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Why sampling?

Suppose you are interested in some target probability distribution on Rd ,
denoted µ∗, and you have access only to partial information, e.g.:

1 its unnormalized density (as in Bayesian inference)

2 a discrete approximation 1
m

∑m
k=1 δxi ≈ µ∗ (e.g. i.i.d. samples, iterates of

MCMC algorithms...)

Problem: approximate µ∗ ∈ P(Rd) by a finite set of n points x1, . . . , xn, e.g.
to compute functionals

∫
Rd f (x)dµ

∗(x).

The quality of the set can be measured by the integral error:∣∣∣∣∣1n
n∑

i=1

f (xi )−
∫
Rd

f (x)dµ∗(x)

∣∣∣∣∣ .

a Gaussian density I.i.d. samples. Particle scheme
(SVGD).
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Sampling as optimization over probability distributions

Assume that µ∗ ∈ P2(Rd) =
{
µ ∈ P(Rd),

∫
∥x∥2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

µ∗ = argmin
µ∈P2(Rd )

D(µ|µ∗) := F(µ),

where D is a discrepancy, for instance:

a f-divergence:
∫
f
(

µ
µ∗

)
dµ∗, f convex, f (1) = 0

an integral probability metric: supf∈G
∣∣∫ fdµ−

∫
fdµ∗∣∣

an optimal transport distance, Sinkhorn divergence:

Sϵ(µ, ν) = Wϵ
2(µ, ν)−

1

2
Wϵ

2(µ, µ)−
1

2
Wϵ

2(ν, ν)

Starting from an initial distribution µ0 ∈ P2(Rd), one can then consider a
Wasserstein-2∗ gradient flow of F over P2(Rd) to transport µ0 to µ∗.

∗W 2
2 (ν, µ) = infs∈Γ(ν,µ)

∫
Rd×Rd ∥x − y∥2 ds(x, y), where Γ(ν, µ)= couplings between ν, µ.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

µ0

µt

”µ̇t = −∇W2F(µt)”

The family µ : [0,∞] → P2(Rd), t 7→ µt is a Wasserstein gradient flow of F if:

∂µt

∂t
= ∇ · (µt∇W2F(µt)) ,

where ∇W2F(µ) := ∇ ∂F(µ)
∂µ

: Rd → Rd denotes the Wasserstein gradient of F†.

It can be implemented by the deterministic process in Rd :

dxt
dt

= −∇W2F(µt)(xt), where xt ∼ µt

†recall lim
ϵ→0

1
ϵ (F(µ + ϵ(ν − µ)) − F(µ)) =

∫
Rd

∂F(µ)
∂µ (x)(dν − dµ)(x), ∂F(µ)

∂µ : Rd → R.
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Some examples for F = D(·|µ∗)

the Kullback-Leibler divergence

KL(µ|µ∗) =

{ ∫
Rd log

(
µ
µ∗ (x)

)
dµ(x) if µ≪ µ∗

+∞ otherwise.

Pro: the normalization constant Z of µ∗ = e−V /Z is an additive
constant; Con: +∞ if supp(µ) ̸⊂ supp(µ∗).

the MMD (Maximum Mean Discrepancy)

MMD2(µ, µ∗) = sup
f∈Hk ,∥f ∥Hk

≤1

∣∣∣∣∫ fdµ−
∫

fdµ∗
∣∣∣∣ = ∫∫

Rd

k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dµ∗(x)dµ∗(y)− 2

∫∫
Rd

k(x , y)dµ(x)dµ∗(y).

where k : Rd × Rd → R is a p.s.d. kernel (e.g. k(x , y) = e−∥x−y∥2) and
Hk is the RKHS associated to k:

Hk =

{
m∑
i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}
.

Pro: convenient for discrete measures.
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Particle system/Gradient descent approximating the WGF

Recall a WGF of F can be implemented through the deterministic process

dxt
dt

= −∇W2F(µt)(xt), where xt ∼ µt , and ∇W2F(µt) = ∇∂F(µt)

∂µ

Space/time discretization
Introduce a particle system x1

0 , . . . , x
n
0 ∼ µ0, a step-size γ, and at each step:

x i
l+1 = x i

l − γ∇W2F(µ̂l)(x
i
l ) for i = 1, . . . , n, where µ̂l =

1

n

n∑
i=1

δx i
l
. (1)

In particular, if F(µ) = D(µ|µ∗) is well-defined for discrete measures µ,
Algorithm (1) simply corresponds to gradient descent of F : RN×d → R,
F (x1, . . . , xn) := F(µn) where µn = 1

n

∑n
i=1 δx i .
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MMD Gradient flow in practice

Take F(µ) = MMD2(µ, µ∗) =∫∫
k(x , y)dµ(x)dµ(y)+

∫∫
k(x , y)dµ∗(x)dµ∗(y)− 2

∫∫
k(x , y)dµ(x)dµ∗(y).

