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The Role of Geometry

Geometry is key in many scientific fields
O at the crossroad of several sciences
observable invariants/symmetries of the world around us
O “mothertongue” of most physical theories

from E&M to General Relativity, differential structures and
symmetry groups are central

0 studied for centuries

Cartan, Poincaré, Lie, Hodge, de Rham, Noether...
0 mostly differential geometry, though

based on differential and integral calculus

Large body of work available on geometry
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Continuum vs. Finitude

“Discrete” differential geometry?
O finite-dimensional counterpart to continuous theory
where we leverage differential understanding
O geometry as a guiding principle to discretization
discretize the geometric principles
» predictive power guaranteed .{ v ;Q
NOT THE PDES BIRECTLY //
» PDEs often hide structures completely

Of both academic and practical interests % 0

2 education (simple discrete analogs)
0 Hollywood (cool graphics, fast animation)
O computational science (new numerical methods)

<" Next, four vignettes to illustrate a few aspects...

(/ﬁ |

Vignette I:
Su rfmce Flows




Surface Denoising

Scanners introduce noise to geometry
0 can be smoothed though non-linear diffusion

X=—K1 a
How to “reproduce” this equation on a PWL surface?
0 what’s the curvature? normal?
not even collocated... T /

2 local polynomial fitting just bad... ™ s

What about a geometric way?
0 simply reduce area (or length for curves)
and area trivial to compute exactly for triangles

O variational definition of mean curvature vector v
[ 2 minimization of area known to Darboux in ‘09 it
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Real-life Example




Vignettﬁ Z:

%

October 29, 1675

Leibnitz wrote:

Liile erit scribit / pro Omnix

A revolution ensued
0 from discrete, to differential modeling
0 easy to manipulate with pen & paper

Fast-forward three centuries: advent of computers...
0 computers deal with sets of finite numbers
0 need for discretization
differential equations are not usable as is

e~ Strange cycle...




Discrete Differential Modeling

Discrete, yet differential quantities:

0 they “live” at special places, as distributions

again, think of a piecewise linear surface:

» mean curvature at edges only LAV

> Gaussian curvature at vertices only
2 they can be handled through integration

integration calls for k-forms (antisymmetric tensors)
» youwve heard of it before: J. f ( x)dx
not often used for computations, though...

Need framework linking discrete & continuous worlds...
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Exterior Calculus

Foundation of calculus on smooth manifolds

0 historically, purpose was to extend div, curl, grad
= Poincaré¢, Cartan, Lie, ...
a buﬂdlng blocks: dlff erentialforms (antisymmetric tensors)
= objects begging to be integrated (k-forms over k-D sets)
= not obscured by coordinate-system dependent notations
» in fact, often correspond to measurements (e.g., flux)
- Hodge decomposition, modern diff. geometry, ...
0 only a few basic operators are needed
= d, kA D/ iy, Ly

G
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Discrete Exterior Calculus

Foundations: discrete differential forms
0 mesh as computational structure
chains as proxies for domains

L] /

store k-forms as integrated values over simplices
» cochains extends point sampling to “simplex sampling”

O basic operators: d (exterior derivative) and * (Hodge star)
through heavy use of adjointness
d through Stokes fG do = faG ®

» disatopological operator, hence exact

» exact link to (co)homology = Dual
simplest Hodge duality via mesh duality = Primal

» exploits Delaunay/Voronoi duality - or FEEM

(7
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Discrete De Rham Sequence

Discrete calculus through linear algebra:
point-based \% edge-based VX face-based Vo cell-based

scalar field vector field vector field scalar field

y y ¥ y
cell-based V. facebased Vx  edge-based V  point-based
scalar field =< vector field =< vector field < scalar field
0 simple exercise in matrix assembly
0 discrete Hodge theory particularly simple
= cohomology, harmonic forms, etc...
0 Whitney basis fcts extending FE picture
0 can be made higher-order (through subdivision-
based Whitney bases) or even spectral bases

(7
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Lots of Applications

Navier-Stokes simulation
0%

ey

Geometry processing
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Vignetta 5

%
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How Do You Grow Hair?

Kausiqg/iexid ©

Vector Field Processing

How to design tangent {vector|direction|frame} fields?
O need to control smoothness, and singularities...

0 geometry to the rescue: use of connection o/l
«  notion of parallel transport on a mesh?

= code for it? just store an angle per edge (change of has{ -~~~
= discrete Levi-Civita (metric) connection 4

simple rotation of
P coordinate frame
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[ Holonomy for our Planet]

Holonomy: measure of path-dependence
2 for a (contractible) loop, measures
angle difference after transport
O represents integrated curvature

integral of Gaussian curvature — '
for canonical Levi-Civita S

a0 B
(7
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Vector Field Processing

How to design tangent {vector|direction|frame} fields?
0 need to control smoothness, and singularities...

