight

particles
collide

particles
pushed around
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Turbulence, Guggling, Bubbling

1.5 min/frame

5 min/frame
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Concorde Test

DDG useful for computing in high & low dims 
 computing through the lens of geometry

 geometry-powered numerics

 blurring the line between discrete & differential treatments
 non-linearity dealt with more systematically 

 exploiting connections, in particular

But… it requires quite a bit of knowledge!
 math, physics, linear algebra, etc…

 to the young people out there: learn it while you can

 even machine learning recently
 space-time upsampling for flows, for instance

 and creativity too

Wrapping Up

Trained with a very different flow!
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