The first variation and the Wasserstein gradient of F at µ and is

∂F(µ)

∂µ
=

∫
k(x , ·)dµ(x)−

∫
k(x , ·)dµ∗(x)

∇W2F(µ) =

∫
∇2k(x , ·)dµ(x)−

∫
∇2k(x , ·)dµ∗(x)

The WGF of the MMD can be implemented via :

dxt
dt

= −∇W2F(µt)(xt)

in practice we can implement the discrete-time interacting particle system:

x i
l+1 = x i

l − γ

(
n∑

j=1

∇2k(x
i
l , x

j
l )−

∫
∇2k(x

i
l , y)dµ

∗(y)

)

which is gradient descent of (x1, . . . , xn) 7→ MMD2
(
1
n

∑n
i=1 δxi , µ

∗)
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KL Gradient flow in practice https://chi-feng.github.io/mcmc-demo/app.html

Take F(µ) = KL(µ|µ∗) =
∫
log
(

µ
µ∗

)
dµ, we have ∇W2F(µ) = ∇ log

(
µ
µ∗

)
.

The WGF of the KL can be written (rhs = Fokker-Planck equation)

∂µt

∂t
= ∇ ·

(
µt∇ log

µt

µ∗

)
= ∇ · (µt∇ logµ∗) + ∆µt

It can be implemented via ”Probability Flow” (2) or Langevin diffusion (3):

dx̃t = −∇ log

(
µt

µ∗

)
(x̃t)dt (2)

dxt = ∇ logµ∗(xt)dt +
√
2dBt (3)

(3) can be discretized in time as Langevin Monte Carlo (LMC)

xm+1 = xm + γ∇ logµ∗(xm) +
√

2γϵm, ϵm ∼ N (0, IdRd ).

(2) can be approximated by a particle system; e.g. Stein Variational Gradient
Descent‡ [Liu, 2017, Duncan et al., 2019] for some kernel k : Rd × Rd → R+:

x i
t+1 = x i

t +
γ

N

N∑
j=1

∇ logµ∗(x j
t )k(x

i
t , x

j
t ) +∇2k(x

i
t , x

j
t ), i = 1, . . . ,N.

‡WGF of KL w.r.t.

W 2
k (µ, ν) = infµt ,vt

{∫ 1
0
∥vt∥2

Hk
d dt : ∂µt

∂t = ∇ · (µtvt), µ0 = µ, µ1 = ν
}
. 7 / 38
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Other choices?

Consider the chi-square (CS) divergence, which is an f -divergence:

χ2(µ|µ∗) :=

∫ (
dµ

dµ∗ − 1

)2

dµ∗ if µ≪ µ∗; +∞ else.

It is not convenient neither when µ, µ∗ are discrete

χ2-gradient requires the normalizing constant of µ∗: ∇ µ
µ∗

However, the GF of χ2 has interesting properties

we have χ2(µ|µ∗) ≥ KL(µ|µ∗).

KL decreases exp. fast along CS flow/χ2 decreases exp. fast along KL
flow if µ∗ satisfies Poincaré

If we pick F = W 2
2 (·, µ∗), ∇W2F(µ) = ∇fµ,µ∗ where fµ,µ∗ is the

Kantorovitch potential between µ and µ∗ (not closed-form, we need to
solve an OT problem at each step)
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Example 1: Bayesian inference

Given labelled data (wi , yi )
p
i=1, we want to sample from the posterior

distribution over the parameters of a model

µ∗(x) ∝ exp (−V (x)) , V (x) =
m∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss on labeled data (wi , yi )

m
i=1

+
∥x∥2
2︸ ︷︷ ︸

prior reg.

.

Ensemble prediction for a new
input w :

ŷ =

∫
Rd

g(w , x)dµ∗(x)︸ ︷︷ ︸
”Bayesian model averaging”

Predictions of models
parametrized by x ∈ Rd

are reweighted by µ∗(x).
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Sampling as minimization of the KL

Recall µ∗(x) ∝ exp (−V (x)) , V (x) =
m∑
i=1

∥yi − g(wi , x)∥2︸ ︷︷ ︸
loss

+
∥x∥2
2

.