0 geometry to the rescue: use of connection one-forms
notion of parallel transport on a mesh?

code for it? just store an angle p

discrete Levi-Civita (metric) connection, & discrete holonomy
O extension to an arbitrary principal connection?

add adjustment rotation during the translation...

integrated connection 1-form

> see Discrete Exterior Calculus

(7
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Discrete Trivial Connection

Q forcing zero holonomy on (almost) all discrers N
contractible (V) & noncontractible (2g) cycles
QO except for a few chosen singularities
Poincaré-Hopf theorem 1
0 and get smallest adjustments! ; ; b/

L2-minimum of adjustment vector A A
for “straightest” solution

Now, path-independent transport! ', 7,/

« U creating discrete vector field on surtace
o

ey
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Resulting trivial connection
(no other singularities present)

20
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Recent Use
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Connections for Data Science?

Dimensionality Reduction:
mapping data from RP to R?, with d«D

2 ie., finding a Euclidean embedding in low dimension
in a 'most isometric” way (try to preserve pairwise distances)
0 two main approaches (both b’lsed on aqenmﬂx sis)

Connections for Data Science?

Dimensionality Reduction:
mapping data from RP to R, with d«D
2 ie., finding a Euclidean embedding in low dimension
in a 'most isometric” way (e.g., try to preserve pairwise differences)

O two main approaches (both based on eigenanalysis)

using all pairwise geodesic distances [V

using local positioning O N sy Uy ey
0 both approaches hailed as great extension of PCA

Deg;
although they both have pros and cons 3

» planar pointsets should be trivial to handle, right? ?
> pointsets on a developable surfaces too g e

> not robust to irregular sampling or noise -
» oreven holes!
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Connection-based ISOMAP

Key idea: Parallel transport to find geodesic distances
O use intrinsic neighborhoods to estimate tangent spaces
2 define metric connection between tangent spaces
rotation of a tangent space frame to get to a parallel one nearby

O geodesic distances easy to evaluate (instead of Dijkstra’s)

through Cartan’s development (unfold path in tangent space)
> intuition: the tangent of a geodesic is //-transported along it

6 lines of code to change in ISOMAP....
O https://tinyurl.com/PTUcode

T s
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Result on 3D Data

Y
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On «Real» Data (etter A rotated/scaled)
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Vignette 4:

Discrete Mechanics




Variational Nature of Mechanics

The basic structure of mechanics is geometric

0 Hamilton’s stationary action principle and variants

motion extremizes the integral of the Lagrangian

/ L(g,q)dt
Euler-Lagrange eqs are nothing but F=m a
» but change an IVP into a BVP

i _?y_si?alllath=
Numerical solvers?

0 leverage geometric properties!
0 just discretize faths s,

manifold

J9j

= o i i e
_ q(0)
(7

q(T)
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Variational Nature of Mechanics

The basic structure of mechanics is geometric

0 Hamilton’s stationary action principle and variants

motion extremizes the integral of the Lagrangian

L(q,q)dt
Euler-Lagrange eqs are nothing but F=m a .
» but change an IVP into a BVP

Numerical solvers?

0 leverage geometric properties! s
O just discretize paths (time stepping)

and use quadrature to evaluate discrete action

oy —
J 5 [ Laga)i=0 ‘
3 Tt .
Ldlmsiwaa) E‘_/,; gD Gr—1,Gk) — Gkt1
0 make for better numerics

preserves symplecticity

conserves energy remarkably well

preserves symmetries through (discrete) Noether’s theorem
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Very Successful Developments

Molecular dynamics

31
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Boltzmann Discretization

Introducing a mesoscopic description of fluid

o Mol @ g ¢ -
4 -

*—
- 2 = \ _‘/. I
Macroscopic view Mesoscopic view Microscopic view
Navier-Stokes equations  Boltzmann equation Molecular dynamics

%
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Boltzmann Discretization

Introducing a mesoscopic description of fluid

0 based on a statistical-mechanics (a.k.a. kinetic) model

use a particle distribution function f(x,v,t)
> probability for a particle to be at x at time t with a velocity v
Boltzmann transport equation:

of
E-I—'U'Vf:.ﬂ(f)-l—F'va
» amounts to(near) incompressible Navier-Stokes
e ar st saf W mann distribution

Macroscopic qqa"fﬂsfﬁr'%ﬁs sinff3lE‘to réchver!

going pushed aroun
px,t) = ffdv pu(x,t) = fvfdv

note: “u=0" # no motion!
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Turbulence, Guggling, Bubbling

(3 -~

Re = 100,000

L

» A

- " '(, 4 ']
}\» 1
3%

e ¥ Note the wake difference at the same Reynolds number,
(/ leading to smaller drag for golf ball

34
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Concorde Test

Ve
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Wrapping Up

DDG useful for computing in high & low dims
0 computing through the lens of geometry
geometry-powered numerics
0 blurring the line between discrete & differential treatments

0 non-linearity dealt with more systematically
exploiting connections, in particular

But... it requires quite a bit of knowledge!
0 math, physics, linear algebra, etc...
to the young people out there: learn it while you can
0 even machine learning recently
space-time upsampling for flows, for instance
<% 0 and creativity too

Trained with a very different flow!
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QUESTIONS?
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