LMC is known to be a GF of the KL w.r.t. the Wasserstein metric, while
SVGD is w.r.t. to a ”kernelized” Wasserstein metric, hence both solve

µ∗ = argmin
µ

KL(µ|µ∗)

if V is convex (e.g. g(w , x) = ⟨w , x⟩), these methods are known to work
quite well [Durmus and Moulines, 2016, Vempala and Wibisono, 2019]

but if its not (e.g. g(w , x) is a neural network), the situation is much
more delicate [Balasubramanian et al., 2022]

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Example 2: Thinning (Postprocessing of MCMC output)

How can we post-process the MCMC output, and keep only the states that are
representative of the posterior µ∗ (e.g. to remove burn-in, correct time spent in
each mode...)?

Picture from Chris Oates.

Idea: minimize a divergence from the distribution of the states to µ∗

[Riabiz et al., 2022], [KAMA21]:

µn = argmin
µ

KSD(µ|µ∗), KSD2(µ|µ∗) =

∫∫
kµ∗(x , y)dµ(x)dµ(y)

where kµ∗(x , y) = k(x , y)∇ logµ∗(x)⊤∇ logµ∗(y) +∇2k(x , y)
⊤∇ logµ∗(x) +

∇1k(x , y)
⊤∇ logµ∗(y) +∇ ·1 ∇2k(x , y), where k p.s.d. and smooth kernel

e.g. k(x , y) = e−∥x−y∥2 .
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Example 3 : Regression with infinite width shallow NN

min
(xi )

n
i=1

∈Rd
E(w,y)∼Pdata

[∥∥∥∥y− 1

n

n∑
i=1

ϕxi
(w)︸ ︷︷ ︸

ŷ

∥∥∥∥2
]

−−−−→
n→∞

min
µ∈P(Rd )

E(w,y)∼Pdata

[∥∥∥∥y −
∫
Rd

ϕx (w)dµ(x)

∥∥∥∥2]
︸ ︷︷ ︸

F(µ)

Optimising the neural network ⇐⇒ approximating µ∗ ∈ argminF(µ)
[Chizat and Bach, 2018, Mei et al., 2018]

If y(w) = 1
m

∑m
i=1 ϕxi (w) is generated by a neural network (as in the

student-teacher network setting), then µ∗ = 1
m

∑m
i=1 δxm and F can be

identified to an MMD [AKSG2019]:

min
µ

Ew∼Pdata

[
∥yµ∗ (w)− yµ(w)∥2

]
= MMD2(µ, µ∗), k(x , x ′) = Ew∼Pdata

[ϕx′ (w)Tϕx (w)].
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Example 4: Generative modelling

In generative modeling we want to generate novel samples from a distribution
µ∗ (given sample access).

Generative Adversarial Networks (GAN) or Normalizing Flows (NF) can be
trained by minimizing specific distances or divergences:

min
θ

D(µθ|µ∗)

where µ∗ = distribution of the data samples, and µθ = of the generative model.

LSUN bedroom samples vs MMD GAN [Li et al., 2017].

for GANs: MMD [Li et al., 2017], Sinkhorn divergence
[Genevay et al., 2018],...

for NF [Papamakarios et al., 2021]: typically the

likelihood/KL(µ∗|µθ) =
∫
log
(

µ∗

µθ

)
dµ∗.

13 / 38



Outline

1 Sampling as Optimization

2 Applications

3 Choice of the D

4 Focus on DMMD

5 Mollified χ2

6 Further connections with Optimization



Sampling as Optimization Applications Choice of the D Focus on DMMD Mollified χ2 Further connections with Optimization

Why we care about the objective

We already saw that depending the application and the information on µ∗

(unnormalized density, samples...) we may pick the objective F = D(·|µ∗)
accordingly. But this is not all !

For a 2d standard Gaussian target µ∗;

SVGD follows a gradient flow of the KL(·|µ∗)

MMD/KSD GD follow a gradient flow of the MMD(·|µ∗)/KSD(·|µ∗).

Gradient flow D(·|µ∗) to a Gaussian µ∗(x) ∝ e−
∥x∥2

2 behave differently
depending on D.

(Some) questions:

1 what can we say on their geometrical properties?

2 are there IPMs (integral probability metrics) that enjoys a better behavior
than the MMD?

3 are there good alternatives to the KL? 14 / 38
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Background on convexity and smoothness in Rd

Recall that if f : Rd → R is twice differentiable,

1 f is λ-convex (λ ≥ 0)

∀x , y ∈ Rd , t ∈ [0, 1] :

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) − λ

2
t(1 − t)∥x − y∥2

⇐⇒ vT∇2f (x)v ≥ λ∥v∥22 ∀x , v ∈ Rd .

2 f is M-smooth

∥∇f (x) −∇f (y)∥ ≤ M∥x − y∥ ∀x , y ∈ Rd

⇐⇒ vT∇2f (x)v ≤ M∥v∥22 ∀x , v ∈ Rd .

Fast (linear) rates can be obtained under these two conditions for
gradient descent. Alternatively, (1) can be relaxed to Polyak- Lojiasiewciz
inequality : f (x) − f (x∗) ≤ 1

2λ∥∇f (x)∥2 [Garrigos and Gower, 2023].
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(Geodesically)-convex and smooth losses

F is said to be λ-displacement convex (λ ∈ R) if along W2 geodesics (ρt)t∈[0,1]:

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)− λ

2
t(1− t)W 2

2 (ρ0, ρ1) ∀ t ∈ [0, 1].

The Wasserstein Hessian of a functional F : P2(Rd) → R at µ is defined for
any ψ ∈ C∞

c (Rd) as:

Hessµ F(ψ,ψ) :=
d2

dt2

∣∣∣∣
t=0

F(µt)

where (µt , vt)t∈[0,1] is a Wasserstein geodesic with µ0 = 0, v0 = ∇ψ.

F is λ-displacement convex ⇐⇒ Hessµ F(ψ,ψ) ≥ λ∥∇ψ∥2L2(µ)

(See [Villani, 2009, Proposition 16.2]). If λ ≥ 0 we will say F is geodesically
convex. In an analog manner we can define smooth functionals as functionals
with upper bounded Hessians.
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Guarantees for Wasserstein gradient descent

Consider Wasserstein gradient descent (Euler discretization of Wasserstein
gradient flow)

µl+1 = (Id−γ∇F ′(µl))#µl

Assume F is M-smooth. Then, we have a descent lemma (if γ < 2
M
):

F(µl+1)−F(µl) ≤ −γ
(
1− γ

2
M
)
∥∇F ′(µl)∥2L2(µl )

.

Moreover, if F is λ-convex, we have the global rate

F(µL) ≤ W 2
2 (µ0, µ

∗)

2γL
− λ

L

L∑
l=0

W 2
2 (µl , µ

∗).

(so the barrier term degrades with λ).
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λ-convexity of KL and MMD

Let µ∗ ∝ e−V , we have [Villani, 2009]

Hessµ KL(·||µ∗)(ψ,ψ) =

∫ [
⟨HV (x)∇ψ(x),∇ψ(x)⟩+ ∥Hψ(x)∥2HS

]
µ(x) dx .

If V is m-strongly convex, then the KL is m-geo. convex:

⟨HV (x)∇ψ(x),∇ψ(x)⟩ ≥ m∥∇ψ(x)∥2 =⇒ Hessµ KL(·||µ∗)(ψ,ψ) ≥ m∥∇ψ∥2L2(µ).

However it is not smooth (Hessian is unbounded wrt ∥∇ψ∥2L2(µ)). Similar story

for χ2-square [Ohta and Takatsu, 2011].

For a M-smooth kernel k [AKSG2019]

Hessµ MMD2(·||µ∗)(ψ,ψ) =

∫
∇ψ(x)⊤∇1∇2k(x , y)∇ψ(y)dµ(x)dµ(y)+

2

∫
∇ψ(x)⊤

(∫
H1k (x , z) dµ(z)−

∫
H1k (x , z) dµ∗(z)

)
∇ψ(x)dµ(x)

It is M-smooth but not geodesically convex (Hessian lower bounded by a big
negative constant)

for KSD we obtain negative results even for strongly log concave µ∗

[KAMA2021]
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Relaxation of convexity: functional inequalities

It is also possible to show fast rates of convergence for gradient descent (or
closely related schemes) if we have inequalities of the form
F(µ) ≤ 1

λ
∥∇W2F(µ)∥2L2(µ) where the r.h.s. corresponds to the dissipation of F

along the flow.

For the KL along its WGF it corresponds to the log-Sobolev inequality

A small (bounded) perturbation of π is not necessarily log-concave, but still verifies a Log Sobolev inequality (Holley–Stroock
perturbation theorem).

for SVGD on the r.h.s. we have KSD2(µ|µ∗), which is hard to achieve for
smooth kernels [Duncan et al., 2019]

for MMD we can obtain a functional inequality, but where λ depends on the
whole trajectory, and may be vacuous for discrete measures [AKSG2019]
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Discrete µ∗, and Variational formula of f-divergences

Assume we have sample access to µ∗ (e.g. i.i.d. samples from µ∗).

Remember that MMD is convenient as an optimization objective but its
WGF converges poorly, and KL is not well-suited for a discrete µ∗.

Can we design a better IPM (Integral Probability Metric)?

Recall that f -divergences write D(µ|µ∗) =
∫
f
(

µ
µ∗

)
dµ∗, f convex,

f (1) = 0. They admit a variational form [Nguyen et al., 2010]:

D(µ|µ∗) = sup
h:Rd→R

∫
hdµ−

∫
f ∗(h)dµ∗

where f ∗(y) = supx⟨x , y⟩ − f (x) is the convex conjugate (or Legendre
transform) of f and h measurable.

Examples:

KL(µ|µ∗): f (x) = x log(x) − x + 1 , f ∗(y) = ey − 1

χ2(µ|µ∗): f (x) = (x − 1)2, f ∗(y) = y + 1
4y

2
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A proposal§: Interpolate between MMD and χ2

”De-Regularized MMD” leverages the variational formulation of χ2:

DMMD(µ||µ∗) = (1 + λ)
{
max
h∈Hk

∫
hdµ−

∫
(h +

1

4
h2)dµ∗ − 1

4
λ∥h∥2Hk

}
(4)

It is a divergence for any λ, recovers χ2 for λ = 0 and MMD for λ = +∞.

DMMD and its gradient can be written in closed-form, in particular if
µ, µ∗ are discrete (depends on λ and kernel matrices over samples of µ, µ∗):

DMMD(µ||µ∗) = (1 + λ)
∥∥∥(Σµ∗ + λ Id)−

1
2 (mµ −mµ∗)

∥∥∥2
Hk

,

∇DMMD(µ||µ∗) = ∇h∗
µ,µ∗

where Σµ∗ =
∫
k(·, x)⊗ k(·, x)dµ∗(x), where (a⊗ b)c = ⟨b, c⟩Hk a; and h∗

µ,µ∗

solves (4).

§with H. Chen, A. Gretton, P. Glaser (UCL), A. Mustafi, B. Sriperumbudur (CMU)
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Formula for discrete measures

Given empirical distributions µ̂ = 1
N

∑N
i=1 y

(i), π̂ = 1
M

∑M
i=1 x

(i) and Gram

matrices Kxx = k
(
x1:M , x1:M

)
and Kxy = k

(
x1:M , y 1:N

n

)
, Kyy = k

(
y 1:N
n , y 1:N

n

)
DMMD(µ̂, π̂) =

1 + λ

λ

(
1

N2
1⊤N Kyy1N +

1

M2
1⊤MKxx1M −

2

MN
1⊤MKxy1N

−
1

N2
1⊤N Kxy (Mλ Id+Kxx )

−1 Kxy1N

+
2

NM
1⊤MKxx (Mλ Id+Kxx )

−1 Kxy1N

−
1

M2
1⊤MKxx (Mλ Id+Kxx )

−1 Kxx1M

)

Complexity: O(M3 + NM) (can be decreased with random features)

22 / 38



Sampling as Optimization Applications Choice of the D Focus on DMMD Mollified χ2 Further connections with Optimization

Several interpretations of DMMD

DMMD can be seen as:

A reweighted χ2-divergence: for µ≪ π

DMMD(µ∥π) = (1 + λ)
∑
i≥1

ϱi
ϱi + λ

〈
dµ

dπ
− 1, ei

〉2

L2(π)

,

where (ρi , ei ) is the eigendecomposition of
Tπ : f ∈ L2(π) 7→

∫
k(x , ·)f (x)dπ(x) ∈ L2(π).

An MMD with the kernel:

k̃(x , x ′) =
∑
i≥1

ϱi
ϱi + λ

ei (x)ei (x
′)

which is a regularized version of the original kernel
k (x , x ′) =

∑
i≥1

ϱiei (x)ei (x
′).
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Related work

Regularized MMD’s (DMMD(µ||µ+ π)) appeared in:
Eric, M., Bach, F., Harchaoui, Z. (2007). Testing for homogeneity
with kernel Fisher discriminant analysis. Neurips

Kernelization of KL divergence variational formulation (but is not
closed-form !): Glaser, P., Arbel, M., Gretton, A. (2021). Kale flow:
A relaxed kl gradient flow for probabilities with disjoint support.
Neurips.

Kernelization of f-divergences variational formulation in : Neumayer,
S., Stein, V., Steidl, G. (2024). Wasserstein Gradient Flows for
Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert
Spaces. arXiv preprint arXiv:2402.04613.
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Ring Experiment

MMD

T=0 T=2 T=30 T=99
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Student-teacher networks experiment¶
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the teacher network w 7→ yµ∗(w) is given by M particles (ξ1, ..., ξM)
which are fixed during training =⇒ µ∗ = 1

M

∑M
j=1 δξj

the student network w 7→ yµ(w) has n particles (x1, ..., xn) that are
initialized randomly =⇒ µ = 1

n

∑n
i=1 δxj

min
µ

Ew∼Pdata

[
(yµ∗(w)− yµ(w)2

]
⇐⇒ min

µ
MMD(µ, µ∗) with k(x , x ′) = Ew∼Pdata [ϕx′(w)ϕx(w)].

¶Same setting as [AKSG2019].
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Strong convexity of DMMD

Let µ∗ ∝ e−V .

If V is m-strongly convex, for λ small enough, we can lower bound
Hessµ DMMD(·||µ∗)(ψ,ψ) by a positive constant times ∥∇ψ∥2L2(µ), and obtain:

a general existence result for µ≪ π∣∣Hessµ DMMD(·||µ∗)(ψ,ψ)− Hessµ χ
2(·||µ∗)(ψ,ψ)

∣∣
≤
∑
i≥1

λ

ϱi + λ

(
K1d +

√
K2d

∥∥∥µ
π

− 1
∥∥∥
L2(µ∗)

)
∥∇ψ∥2L2(µ)

a ”non-asymptotic” result wrt λ if we have a lower bound on the density
ratios and a source condition ( µ

µ∗ ∈ Ran(T r
π ), 0 < r ≤ 1

2
)∣∣Hessµ DMMD(·||µ∗)(ψ,ψ)− Hessµ χ

2(·||µ∗)(ψ,ψ)
∣∣

≤
(
K1d + λr

√
K2d ∥q∥L2(µ∗)

)
∥∇ψ∥2L2(µ)

where K1d and K2d are constants bounding the first and second derivatives of
the kernel.
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Idea of the proof

1 We can write Hessian of χ2

Hessµ χ
2(µ∥µ∗) =

∫
µ(x)2

µ∗(x)
(Lµ∗ψ(x))2dx

+

∫
µ(x)2

µ∗(x)
⟨HV (x)∇ψ(x),∇ψ(x)⟩ dx +

∫
µ(x)2

µ∗(x)
∥Hψ(x)∥2HS dx

where Lµ∗ is the Langevin diffusion
Lµ∗ψ = ⟨∇V (x),∇ψ(x)⟩ − ∆ψ(x).

2 DMMD(µ∥π) = (1 + λ)
∑
i≥1

ϱi

ϱi+λ

〈
dµ
dπ − 1, ei

〉2

L2(π)
, where (ρi , ei )

eigendecomposition of Tπ : f ∈ L2(π) 7→
∫
k(x , ·)f (x)dπ(x) ∈ L2(π)
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Another idea - ”Mollified” discrepancies [LLKYS2022]

What if we don’t have access to samples of µ∗? (recall that DMMD
involves an integral over µ∗) e.g. as in Bayesian inference.

Choose a mollifiers/kernels (Gaussian, Laplace, Riesz-s):

kg
ϵ (x) :=

exp
(
− ∥x∥22

2ϵ2

)
Z g (ϵ)

, kg
ϵ (x) :=

exp
(
− ∥x∥2

ϵ

)
Z l(ϵ)

, k s
ϵ(x) :=

1

(∥x∥22 + ϵ2)s/2Z r (s, ϵ)

We propose the Mollified chi-square:

Eϵ(µ) =

∫∫
kϵ(x − y)(µ∗(x)µ∗(y))−1/2µ(x)µ(y) dx dy

=

∫ (
kϵ ∗ µ√

µ∗

)
(x)

µ√
µ∗ (x) dx −−−→

ε→0
χ2(µ|µ∗) + 1

It writes as an interaction energy, allowing to consider µ discrete and µ∗ with a
density. It differs from χ2(kϵ ⋆ µ|µ∗) as in [Craig et al., 2022], whose
Wasserstein gradient requires an integration over Rd (instead of µ).
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(1) Sampling/Optimization with constraints

Sampling with (hard/support) constraints, i.e.

min
µ∈P2(X )

D(µ∥µ∗)

where if we think of x as being parameter of a model and µ the
posterior in Bayesian inference, X could encode

(1) norm constraints ∥x∥q ≤ C (e.g. Bayesian Lasso q = C = 1)

(2) inequality constraints X =
{
x ∈ Rd , g(x) ≤ 0

}
(e.g. fairness

constraints)

For (1) ”projected/mirror” methods: Projected LMC
[Bubeck et al., 2018], Mirror LMC [Ahn and Chewi, 2021], Mirror
SVGD [Shi et al., 2022], for (2) we can use dynamic barrier
[Li et al., 2022]

Sampling with (population) inequality constraints [Liu et al., 2021]

min
µ∈P2(Rd )

KL(µ∥µ∗)

subject toEx∼µ

[
g(x)

]
≤ 0

using primal-dual optimization.
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A numerical example from [LLKYS2022]
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We use the mirror map ϕ(θ) =
∑n

i=1

(
(1 + θi ) log

(
1 + θi

)
+ (1 − θi ) log

(
1 − θi

))
or reparametrization using f = tanh.

31 / 38



Sampling as Optimization Applications Choice of the D Focus on DMMD Mollified χ2 Further connections with Optimization

A numerical example from [LLKYS2022]
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Uniform distribution on X = {(x , y) ∈ [−1, 1]2 : (cos(3πx) + cos(3πy))2 < 0.3}.
Mirror LMC/SVGD cannot be applied due to non convexity of the constraints.
MIED with a Riesz mollifier (s = 3) where the constraint is enforced using the dynamic barrier method. The plot in row i column j shows

the samples at iteration 100 + 200(6i + j). The initial samples are drawn uniformly from the top-right square [0.5, 1.0]2.
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Still [LLKYS2022] (Fair Bayesian Neural Network)

Given a dataset D = {w (i), y (i), z (i)}|D|
i=1 consisting of features w (i), labels

y (i) (whether the income is ≥ $50, 000), and genders z (i) (protected
attribute), we set the target density to be the posterior of a logistic
regression using a 2-layer Bayesian neural network ŷ(·; x). Given t > 0,
the fairness constraint is

g(x) = (cov(w ,y ,z)∼D[z , ŷ(w ; x)])2 − t ≤ 0.
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Other methods come from [Liu et al., 2021].
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(2) Bilevel Sampling

Bilevel sampling [MK...B2024]

min
θ∈Rp

ℓ(θ) := min
θ∈Rp

F(µ∗(θ))

where for instance µ∗(θ) is a Gibbs distribution, minimizing the KL

µ∗(θ)[x ] = exp(−V (x , θ))/Zθ .

Example: Reward training (R(x) = 1x1>0 exp
(
−∥x − µ∥2

)
) of Langevin

diffusions, V (·, θ) potential of a mixture of Gaussians parametrized by θ.

Sampling from V (·, θ0).

Sampling from V (·, θopt).

Bilevel approach.

V = V (·, θopt)−λRsmooth
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(3) The issue of multimodality and tempering

Langevin Monte Carlo, which is a discrete-time implementation of the
Wasserstein gradient flow of the KL(·|µ∗).

On a µ∗ a mixture of Gaussians, it does not manage to target all modes in
reasonable time, even in low dimensions.
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Tempering: a possible fix

Consider the sequence of tempered targets as:

µ∗
β ∝ µβ

0 (µ
∗)1−β , β ∈ [0, 1]

It is discretized Fisher-Rao gradient flow of the KL [CCK2023].

Hence a change of geometry/a sequence of intermediate problems can
help (but not always)
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Other tempered path

Figure by S. Coste, available at https://scoste.fr/posts/diffusion/.

”Convolutional path” (β ∈ [0,+∞[) frequently used in Diffusion Models

µ∗
β =

1√
1 − β

µ0

(
.√

1 − β

)
∗ 1√

β
µ∗

(
.√
β

)
(vs ”geometric path” µ∗

β ∝ µβ
0 (µ∗)1−β)
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Future directions

Other divergences from the field of information/quantum theory? MMD
with non-smooth/psd kernels, e.g. k(x , y) = −∥x − y∥r , 0 < r < 2? (See
G. Steidl’s group work)

How to improve the performance of the algorithms for highly non-log
concave targets? e.g. through tempering (interpolating between µ0 and
µ∗)?

Shape of the trajectories? change the underlying metric and consider Wc

gradient flows (e.g. like in SVGD)

Derive theoretical guarantees

on the optimization error (how many iterations needed?)
on the quantization error (how many particles?)
on critical points, e.g. their stability

Some results exist for specific D but a lot remains to be done.

Thank you !
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Quantization - classical results

What can we say on infx1,...,xn D(µn|µ∗) where µn =
∑n

i=1 δxi ?

Quantization rates for the Wasserstein distance
[Kloeckner, 2012, Mérigot et al., 2021]

W2(µn, µ
∗) ∼ O(n− 1

d )

Forward KL [Li and Barron, 1999]: for every gP =
∫
kϵ(· − w)dP(w),

argmin
µn

KL(µ∗|kϵ ⋆ µn) ≤ KL(µ∗|gP) +
C 2
µ∗,Pγ

n

where C 2
µ∗,P =

∫ ∫
kϵ(x−m)2dP(m)

(
∫
kϵ(x−w)dP(w))2

dµ∗(x), and γ = 4 log
(
3
√
e + a

)
is a

constant depending on ϵ with a = supz,z′∈Rd log (kϵ(x − z)/kϵ(x − z ′)).
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Quantization - Recent results

For smooth and bounded kernels in [Xu et al., 2022] and µ∗ with
exponential tails, we get using Koksma-Hlawka inequality

min
µn

MMD(µn, µ
∗) ≤ Cd

(log n)
5d+1

2

n
.

This bounds the integral error for f ∈ Hk (by Cauchy-Schwartz):∣∣∣∣∫
Rd

f (x)dµ∗(x)−
∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ∥f ∥HkMMD(µ, π).

For the reverse KL (joint work with Tom Huix) we get (in the
well-specified case) adapting the proof of [Li and Barron, 1999]:

min
µn

KL(kϵ ⋆ µ|µ∗) ≤ C 2
µ∗

log(n) + 1

n
.

This bounds the integral error for measurable f : Rd → [−1, 1] (by Pinsker
inequality): ∣∣∣∣∫ fd(kϵ ⋆ µn)−

∫
fdµ∗

∣∣∣∣ ≤
√

C 2
µ∗(log(n) + 1)

2n
.
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Generalized dynamic barrier: Dykstra’s algorithm

Observe that

min
v∈Rd

∥∥v −∇xiEϵ(ω
t
N)

∥∥2 s.t. ∀j = 1, . . . ,m,∇gj(x
t
i )⊤v ≥ αigj(x

t
i ),

is the same as projecting ∇xiEϵ(ω
t
N) on

∩m
i=1{x ∈ Rd ,∇gi (x

t)⊤v ≥ αigi (x
t)}.

we use Dykstra’s projection algorithm which in this case is the same as
running coordinate descent on the dual problem, and hence with fast
linear convergence rate.

Since the constraints are the same for all particles, we can parallelize
Dykstra’s algorithm by using a fixed maximum number of iterations for
all particles to find the update direction v∗

i for each i .
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Unconstrained examples I - Gaussian
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II - Product of two Student’s t-distributions (heavy tail)
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Constrained example I - Uniform sampling in a box
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We use the mirror map ϕ(θ) =
∑n

i=1

(
(1 + θi ) log

(
1 + θi

)
+ (1 − θi ) log

(
1 − θi

))
or reparametrization using f = tanh.
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Sensitivity to the mirror map
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Figure: Visualization of samples for uniform sampling from a 2D box when
using a suboptimal mirror map. All three methods fail to draw samples near
the boundary of the box [−1, 1]2.

Here we use the mirror map ϕ(θ) =
∑n

i=1

(
log 1

1−θi
+ log 1

1+θi

)
as in

[Ahn and Chewi, 2021].
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